Главная страница
Навигация по странице:

  • Доходность финансовых активов

  • 2.3. Оценка долевых ценных бумаг в условиях низколиквидных рынков

  • Контрольные вопросы

  • Приложение 1 . Обоснование модели дисконтирования дивидендов

  • Финансовый менеджмент опорный конспект. Учебное пособие Части 1,2 Введение


    Скачать 382 Kb.
    НазваниеУчебное пособие Части 1,2 Введение
    АнкорФинансовый менеджмент опорный конспект.doc
    Дата29.07.2018
    Размер382 Kb.
    Формат файлаdoc
    Имя файлаФинансовый менеджмент опорный конспект.doc
    ТипУчебное пособие
    #22202
    страница7 из 8
    1   2   3   4   5   6   7   8

    Оценка стоимости ценных бумаг с фиксированным доходом


    К ценным бумагам с фиксированным доходом принято относить облигации и привилегированные акции. Определение, классификация, экономическое содержание и юридическая природа этих инструментов являются предметом рассмотрения других курсов; здесь же рассмотрим лишь их оценку при известной альтернативной доходности r.

    Оценка бескупонных (дисконтных) облигаций


    По определению, бескупонные (дисконтные) облигации, или, как их еще называют, облигации с нулевым купоном, реализуются со скидкой (дисконтом) от номинала (номинальной или нарицательной стоимости) и погашаются по номиналу. Никаких промежуточных выплат эти облигации не предусматривают.

    Если обозначить через PV– текущую стоимость облигации; F– ее номинальную стоимость; а nчисло лет до погашения, то оценка будет производиться по формуле:
    (2.14)
    В формуле (2.14) число лет до погашения может быть как целым, так и дробным.
    Пример.

    Необходимо оценить шестимесячную государственную облигацию номиналом в 1000 руб., если альтернативная годовая доходность составляет 16%.

    Решение. Применяя формулу (2.14) с учетом времени до погашения, равного половине года, получаем

    PV = 1000/(1 + 0.16)1/2 = 928.50 руб.

    Оценка купонных облигаций6


    В отличие от бескупонных, купонные облигации предполагают регулярную выплату процентного дохода, обычно по фиксированной ставке в процентах от номинальной стоимости, а в конце срока обращения вместе с последним процентным платежом погашается номинальная стоимость облигации. Купонную ставку принято обозначать rc, ее значение равно суммарному годовому процентному доходу, поделенному на номинал облигации. Если частота купонных выплат по облигации выше, чем один раз в год, то купонные платежи с рассчитываются как годовой процентный доход по облигации, деленный на количество выплат в году.
    Пример.

    Облигация имеет номинальную стоимость $1000 и купонную ставку 12%. Если проценты начисляются 1 раз в год, то выплаты составят $120 в конце каждого года вплоть до срока погашения. Если выплаты предусмотрены два раза в год, то платить будут по $60 в конце каждого полугодия. При поквартальной выплате процентов доход кредитора составит $30 в конце каждого квартала.
    Если через m обозначить число периодов, оставшихся до погашения облигации, то в приведенных выше обозначениях формула (2.13) для купонной облигации примет вид
    (2.15)

    Соотношение (2.15) достаточно легко упростить, используя формулу (2.7) для дисконтированной стоимости срочного аннуитета с постоянными платежами:
    (2.16)
    Из приведенной формулы следует, что текущая стоимость облигации в значительной степени зависит от нормы доходности, которую требует рынок от ценных бумаг данного уровня риска. Если эта рыночная норма доходности (необходимый уровень дохода) превышает установленную купонную ставку, облигация продается со скидкой (дисконтом) от номинала. В противоположном случае облигация продается с премией. При совпадении требуемого уровня дохода и купонной ставки облигация продается по номиналу. Можно также показать, что при заданном изменении необходимого уровня доходности цена облигации изменится тем сильнее, чем дольше период времени до ее погашения.
    Пример.

    Рассчитать рыночную стоимость облигации номиналом 1000 руб. с поквартальной выплатой купонного дохода. До погашения облигации осталось два года. Купонная ставка - 10%; в качестве ставки доходности по альтернативным инвестициям принять 8% годовых.

    Решение. Так как доход по облигации выплачивается четыре раза год, то величина купонного платежа составит

    с = 0.1•1000/4 = 25 руб.

    Квартальная ставка rкв может быть найдена из соотношения

    (1+ rкв)4 = 1+ 0.08, откуда rкв = 0.0194 или 1.94%

    (при этом предполагается, что альтернативная ставка начисляется один раз в год). Тогда в соответствии с формулой (2.16):

    PV = 25[1-(1+0.0194)-8]/0.0194 + 1000/(1+0.0194)8. = 1041 руб. 13 коп.

    Следует отметить, что оценочная стоимость облигации выше номинала: это объясняется тем, что купонная ставка превышает альтернативную доходность.
    Оценка бессрочных облигаций и привилегированных акций

    Хотя правовая природа акций и облигаций принципиально различная, с финансовой точки зрения процедура их оценки может быть сходной, если и тот, и другой инструменты предполагают фиксированные регулярные выплаты дохода держателям.

    Для оценки бессрочного финансового инструмента следует использовать формулу текущей стоимости бессрочного аннуитета (2.11):
    (2.11')
    где с – доход за соответствующий период, r – периодическая ставка ожидаемой доходности.
    Пример.

    Рассчитать рыночную стоимость привилегированной акции номиналом 10 руб., ставкой дивиденда – 15% и выплатой дохода два раза в год. Ставка рыночной капитализации - 20% годовых.

    Решение. Так как дивиденд по акции выплачивается два раза год, то его величина составит 0.15*10/2 = 0.75 руб., или 75 коп. Дивиденд выплачивается в конце каждого полугодия, следовательно необходимо определить полугодовую ставку дисконтирования rпг на основе заданной ставки рыночной капитализации: (1+ rпг)2 = 1+ 0.20, откуда rпг =0.0954. Из формулы (2.11)

    PV = 0.75/0.0954 = 7 руб. 86 коп.
    Оценка обыкновенных акций

    Оценка рыночной стоимости обыкновенных акций в рамках используемой базовой модели (применительно к акциям она носит название модели дисконтирования дивидендов) существенно осложняется тем обстоятельством, что дивиденды по этим инструментам выплачиваются по результатам хозяйственной деятельности предприятия. Как следствие, необходимо иметь достаточно достоверный прогноз ожидаемых дивидендных выплат. Однако, прогнозирование дивидендов, даже если компания придерживается стабильной дивидендной политики, представляет собой достаточно сложную задачу в силу наличия хозяйственных рисков. Тем не менее, существует ряд приемов и моделей7, позволяющих с определенной степенью точности аппроксимировать будущие выплаты, что, соответственно, делает возможным применение формулы (2.13). Обозначая дивиденды за соответствующий период через Divi , из формулы (2.13) получим:
    (2.17)

    где r – ставка ожидаемой доходности (рыночной капитализации) за соответствующий период.

    Следует иметь в виду, что под будущими выплатами (дивидендами) понимаются не только собственно дивиденды, но и ликвидационные выплаты, и выкупные платежи при выкупе акций у акционеров. Бесконечное суммирование в формуле (2.17) может также вызвать вопрос о ее применимости в случае ограниченного периода владения акцией. Однако предположение о возможной продаже акции ее нынешним владельцем не ограничивает применимости формулы (2.17): каждый из последующих покупателей акции даст за нее цену, равную текущей (на момент приобретения) стоимости ожидаемых им денежных поступлений. Более серьезные сомнения в применимости формулы (2.17) может вызвать то обстоятельство, что большинство фирм стабильно реинвестирует значительную часть извлекаемой прибыли, а некоторые за всю свою историю не платили никаких дивидендов в принципе, реинвестируя всю генерируемую прибыль в свою финансово-хозяйственную деятельность. Подробное обоснование применимости модели дисконтированных денежных потоков к оценке акций, по которым выплачиваются ограниченные дивиденды, обычно приводится в курсах корпоративных финансов. В настоящем курсе будет достаточным отметить, что стоимость акции может быть представлена не только как сумма дисконтированных будущих дивидендов, но и как сумма дисконтированных свободных денежных потоков фирмы8 или как сумма дисконтированных средних будущих доходов фирмы плюс дисконтированные возможности роста (последний вариант в случае, если компания выбирает стратегию роста). Дивиденды в последнем случае могут быть незначительными либо нулевыми в течение многих лет, однако рано или поздно рост должен замедлиться, и тогда у фирмы появятся денежные средства для выплаты дивидендов. Некоторые выкладки, обосновывающие применение формулы (2.17) к оценке обыкновенных акций найти в Приложении 1 к настоящей главе.

    Наиболее часто применяется модель, использующая предположение о постоянном темпе прироста дивидендов – модель Гордона. Если обозначить через g темп прироста дивиденда, то дивиденды последующих лет выразятся через дивиденд в конце первого года Div1 формулами:



    Тогда соотношение (2.17) примет вид

    (2.18)

    которое может быть свернуто на основании предельного перехода в формуле дисконтированной стоимости бессрочного аннуитета при i→∞ (формула (2.12)). В результате получим:
    (2.19)
    Формула (2.19) и представляет собой модель Гордона. Очевидно, что в реальности трудно ожидать от акций точного следования данной модели даже для компаний с устоявшейся дивидендной политикой. Темп прироста дивидендов с течением времени может изменяться, возможны периоды постоянных по величине дивидендов, которые сменяются периодами роста или уменьшения и т.п. С чисто математической точки зрения учет более сложного характера изменения дивидендов проблемы не составляет и соответствующий материал может быть найден в курсах финансовых вычислений. Следует, однако, иметь в виду, что погрешность прогнозирования дивидендных выплат достаточно велика и может свести на нет самые изощренные математические модели. Именно поэтому на практике для целей оценки используются достаточно простые модели, сочетающие периоды нулевого и равномерного роста.

    Модель Гордона, в отличие от других приведенных формул, имеет ограниченную применимость: темп прироста дивиденда должен быть строго меньше ставки дисконтирования (это следует непосредственно из формулы (2.19)).
    Пример.

    Оценить рыночную стоимость обыкновенной акции, если в течение ближайших пяти лет дивиденд на нее ожидается постоянным и равным 80 коп., после чего прогнозируется начало неограниченно долгого роста в 5% ежегодно. Выплата дивидендов – один раз в год. Ставка рыночной капитализации - 15% годовых.

    Решение. Так как дивиденды в течение первых пяти лет прогнозируются постоянными, то для расчета их вклада в оценочную стоимость акции следует использовать формулу для дисконтированной стоимости срочного аннуитета с постоянным платежом (2.8). Дальнейшее ежегодное увеличение дивидендов на 5% учитывается в соответствии с формулой (2.19). При этом результат применения модели Гордона следует дисконтировать на пять лет назад, чтобы получить оценку "сегодня". Расчетная стоимость составит:

    PV = 0.8[1-(1+0.15)-5]/0.15 + 0.8(1+0.05)/[(0.15-0.05)(1+0.15)5] =

    = 2.68+4.18 = 6.86.

    Оценочная стоимость акции составит, таким образом, 6 руб. 86 коп.
    Изложенный выше подход к оценке финансовых активов на основе дисконтированных денежных потоков базируется на ряде очевидных положений: дисконтируются именно будущие, ожидаемые денежные потоки; прошлые поступления значения для оценки не имеют; ставки дисконтирования должны отражать уровень риска, присущий оцениваемому финансовому активу.

    Очевидно, что использование описанной модели оценки акций, основанной на дисконтировании будущих дивидендов, требует не только наличия достаточно эффективного финансового рынка, но и весьма высокой профессиональной квалификации аналитиков. Мировая практика наработала ряд альтернативных методов оценки обыкновенных акций. Некоторые из них, в частности модель оценки по стоимости чистых активов и подход, основанный на Р/Е-мультипликаторе будут рассмотрены ниже, применительно к характерным для трансформационных экономик низколиквидным финансовым рынкам.
    Доходность финансовых активов

    Собственно доходность представляет собой относительный показатель, характеризующий отношение дохода на соответствующий актив за определенный период (обычно за год) к рыночной цене актива1. Существует несколько подходов к определению показателя доходности. В частности, различают доходность ожидаемую и фактическую (рассчитываемую по фактическим данным). Как следует из предыдущих разделов, основную роль в оценке и анализе играет именно ожидаемая доходность. При расчете доходности для конкретных видов активов может учитываться как собственно доход (дивиденд, процент и др.), так и прирост курсовой стоимости актива.

    В наиболее общем виде полная доходность за период рассчитывается как отношение дохода на актив плюс прирост его курсовой стоимости за период к рыночной цене на начало периода
    (2.20)
    Если не учитывать прирост курсовой стоимости актива, то получаем формулу расчета текущей (в случае акций - дивидендной) доходности:
    (2.21)
    В формулах (2.20) и (2.21) Dt представляет собой доход на актив за год; Pt-1 - цену актива в начале года (в текущий момент), Pt - цену актива в конце года.

    Показатель текущей доходности для купонной облигации рассчитывается как отношение годового купонного дохода к ее текущей рыночной цене.
    Пример. Облигация номинальной стоимостью 1000 руб. имеет ставку купонной доходности 10% годовых с поквартальной выплатой дохода. При курсовой стоимости в 976 руб. показатель текущей доходности облигации составит: 1000*0.10/976 = 0.10246, или 10.246%.
    Однако, несмотря на простоту исчисления, текущая доходность не может рассматриваться как вполне корректный показатель доходности финансового инструмента. Наиболее корректным с финансовой точки зрения является показатель полной доходности.

    Полная доходность наиболее просто определяется для бессрочных облигаций и привилегированных акций, а также бескупонных облигаций: для этого достаточно разрешить соответственно уравнения (2.11') или (2.14) относительно ставки r.

    Для купонных облигаций основным является показатель доходности к погашению (YTM – от английскогоYield to Maturity). Указанный показатель применяемый, как это следует из названия, только к срочным (погашаемым) облигациям, определяется как "процентная ставка, при которой дисконтированная стоимость всех будущих купонных выплаты по облигации, а также ее номинальной стоимости равна ее текущей рыночной цене" [Kohn]. При этом предполагается, что все получаемые купонные платежи могут быть реинвестированы с нормой прибыли, равной этому самому показателю доходности. Как следует из определения, точное значение показателя YTM находится как корень уравнения (2.15) при известной рыночной цене облигации. В соответствии с теоремой Декарта число положительных корней указанного уравнения равно числу перемен знаков в системе коэффициентов этого многочлена. В нашем случае знак меняется один раз. Так как в общем случае уравнение (2.15) представляет собой алгебраическое уравнение высокой степени, решение его без применения финансового калькулятора затруднительно. Поэтому часто применяются приближенные формулы (см., например, [Ковалев],[Kohn], и др).
    Пример. Рассчитать доходность к погашению облигации номиналом 1000 руб., которая продается за 1041 руб. Купонная ставка составляет 10% годовых, выплата процентов производится два раза в год. До погашения облигации осталось 12 месяцев.

    Решение. Так как до погашения облигации осталось всего два купонных платежа, полугодовую ставку доходности к погашению YTMполуг можно найти из квадратного уравнения:

    1041 = 50/(1+ YTMполуг) + (50+1000)/(1+ YTMполуг)2,

    которое имеет один положительный корень YTMполуг = 0.0286. Годовая ставка YTM будет определена путем начисления YTMполуг два раза по правилу сложного процента из уравнения

    (1+ YTMполуг)2 = 1+ YTM,

    и составит 5.80%.

    Для сравнения, если бы выплата процентов по облигации производилась один раз в год при прочих равных условиях, доходность к погашению была бы определена из уравнения

    1041 = (100+1000)/(1+ YTM),

    составила бы 5.67%.
    Полная доходность обыкновенной акции может в общем виде быть найдена из уравнения (2.17). Для случая постоянного темпа прироста дивиденда полная ожидаемая доходность определится как результат разрешения уравнения (2.19) относительно ставки r.
    (2.22)
    Другими словами, ставка полной доходности равна дивидендной доходности увеличенной (уменьшенной) на темп роста дивиденда.
    2.3. Оценка долевых ценных бумаг в условиях низколиквидных рынков

    В условиях характерных для отечественного фондового рынка низкой ликвидности основной массы ценных бумаг и незначительных размеров дивидендов, выплачиваемых большинством акционерных компаний, часто используются методы оценки акций, выходящие за рамки обычного курса финансового менеджмента. Достаточно часто можно встретить случаи, когда учредители, буквально толкуя Статью 77 Федерального закона "Об акционерных обществах", записывают в уставе компании, что рыночная стоимость ее акций определяется решением совета директоров. С финансовой точки зрения подобное утверждение очевидно нелепо, так как рыночная стоимость любого актива может быть определена только в условиях ликвидного рынка на основе взаимодействия спроса и предложения. Другое дело, что при управлении финансами акционерной компании достаточно часто возникает необходимость оценки стоимости акций, не котирующихся на фондовом рынке. В частности, такая необходимость можетвозникнуть при выкупе акций у акционеров в обусловленных законом случаях. Возможны также ситуации, когда учредители акционерной компании сознательно ограничивают ликвидность своих долевых ценных бумаг, регистрируя компанию в форме закрытого акционерного общества. В этом случае, если предприятие вдруг окажется перед необходимостью передачи акций в залог либо использования некоторой их части для расчетов с кредиторами (например, при отсутствии иных средств), также возникнет проблема оценки.

    Прежде, чем остановиться на наиболее распространенных подходах к оценке собственного капитала фирмы, выраженной в виде суммарной стоимости ее акций, следует отметить, что любые используемые для этой цели методики по определению не могут заменить рыночной оценки. Не случайно расчетные оценки стоимости крупнейших российских компаний (например, "Норильского никеля"), проведенные известными фирмами до приватизации государственной доли собственности, различались порой в разы.

    Наиболее простым и удобным, но и наименее точным методом является использование учетной оценки. Очевидно, что разность между учетной стоимостью активов фирмы и ее долговыми обязательствами, в том числе кредиторской задолженностью, есть не что иное, как суммарная стоимость собственного капитала фирмы. Поделив эту разность на количество акций, можно получить учетную оценку их стоимости. Соответствующий показатель рассчитывается в числе других при оценке положения компании на рынке ценных бумаг. Естественно, что предприятие может иметь акции различных типов, что усложняет исчисление учетной оценки. В частности, при отсутствии дополнительной информации о структуре добавочного капитала при определении доли последнего, приходящейся на акцию того или иного типа, приходится принимать определенные допущения.

    При всей очевидной простоте метода, основанного на использовании учетных оценок, столь же очевидными являются и его недостатки. Реальная оценка рынком стоимости активов фирмы может существенным образом отличаться от учетной как в ту, так и в другую сторону. Характер и величина этих отклонений могут зависеть от качества самих активов, от принятых учетных стандартов, от изменений в законодательстве, от уровней цен на производимую продукцию и инфляции, и множества других факторов. Более того, рыночная оценка обязательств фирмы также может не совпадать с учетной (котировки долгов компании, испытывающей финансовые затруднения, могут быть существенно ниже их номинальной стоимости: коэффициент дисконтирования будущих платежей в таком случае будет отражать высокий уровень кредитного риска).С другой стороны, балансовые оценки не всегда дают полное представление о нематериальных активах, "наработанных" компанией: высоком качестве менеджмента, доверии клиентов, наличии долгосрочных контрактов с крупными партнерами и т.п. Кроме того, рыночные оценки значительно более изменчивы, чем учетные, и могут заметно колебаться в зависимости от изменения как внешних, так и внутренних факторов. Тем не менее, при отсутствии иных надежных методов оценки, учетная оценка может оказаться полезной. Особенно это касается компаний, спрос на продукцию которых достаточно стабилен и прогнозируем, а цена продукции устанавливается на товарных биржах (например, энергоносители, металлы и т.п.). С другой стороны, учетная стоимость активов медиа-компании будет значительно менее информативной с точки зрения оценки ее акций.

    В качестве альтернативы может также быть использован метод оценки, основанный на так называемом Р/Е-мультипликаторе (от английскогоPrice/EarningsMultiplier).Отношение Р/Е представляет собой рыночную цену акции поделенную на чистую прибыль в расчете на одну обыкновенную акцию (так называемый EPSEarningsperShare). Более детальная интерпретация этого показателя дается в фундаментальных курсах финансового менеджмента и корпоративных финансов; здесь достаточно лишь отметить, что, зная EPS, и предполагая, насколько высоко оценивает рынок будущие доходы фирмы (то есть во сколько раз рыночная стоимость акций может быть выше текущей прибыли на одну акцию), можно вычислить оценочную стоимость акции. При этом, однако, возникает задача оценки величины Р/Е-мультипликатора, что само по себе не на много проще оценки будущих денежных потоков и их дисконтирования по соответствующей ставке, и требует от финансового аналитика достаточно тонкого знания рыночных механизмов.

    Изложенный в основной части главы метод оценки акций на основе дисконтированной стоимости прогнозируемых денежных потоков в расчете на одну акцию может быть применен и в условиях низколиквидного фондового рынка. При этом, однако, приходится делать ряд дополнительных допущений как относительно расчета будущих денежных поступлений и оттоков, так и относительно приемлемой ставки дисконтирования. Слишком большое число необходимых допущений делает результат оценки достаточно неопределенным. В заключение следует заметить, что сами по себе методы оценки достаточно просты и хорошо известны; "ноу-хау" финансовых аналитиков как раз и кроется в тех дополнительных допущениях, которые делаются применительно к конкретному предприятию и конкретному рынку.
    Контрольные вопросы

    1. Определите понятия простого и сложного процента. В чем заключается экономический смысл начисления сложных процентов?

    2. Определите понятия периодической и эффективной годовой процентных ставок. Для каких целей используется эффективная годовая ставки?

    3. Сформулируйте математическое соотношение между дисконтированной и наращенной за n периодов стоимостью одного рубля.

    4. Дайте понятие аннуитета. Охарактеризуйте экономический смысл дисконтированной и наращенной стоимости аннуитета. Почему начисление процентов на платежи осуществляется по сложной ставке?

    5. На каких базовых концепциях финансового менеджмента основывается оценка финансовых активов?

    6. В чем заключаются наиболее существенные отличия в процедуре оценки обыкновенных акций и облигаций?

    7. Сравните понятия дохода и доходности. В чем заключаются их принципиальные отличия?

    8. Почему при фиксированной ставке купонного дохода доходность облигации может изменяться в течение всего периода ее обращения?

    9. Сформулируйте понятия текущей (дивидендной) и полной доходности финансового актива. Какой из этих показателей в большей мере интересует инвестора? Почему?

    Приложение 1. Обоснование модели дисконтирования дивидендов
    1   2   3   4   5   6   7   8


    написать администратору сайта