Кохановский ВП Основы философии науки. Учебное пособие для аспирантов ростовнадону феникс 2004 оглавление от
Скачать 3.38 Mb.
|
§6. Общие закономерности развития науки Будучи детерминирована в конечном счете общественной практикой и ее потребностями, наука вместе с тем развивается по своим собственным закономерностям, т. е. обладает относительной самостоятельностью и внутренней логикой своего развития. Преемственность в развитии научных знаний Данная закономерность выражает неразрывность всего познания действительности как внутренне единого процесса смены идей, принципов, теорий, понятий, методов научного исследования. При этом каждая более высокая ступень в развитии науки возникает 294 на основе предшествующей ступени с удержанием всего ценного, что было накоплено раньше, на предшествующих ступенях. Объективной основой преемственности в науке является то реальное обстоятельство, что в самой действительности имеет место поступательное развитие предметов и явлений, вызываемое внутренне присущими им противоречиями. Воспроизведение реально развивающихся объектов, осуществляемое в процессе познания, также происходит через диалектически отрицающие друг друга теории, концепции и другие формы знания. Очень образно этот процесс описали А.Эйнштейн и Л. Инфельд: «...Создание новой теории не похоже на разрушение старого амбара и возведение на его месте небоскреба. Оно скорее похоже на восхождение на гору, которое открывает новые и широкие виды, показывающие неожиданные связи между нашей отправной точкой и ее богатым окружением. Но точка, от которой мы отправлялись, еще существует и может быть видна, хотя она кажется меньше и составляет крохотную часть открывшегося нашему взгляду обширного ландшафта»79. В этом процессе «восхождения на гору» содержание отрицаемых знаний не отбрасывается полностью, а сохраняется в новых концепциях в «снятом» виде, с удержанием положительного. Новые теории не отрицают полностью старые, потому что последние с определенной степенью приближения отображают объективные закономерности действительности в своей предметной области. Диалектическое отношение новой и старой теории в науке нашло свое обобщенное отражение принципе соответствия, впервые сформулированном Нильсом Бором. Согласно данному принципу, смена одной частнонаучной теории другой обнаруживает не только различия, но и связь, преемственность между ними. Новая теория, приходящая на смену старой, в определенной форме—а именно в качестве предельного случая — удерживает ее. Так, например, обстояло дело в соотношении «классическая механика — квантовая механика». В процессе развития научного познания возможен обратный переход от последующей теории к предыдущей, их совпадение в некоторой предельной области, где различия между ними оказы- 295 ваются несущественными. Например, законы квантовой механики переходят в законы классической при условии, когда можно пренебречь величиной кванта действия, а законы теории относительности переходят в законы классической механики при условии, если скорость света считать бесконечной. Так, В. Гейзенберг отмечал, что «релятивистская механика и в самом деле переходит в ньютоновскую в предельном случае малых скоростей... Мы, стало быть, и сегодня признаем истинность ньютоновской механики, даже ее строгость и общезначимость, но, добавляя «везде, где могут быть применены ее понятия», мы указываем, что считаем область применения ньютоновской теории ограниченной»80. Таким образом, любая теория должна переходить в предыдущую менее общую теорию в тех условиях, в каких эта предыдущая была установлена. Поэтому-то «ошеломляющие идеи» теории относительности, совершившие переворот в методах физического познания, не отменили механики Ньютона, а лишь указали границы ее применимости. На каждом этапе своего развития наука использует фактический материал, методы исследования, теории, гипотезы, законы, научные понятия предшествующих эпох по своему содержанию является их продолжением. Как бы ни был гениален ученый, он так или иначе должен исходить из знаний, накопленных его предшественниками, и знаний современников. Известна знаменитая фраза Ньютона: «Я стоял на плечах гигантов». При выборе объектов исследования и выводе законов, связывающих явления, ученый исходит из ранее установленных законов и теорий, существующих в данную эпоху. Важный аспект преемственного развития науки состоит в том, что всегда необходимо распространять истинные идеи за рамки того, на чем они опробованы. Подчеркивая это обстоятельство, крупный американский физик-теоретик Р. Фейнман писал: «Мы просто обязаны, мы вынуждены распространять все то, что мы уже знаем, на как можно более широкие области, за пределы уже постигнутого... Это единственный путь прогресса. Хотя этот путь неясен, только на нем наука оказывается плодотворной»81. Таким образом, каждый шаг науки подготавливается предшествующим этапом, и каждый ее последующий этап закономерно связан с предыдущим. Заимствуя достижения предшеству- 296 ющей эпохи, наука непрерывно движется дальше. Однако это не есть механическое, некритическое заимствование; преемственность не есть простое перенесение старых идей в новую эпоху, пассивное заимствование полностью всего содержания используемых теорий, гипотез, методов исследования. Он обязательно включает в себя момент критического анализа и творческого преобразования. Преемственность представляет собой органическое единство двух моментов: наследования и критической переработки, Процесс преемственности в науке (но не только в ней) может быть выражен в терминах «традиция» (старое) и «новация» (новое). Это две противоположные диалектически связанные стороны единого процесса развития науки: новации вырастают из традиций, находятся в них в зародыше; все положительное и ценное, что было в традициях, в «снятом виде» остается в новациях. Новация (в самом широком смысле) — это все то, что возникло впервые, чего не было раньше. Характерный пример новаций — научные открытия, фундаментальные, «сумасшедшие» идеи и концепции — квантовая механика, теория относительности, синергетика и т. п. Традиции в науке — знания, накопленные предшествующими поколениями ученых, передающиеся последующим поколениям и сохраняющиеся в конкретных научных сообществах, научных школах, направлениях, отдельных науках и научных дисциплинах. Множественность традиций дает возможность выбора новым поколениям исследователей тех или иных из них. А они могут быть как позитивными (что и как воспринимается), так и негативными (что и как отвергается). Жизнеспособность научных традиций коренится в их дальнейшем развитии последующими поколениями ученых в новых условиях. Единство количественных и качественных изменений в развитии науки Преемственность научного познания не есть однообразный, монотонный процесс. В определенном срезе она выступает как единство постепенных, спокойных количественных и коренных, качественных (скачки, научные революции) изменений. Эти две стороны науки тесно связаны и в ходе ее развития сменяют друг друга как своеобразные этапы данного процесса. 297 Этап количественных изменений науки — это постепенное накопление новых фактов, наблюдений, экспериментальных данных в рамках существующих научных концепций. В связи с этим идет процесс расширения, уточнения уже сформулированных теорий, понятий и принципов. На определенном этапе этого процесса и в определенной его «точке» происходит прерыв непрерывности, скачок, коренная ломка фундаментальных законов и принципов вследствие того, что они не объясняют новых фактов и новых открытий. Это и есть коренные качественные изменения в развитии науки, т. е. научные революции (см. гл. VI). Во время относительно устойчивого развития науки происходит постепенный рост знания, но основные теоретические представления остаются почти без изменений. В период научной революции подвергаются ломке именно эти представления. Революция в той или иной науке представляет собой период коренной ломки основных, фундаментальных концепций, считавшихся ранее незыблемыми, период наиболее интенсивного развития, проникновения в область неизвестного, скачкообразного углубления и расширения сферы познанного. Примерами таких глобальных революций являются создание гелиоцентрической системы мира (Коперник), формирование классической механики и экспериментального естествознания (Галилей, Кеплер и особенно Ньютон), революция в естествознании конца XIX — начала XX в. — возникновение теории относительности и квантовой механики (А. Эйнштейн, Н. Планк, Н. Бор, В. Гейзенберг и др.). Крупные изменения происходят в современной науке, особенно связанные с формированием и бурным развитием синергетики (теории самоорганизации целостных развивающихся систем), электроники, генной инженерии и т. п. Научная революция подводит итог предшествующему периоду познания, поднимает его на новую, высшую ступень. Очищая науку от заблуждений, она открывает новые объекты и методы исследования, ускоряя тем самым темпы развития науки. Дифференциация и интеграция наук Развитие науки характеризуется диалектическим взаимодействием двух противоположных процессов — дифференциацией 298 (выделением новых научных дисциплин) и интеграцией (синтезом знания, объединением ряда наук — чаще всего в дисциплины, находящиеся на их «стыке»). На одних этапах развития науки преобладает дифференциация (особенно в период возникновения науки в целом и отдельных наук), на других — их интеграция, это характерно для современной науки. Процесс дифференциации, отпочкования наук, превращения отдельных «зачатков» научных знаний в самостоятельные (частные) науки, и внутринаучное «разветвление» последних в научные дисциплины начался уже на рубеже XVI и XVII вв. В этот период единое ранее знание (философия) раздваивается на два главных «ствола» — собственно философию и науку как целостную систему знания, духовное образование и социальный институт. В свою очередь философия начинает расчленяться на ряд философских наук (онтологию, гносеологию, этику, диалектику и т. п.), наука как целое разделяется на отдельные частные науки (а внутри них — на научные дисциплины),.среди которых лидером становится классическая (ньютоновская) механика, тесно связанная с математикой с момента своего возникновения. В последующий период процесс дифференциации наук продолжал усиливаться. Дифференциация наук является закономерным следствием быстрого увеличения и усложнения знаний. Она неизбежно ведет к специализации и разделению научного труда. Последние имеют как позитивные стороны (возможность углубленного изучения явлений, повышение производительности труда ученых), так и отрицательные (особенно «потеря связи целого», сужение кругозора — иногда до «профессионального кретинизма»). Одновременно с процессом дифференциации происходит и процесс интеграции — объединения, взаимопроникновения, синтеза наук и научных дисциплин, объединение их (и их методов) в единое целое, стирание граней между ними. Это особенно характерно для современной науки, где сегодня бурно развиваются такие синтетические, общенаучные области научного знания, как кибернетика, синергетика и др., строятся такие интегративные картины мира, как естественнонаучная, общенаучная, философская (ибо философия также выполняет интегративную функцию в научном познании). Таким образом, развитие науки представляет собой диалектический процесс, в котором дифференциация сопровождается ин- 299 теграцией, происходит взаимопроникновение и объединение в единое целое самых различных направлений научного познания мира, методов и идей. Взаимодействие наук и методов Разделение науки на отдельные области было обусловлено различием природы вещей, закономерностей, которым последние подчиняются. Различные науки и научные дисциплины развиваются не независимо, а в связи друг с другом, взаимодействуя по разным направлениям. Одно из них — это использование данной наукой знаний, полученных другими науками. Уже на «заре» науки механика была тесно связана с математикой, которая впоследствии стала активно вторгаться и в другие — в том числе и гуманитарные — науки. Успешное развитие геологии и биологии невозможно без опоры на знания, полученные в физике, химии и т. п. Однако закономерности, свойственные высшим формам движения материи, не могут быть полностью сведены к низшим. Рассматриваемую закономерность развития науки очень образно выразил нобелевский лауреат, один из создателей синергетики И. Пригожий: «Рост науки не имеет ничего общего с равномерным развертыванием научных дисциплин, каждая из которых в свою очередь подразделяется на все большее число водонепроницаемых отсеков. Наоборот, конвергенция различных проблем и точек зрения способствует разгерметизации образовавшихся отсеков и закутков и эффективному «перемешиванию» научной культуры»82. Один из важных путей взаимодействия наук — это взаимообмен методами и приемами исследования, т. е. применение методов одних наук в других. Особенно плодотворным оказалось применение методов физики и химии к изучению в биологии живого вещества, сущность и специфика которого одними только этими методами, однако, не была «уловлена». Для этого нужны были свои собственные — биологические методы и приемы их исследования. Следует иметь в виду, что взаимодействие наук и их методов затрудняется неравномерностью развития различных научных об- 300 ластей и дисциплин. Методологический плюрализм — характерная особенность современной науки, благодаря которой создаются необходимые условия для более полного и глубокого раскрытия сущности, законов качественно различных явлений реальной действительности. Наиболее быстрого роста и важных открытий сейчас следует ожидать как раз на участках «стыка», взаимопроникновения наук и взаимного обогащения их методами и приемами исследования. Этот процесс объединения усилий различных наук для решения важных практических задач получает все большее развитие. Это магистральный путь формирования «единой науки будущего». Углубление и расширение процессов математизации и компьютеризации Одна из важных закономерностей развития науки — усиление и нарастание сложности и абстрактности научного знания, углубление и расширение процессов математизации и компьютеризации науки как базы новых информационных технологий, обеспечивающих совершенствование форм взаимодействия в научном сообществе. Роль математики в развитии познания была осознана довольно давно. Уже в античности была создана геометрия Евклида, сформулирована теорема Пифагора и т. п. А Платон у входа в свою знаменитую Академию начертал девиз: «Негеометр — да не войдет». В Новое время один из основателей экспериментального естествознания Г. Галилей говорил о том, что тот, кто хочет решать вопросы естественных наук без помощи математики, ставит неразрешимую задачу. Поскольку, согласно Галилею, «книга Вселенной написана на языке математики», то эта книга доступна пониманию для того, кто знает язык математики. Сущность процесса математизации, собственно, и заключается в применении количественных понятий и формальных методов математики к качественно разнообразному содержанию частных наук. Последние должны быть достаточно развитыми, зрелыми в теоретическом отношении, осознать в достаточной мере единство качественного многообразия изучаемых ими явлений. Именно этим обстоятельством, прежде всего, определяются возможности математизации данной науки. 301 Чем сложнее данное явление, чем более высокой форме движения материи оно принадлежит, тем труднее оно поддается изучению количественными методами, точной математической обработке законов своего движения. Так, невозможно математически точно выразить рост сознательности человека, степень развития его умственных способностей, эстетические достоинства художественных произведений и т. п. Применение математических методов в науке и технике за последнее время значительно расширилось, углубилось, проникло в считавшиеся ранее недоступными сферы. Эффективность применения этих методов зависит как от специфики данной науки, степени ее теоретической зрелости, так и от совершенствования самого математического аппарата. Вместе с тем нельзя не заметить, что успехи математизации внушают порой желание «испещрить» свое сочинение цифрами и формулами (нередко без надобности), чтобы придать ему «солидность и научность». На недопустимость этой псевдонаучной затеи обращал внимание еще Гегель. Считая количество лишь одной ступенью развития идеи, он справедливо предупреждал с недопустимости абсолютизации этой одной (хотя и очень важной) ступени, о чрезмерном и необоснованном преувеличении роли и значении формально-математических методов познания, фетишизации языково-символической формы выражения мысли. А. Пуанкаре отмечал: «Многие полагают, что математику можно свести к правилам формальной логики... Это лишь обманчивая иллюзия»83. Рассматривая проблему формы и содержания, В. Гейзенберг, в частности, писал: «Математика — это форма, в которой мы выражаем наше понимание природы, но не содержание. Когда в современной науке переоценивают формальный элемент, совершают ошибку и притом очень важную»84. Математические методы надо применять разумно, чтобы они не «загоняли ученого в клетку» искусственных знаковых систем, не позволяя ему дотянуться до живого, реального материала действительности. Количественно-математические методы должны основываться на конкретном качественном, фактическом анализе данного явления, иначе они могут оказаться хотя и модной, но 302 беспочвенной, ничему не соответствующей фикцией. Указывая на это обстоятельство, А. Эйнштейн подчеркивал, что «самая блестящая логическая математическая теория не дает сама по себе никакой гарантии истины и может не иметь никакого смысла, если она не проверена наиболее точными наблюдениями, возможными в науке о природе»85. Абстрактные формулы и математический аппарат не должны заслонять (а тем более вытеснять) реальное содержание изучаемых процессов. Применение математики нельзя превращать в простую игру формул, за которой не стоит объективная действительность. Вот почему всякая поспешность в математизации, игнорирование качественного анализа явлений, их тщательного исследования средствами и методами конкретных наук ничего, кроме вреда, принести не могут. История познания показывает, что практически в каждой частной науке на определенном этапе ее развития начинается (иногда весьма бурный) процесс математизации. Особенно ярко это проявилось в развитии естественных и технических наук (характерный пример — создание новых «математизированных» разделов теоретической физики). Но этот процесс захватывает и науки социально-гуманитарные — экономическую теорию, историю, социологию, социальную психологию и др., и чем дальше, тем больше. В настоящее время одним из основных инструментов математизации научно-технического прогресса становится математическое моделирование. Его сущность и главное преимущество состоит в замене исходного объекта соответствующей математической моделью и в дальнейшем ее изучении (экспериментированию с нею) на ЭВМ с помощью вычислительно-логических алгоритмов. Теоретизация и диалектизация науки Наука (особенно современная) развивается по пути синтеза абстрактно-формальной (математизация и компьютеризация) и конкретно-содержательной сторон познания. Вторая из названных сторон выражается, в частности, терминами «теорепшзация» и «диалектизация». 303 Для современной науки характерно нарастание сложности и абстрактности знания, теоретические разделы некоторых научных дисциплин (например, квантовой механики, теоретической физики и др.) достигли такого уровня, когда целый ряд их результатов не могут быть представлены наглядно. Все большее значение приобретают абстрактные, логико-математические и знаковые модели, в которых определенные черты моделируемого объекта выражаются в весьма абстрактных формулах. Такой процесс происходит во всех науках, и переход на все более высокие уровни абстрагирования усиливается и расширяется. Диалектизация науки как ее важнейшая закономерность означает все более широкое внедрение во все сферы научного познания идеи развития (а значит, и времени). Причем именно во все науки, а не только в так называемые «исторические науки» — в геологию, биологию, астрофизику, историю и т. п. Как писал В. Паули, «сами будни физика выдвигают в физике (которая сотни лет считалась «неисторической» наукой. — В. К.) на передний план аспект развития, становления»86. Процесс диалектизации (как и теоретизации) также конкретно-историчен и определяется предметом науки, особенностями данной ступени ее развития и другими факторами. Можно без преувеличения сказать, что первые импульсы процесс диалектизации получил вместе с возникновением самой науки — и прежде всего благодаря созданию Декартом, а позднее — Кантом космогонических гипотез. С их появлением Земля и вся Солнечная система предстали как нечто ставшее во времени, т. е. как нечто возникшее естественным путем и развивающееся. Процесс диалектизации получил новый мощный импульс благодаря работам английских ученых — геолога Ч. Лайеля и биолога Ч. Дарвина, которые на большом фактическом материале доказали, что все в природе взаимосвязано и все в ней происходит в конечном счете диалектически, а не метафизически. Серьезное обоснование диалектические принципы развития, всеобщей связи, противоречия, детерминизма и др. получили благодаря открытию клетки и закона сохранения и превращения энергии (30—40-е гг. XIX в.), а впоследствии (с конца XIX — начала XX вв.) — благодаря созданию квантовой механики и теории относительности, а в современный период развития науки — благодаря крупным успехам 304 синергетики — теории самоорганизации целостных развивающихся систем. Сегодня многие мыслящие представители частных наук все более четко осознают, что «процесс диалектизации давно пошел» и продолжает расширяться и углубляться — хочется это кому-то или не хочется, нравится кому-то диалектика или нет. Поэтому необходимо как можно скорее и основательнее «вытравлять» именно извращения диалектики (а не ее саму), дальше творчески развивать диалектический метод, вернуть ту свойственную ему роль, которую он всегда играл в мировой философии,, — роль мощного методологического орудия — «стоящего на стороне субъекта средства» (Гегель), с помощью которого он познает и преобразует окружающую действительность, а «заодно» изменяется и сам87. Ускоренное развитие науки Говоря о важной роли науки в жизни общества, Ф. Энгельс в середине XIX в. обратил внимание на то обстоятельство, что наука движется вперед пропорционально массе знаний, унаследованных ею от предшествующего поколения. Позднее он же, конкретизируя данное положение, подчеркнул, что со времени своего возникновения (т. е. с XVI—XVII вв.) развитие наук усиливалось пропорционально квадрату расстояния (во времени) от своего исходного пункта. На рассматриваемую закономерность развития науки обратил впоследствии внимание и В. И. Вернадский, который подчеркивал, что «ходу научной мысли свойственна определенная скорость движения, что она закономерно меняется во времени, причем наблюдается смена периодов ее замирания и периодов ее усиления. Такой именно период усиления творчества мы и наблюдаем в наше время... Мы живем в периоде напряженного непрерывного созидания, темп которого все усиливается»88. Констатация экспотенциалъного закона развития науки (т. е. ускорения его темпов) и есть одна из общих закономерностей ее развития. Данная закономерность проявляется в увеличении об- 305 щего числа научных работников, научных учреждений и организаций, публикаций, выполняемых научных работ и решаемых проблем, материальных затрат на науки или (и) доходов от нее и т. п. Ускоренное развитие науки есть следствие ускоренного развития производительных сил общества. Это привело к непрерывному накоплению знаний, в результате чего их масса, находящаяся в распоряжении ученых последующего поколения, значительно превышает массу знаний предшествующего поколения. По разным подсчетам (и в зависимости от области науки) сумма научных знаний удваивается в среднем каждые 5—7 лет (а иногда и в меньшие сроки). Одним из критериев ускорения темпов развития науки является сокращение сроков перехода от одной ступени научного познания к другой, от научного открытия к его практическому применению. Если в прошлом открытие и его применение отделялись десятками и даже сотнями лет, то теперь эти сроки исчисляются несколькими годами и даже месяцами. Ускорению темпов развития науки способствовало и развитие средств сообщения, облегчавшее обмен идеями. Оно также связано с развитием производительных сил, с совершенствованием техники и технологии. В свою очередь ускорение развития науки обусловливает ускорение развития производительных сил. Именно из закона ускоренного развития науки как его следствие вытекает все увеличивающееся влияние науки на развитие общества, на все стороны жизни людей. Свобода критики, недопустимость монополизма и догматизма Критика — способ духовной деятельности, основная задача которого — целостная оценка явления с выявлением его противоречий, сильных и слабых сторон и т. д. Существуют две основные формы критики: а) негативная, разрушительная — беспощадное и полное («голое») отрицание всего и вся; б) конструктивная, созидательная, предлагающая конкретные пути решения проблем, реальные методы разрешения противоречий, эффективные способы преодоления заблуждений. Конструктивная, свободная критика — важнейшее условие для реализации принципа объективности научного познания. Данный 306 принцип противостоит «иллюзионистскому нигилизму» (термин известного физика К. Вейцзеккера), т. е. нигилизму, полному иллюзий, самообмана, «веры в ничто» и многообразных предрассудков. Значение конструктивной критики в науке возрастает вместе с ростом потребности во всестороннем теоретическом исследовании объектов и построении не фрагментарных, а целостных, синтетических концепций. Последние предполагают высокую методологическую культуру ученого и его критическое сознание, непримиримое ни с каким монополизмом (в познании — с исключительным правом на истину) и догматизмом. Догматизм — форма метафизического мышления, характеризующаяся застылостью, косностью, окостенелостью, «мертвостью» и неподвижностью, стремлением к авторитарности. Догматизм игнорирует реальные изменения, не учитывает конкретных условий места и времени. Его мышление схематично, статично, преувеличивает значение абсолютного момента в истине, выдает этот момент за всю истину в целом, монополизируя ее. Догматические мертвые формулы рассматриваются как «универсальные отмычки» и выводятся не из реальных фактов, а из других формул, таких же абстрактных умозрительных схем, оторванных от объективной действительности (а потому чисто субъективистских), которая насильно втискивается в эти схемы. Преодолевая догматизм, нельзя отвергать так называемый «разумный консерватизм», ибо если последний неразумен, то это «махровый догматизм», который, по выражению академика П. Л. Капицы, «хуже преждевременной смерти», тормоз для развития науки. В последние годы все чаще говорят о новых тенденциях и закономерностях развития современной науки. Это, в частности, принцип аксиологизацш науки, который требует акцентирования внимания не только на объективных характеристиках предметов изучения, но и необходимости учета ценностных компонентов познавательного процесса (т. е. его «ценностно-целевых» элементов). Некоторые исследователи говорят об экологизации научного знания, т. е. о проникновении экологических законов и принципов в сложившуюся систему естественных, технических и социально-гуманитарных наук. Эту тенденцию (закономерность) подтверждает бурное развитие таких наук, как экология человека, биоэтика, валеология (комплекс наук о здоровье человека), и др. 307 Глава V Методология научного исследования |