Главная страница

все лекции по биологии. Учебное пособие для студентов I курса, обучающихся по специальностям лечебное дело и медикодиагностическое дело


Скачать 1.56 Mb.
НазваниеУчебное пособие для студентов I курса, обучающихся по специальностям лечебное дело и медикодиагностическое дело
Анкорвсе лекции по биологии.doc
Дата19.02.2017
Размер1.56 Mb.
Формат файлаdoc
Имя файлавсе лекции по биологии.doc
ТипУчебное пособие
#2864
страница5 из 17
1   2   3   4   5   6   7   8   9   ...   17
Тема № 7. Сцепленное наследование признаков.

Хромосомный уровень организации наследственного материала. Хромосомы, как группы сцепления генов.

Из принципов генетического анализа вытекает, что независимое комбинирование признаков может осуществляться лишь при условии, что гены, определяющие эти признаки, находятся в разных парах хромосом. Следовательно, у каждого организма, число пар признаков, по которым наблюдается независимое наследование, ограничено числом пар хромосом. С другой стороны, очевидно, что число признаков и свойств организма, контролируемых генами, чрезвычайно велико, а число пар хромосом у каждого вида относительно мало и постоянно. Остается допустить, что в каждой хромосоме находится не один ген, а много. Если это так, то следует признать, что третье правило Менделя касается только распределения хромосом, а не генов, т.е. его действие ограничено. Анализ проявления третьего правила показал, что в некоторых случаях новые комбинации генов у гибридов совсем отсутствовали, т.е. наблюдалось полное сцепление между генами исходных форм и в фенотипе наблюдалось расщепление 1:1. В других случаях комбинация признаков отмечалась с меньшей частотой, чем ожидается при независимом наследовании.

В 1906 году У. Бетсон описал нарушение менделевского закона независимого наследования двух признаков. Возникли вопросы: почему не все признаки наследуются и как они наследуются, как расположены гены в хромосомах, каковы закономерности наследования генов, находящихся в одной хромосоме? На эти вопросы смогла ответить хромосомная теория наследственности, созданная Т. Морганом, в 1911 году.

Т. Морган, изучив все отклонения, предложил называть совместное наследование генов, ограничивающее их свободное комбинирование, сцеплением генов или сцепленным наследованием.

Закономерности полного и неполного сцепления. Группы сцепления у человека.

Исследования Т. Моргана и его школы показали, что в гомологичной паре хромосом регулярно происходит обмен генами. Процесс обмена идентичными участками гомологичных хромосом с содержащимися в них генами называют перекрестом хромосом или кроссинговером. Кроссинговер наблюдается в мейозе. Он обеспечивает новые сочетания генов, находящихся в гомологичных хромосомах. Явление кроссинговера, как и сцепление генов, характерно для животных, растений, микроорганизмов. Исключение составляют самцы дрозофилы и самки тутового шелкопряда. Кроссинговер обеспечивает рекомбинацию генов и тем самым значительно увеличивает роль комбинативной изменчивости в эволюции. О наличии кроссинговера можно судить на основе учета частоты возникновения организмов с новым сочетанием признаков. Явление кроссинговера было открыто Морганом на дрозофиле.

Запись генотипа дигетерозиготы при независимом наследовании:

А В

a в

Запись генотипа дигетерозиготы при сцепленном наследовании:

АВ

ав

Гаметы с хромосомами, претерпевшими кроссинговер, называют кроссоверными, а не претерпевшие – некроссоверными.

АВ

ав

АВ, ав Ав, аВ

Некроссоверные гаметы. Кроссоверные гаметы.

Соответственно организмы, возникшие от сочетания кроссоверных гамет, называют кроссоверами или рекомбинантами, а возникшие от сочетания некроссоверных гамет – некроссоверами или нерекомбинантами.

Явление кроссинговера, как и сцепление генов, можно рассмотреть и в классическом опыте Т. Моргана при скрещивании дрозофил.

Ген

Признак

P♀ BV x ♂ bv

BV bv

F1 BV

bv

В

серый цвет тела

b

черный цвет тела

V

нормальные крылья

v

рудиментарные крылья

Анализирующее скрещивание

1. Полное сцепление генов.

2. Неполное сцепление генов.

1. Полное сцепление

P♀ bv x ♂ BV

bv bv

G: bv BV bv

F2 bv bv

BV bv

расщепление – 1:1

2. Неполное сцепление (кроссинговер)

P:♀ BV x ♂ bv

bv bv

G: BV bv Bv bV bv

некроссоверные кроссоверные

F2 BV bv Bv bV

bv bv bv bv

некроссоверов – 83% кроссоверов – 17%

Для измерения расстояния между генами путем анализирующего скрещивания можно применять формулу:

где:

X – расстояние между генами в % кроссинговера или в морганидах;

а – количество особей 1-й кроссоверной группы;

в – количество особей 2-й кроссоверной группы;

n – общее количество гибридов в опыте;

100% – коэффициент для перевода в проценты.

На основании исследования сцепленного наследования Морган сформулировал тезис, вошедший в генетику под названием правило Моргана: гены, локализованные в одной хромосоме, наследуются сцеплено, причем сила сцепления зависит от расстояния между ними.

Сцепленные гены расположены в линейном порядке и частота кроссинговера между ними прямо пропорциональна расстоянию между ними. Однако, этот тезис характерен только для близко лежащих друг к другу генов. В случае же относительно удаленных генов наблюдается некоторое отклонение от такой зависимости.

Морган предложил выражать расстояние между генами в процентах кроссинговера между ними. Расстояние между генами также выражают в морганидах или сантиморганидах. Морганида – генетическое расстояние между генами, где происходит кроссинговер с частотой 1%.

По частоте кроссинговера между двумя генами можно судить об относительном расстоянии между ними. Так, если между генами А и В кроссинговер составляет 3%, а между генами В и С – 8% кроссинговера, то между А и С кроссинговер должен происходить с частотой либо 3+8=11%, либо 8-3=5%, в зависимости от того, в каком порядке эти гены расположены в хромосоме.

3% 8% 3% 5%

А ─ ─ ─ В ─ ─ ─ ─ ─ ─ ─ ─ С В ─ ─ ─ А ─ ─ ─ ─ ─ ─ ─ ─ С

11% 8%

Задача 1. Катаракта и полидактилия наследуются как доминантные аутосомные признаки. Женщина унаследовала катаракту от отца, полидактилию от матери. Гены сцеплены, расстояние между ними 3М. Каковы генотипы и фенотипы детей от брака этой женщины и мужчины нормального по этим признакам? Какова вероятность рождения здоровых детей?

катаракта

норма

А А_

а аа

P ♀ аВ х ♂ ав

Ав ав

полидактилия

норма

В В_

в вв

F1 – ?

Х = АВ = 3 Морг.

P ♀ аВ х ♂ ав

Ав ав

Ответ: вероятность рождения здорового ребенка – 1,5%, имеющих по 1 признаку – 48,5%, имеющих оба признака – 1,5%

G: (аВ) (Ав) (ав)

(ав) (АВ)

F1 аВ Ав ав АВ

ав ав ав ав

48,5% 48,5% 1,5% 1,5%

Генетическая карта хромосомы – это схема, отображающая порядок расположения генов на относительном расстоянии их друг от друга. О расстоянии между сцепленными генами судят по частоте кроссинговера между ними. Генетические карты всех хромосом составлены для наиболее изученных в генетическом отношении организмов: дрозофилы, кур, мышей, кукурузы, томатов, нейроспоры. Для человека также составлены генетические карты всех 23 хромосом.

После установления линейной дискретности хромосом возникла необходимость составления цитологических карт с целью сопоставления с генетическими, составленными на основе учета рекомбинаций.

Цитологическая карта – это карта хромосомы, на которой определяется расположение и относительное расстояние между генами в самой хромосоме. Построение их ведется на основе анализа хромосомных перестроек, дифференциальной окраски политенных хромосом, радиоактивных меток и др.

К настоящему времени, у ряда растений и животных построены и сопоставлены генетические и цитологические карты. Реальность этого сопоставления подтверждает правильность принципа о линейном расположении генов в хромосоме.

У человека можно назвать некоторые случаи сцепленного наследования.

  1. Гены, контролирующие наследование групп крови по системе АВ0 и синдрома дефекта ногтей и коленной чашечки, наследуются сцепленно.

  2. Сцеплены гены резус-фактора и овальной формы эритроцитов.

  3. В третьей аутосоме расположены гены группы крови Лютеран и секреции антигенов А и В со слюной.

  4. Гены полидактилии и катаракты наследуются сцепленно.

  5. В Х-хромосоме расположены гены гемофилии и дальтонизма, а также гены цветовой слепоты и мышечной дистрофии Дюшена.

  6. В 6 аутосоме находятся сублокусы А, В, С, D/DR системы HLA, контролирующих синтез антигенов гистосовместимости.

Наследование признаков Х-сцепленных и голандрических.

Признаки, контролируемые генами, расположенными в половых хромосомах, называются сцепленным с полом. У человека описано более 60 заболеваний, сцепленных с полом, большинство из которых наследуются рецессивно. Гены в половых хромосомах можно разделить на 3 группы:

  1. Гены частично сцепленные с полом. Они расположены в парных сегментах Х иY хромосом. К заболеваниям частично сцепленным с полом относят: геморрагический диатез, судорожные расстройства, пигментный ретинит, пигментную ксеродерму, общую цветовую слепоту.

  2. Гены полностью сцепленные с полом. Они расположены в участке Х хромосомы, для которого нет гомологичного участка в Y хромосоме (гетерологическом). Эти гены контролируют заболевания: атрофия зрительного нерва, мышечная дистрофия Дюшена, дальтонизм, гемофилия, способность ощущать запах синильной кислоты.

  3. Гены, расположенные в участкеY хромосомы, для которого нет гомологичного локуса в Х хромосоме, называются голандрическими. Они контролируют признаки: синдактилия, гипертрихоз ушной раковины.

Ген дальтонизма проявляется у 7% мужчин и у 0,5% женщин, но носительницами этого гена являются 13% женщин.

Сцепленное с полом наследование было описано Т. Морганом на примере наследования признака окраски глаз у дрозофилы.

Отмечено несколько закономерностей наследования сцепленных с полом признаков:

    1. передаются крест на крест (от отца – дочери, от матери – сыну);

    2. результаты прямого и обратного скрещиваний не совпадают;

    3. у гетерогаметного пола признак проявляется в любом состоянии (доминантном или рецессивном).

Основные положения хромосомной теории наследственности.

Основные положения хромосомной теории наследственности можно сформулировать следующим образом:

  1. Гены находятся в хромосомах. Каждый ген в хромосоме занимает определенный локус. Гены в хромосомах расположены линейно.

  2. Каждая хромосома представляет группу сцепленных генов. Число групп сцепления у каждого вида равно числу пар хромосом.

  3. Между гомологичными хромосомами происходит обмен аллельными генами – кроссинговер.

  4. Расстояние между генами в хромосоме пропорционально проценту кроссинговера между ними. Зная расстояние между генами можно вычислить процентное соотношение генотипов у потомства.

Тема № 8. Биология и генетика пола.

Пол как биологический признак. Первичные и вторичные половые признаки.

Пол это совокупность морфологических, физиологических, биохимических, поведенческих и других признаков организма, обуславливающих репродукцию.

Признаки, по которым отличаются особи разных полов, делят на первичные и вторичные. Первичные представлены органами, обеспечивающими образование гамет и оплодотворение (гонады, половые пути, наружные и внутренние половые органы, которые закладываются в эмбриогенезе). Вторичные – не принимают непосредственного участия в репродукции, развиваются под воздействием половых гормонов и формируются в период полового созревания. Это морфологические признаки организма. Например, особенности развития костно-мышечной системы, подкожной жировой клетчатки, волосяного покрова, тембра голоса, поведения животных.

Признаки особи, связанные с полом, можно разделить на 3 категории:

  1. Ограниченные полом;

  2. Контролируемые полом;

  3. Сцепленные с полом.

Развитие первых обусловлено генами, расположенными в аутосомах обоих полов, но проявляющихся только у одного пола. Такое явление наблюдается в связи с воздействием соответствующих половых гормонов.

Примером вторых является разная степень проявления генов у лиц разного пола. Так у человека ген лысости – только у мужчин, а подагра – у 40% мужчин и редко – у женщин.

Хромосомная и балансовая теории определения пола.

Типы определения пола:

  1. Прогамный до оплодотворения, по строению мужских и женских гамет.

  2. Сингамный генетическое определение пола при оплодотворении, которое зависит от характера сочетания половых хромосом, либо от соотношения половых хромосом и аутосом.

  3. Эпигамный формируется под влиянием внешней среды.

К сингамному типу относится хромосомное определение пола. Ответственные за пол хромосомы назвали половыми. Нормальная мужская гамета несет либо Х либо Y-хромосому, а все яйцеклетки – Х-хромосому. В случае нормального расхождения хромосом при мейозе образуются нормальные яйцеклетки и сперматозоиды с обычным набором хромосом Х или Y. Пол зиготы определяется по соотношению хромосом в гаметах. При этом различают гомогаметный и гетерогаметный пол. У гомогаметного пола одинаковые гаметы. Например, у млекопитающих, дрозофилы гомогаметный женский пол – ХХ. У птиц, рептилий, насекомых (бабочки) гомогаметным является мужской пол ZZ.

Хромосомная теория пола К. Корренса (1907) заключается в том, что пол определяется сочетанием половых хромосом при оплодотворении. Различают следующие типы хромосомного определения пола: ХY, Х0, ZW, Z0 (Табл. 5).

Таблица 5 — Хромосомное определение пола

Типы хромосомного определения пола

Сочетание половых хромосом

типы гамет









Гетерогаметность мужского пола

Прямокрылые насекомые (клопы Protenor, жуки, пауки, кузнечики)

Х0

ХХ

Х, 0

Х

Дрозофилы, позвоночные (млекопитающие, в том числе человек)

XY

XX

X,Y

X

Гетерогаметность женского пола

Птицы, рыбы, бабочки, шелкопряд, рептилии, земноводные

ZZ

ZW

Z

Z,W

Моли и другие беспозвоночные

ZZ

Z0

Z

Z, 0

При нарушении течения митоза или мейоза могут образовываться особи-гинандоморфы. Содержание половых хромосом в разных клетках таких особей может быть разное (мозаичное). Случаи мозаицизма: ХХ/ХХХ, XY/XXX; X0/XXY и др.

При нерасхождении половых хромосом в гаметогенезе возможны их комбинации, что является причиной хромосомных аббераций у человека (Табл. 6).

В случае нерасхождения половых хромосом при мейозе образуются гаметы ХХ и 0 у самок, а так же ХY и 0 – у самцов. При участии их в оплодотворении формируются зиготы с необычным сочетанием половых хромосом. У человека такие аномалии встречаются 1 на 600-700 новорожденных. Зигота Y0 погибает на ранней стадии; особи ХХХ, ХХY, Х0 – жизнеспособны. Избыток Х-хромосом вызывает конституциональные аномалии и дефекты интеллекта.

Таблица 6 — Возможные комбинации половых хромосом у человека






Х

ХХ

0

X

XX

XXX

X0

Y

XY

XXY

Y0

XY

XXY

XXXY

XY0

0

X0

XX

0
Но в природе встречаются особи, у которых Y хромосома генетически инертна и не оказывает особого влияния на определение пола. Так у дрозофилы обнаружены особи типа Х0, которые были самцами, но бесплодны, а особи ХХY – нормальные плодовитые самки.

Балансовая теория пола (К.Б. Бриджес, 1922) подразумевает, что в определении пола принимают участие не только половые хромосомы, но и аутосомы. Один гаплоидный набор аутосом сообщает особи свойства мужского пола. В данном случае пол определяется соотношением количества половых хромосом к набору аутосом.

Гены женского организма сосредоточены в Х-хромосомах, мужского – в аутосомах (А).

В норме:

  • самки имеют баланс 2Х : 2А=1

  • самцы – 1Х : 2А=0,5.

Нормальный баланс половых хромосом и аутосом у человека:

  • женщин – ХХ : 44А. (2х : 2А)

  • мужчин – ХY : 44А. (1х : 2А)

Нарушения:

ХО : 44А. – моносомия у женщин.

ХХХ : 44А. – трисомия у женщин.

ХХY, ХХХY : 44А. – синдром Кляйнфельтера (мужской фенотип)

ХYY : 44А. – полисомия по Y.

Определение, дифференцировка и переопределение пола в онтогенезе.

Формирование половых признаков осуществляется под генетическим контролем. Генетический пол зародыша человека определяется набором половых хромосом при слиянии гамет: ХХ и ХY.

Зачатки гонад у ранних эмбрионов до 5-й или 6-й недели не различаются у разных полов и называются бисексуальными. Они состоят из внешнего слоя – кортекса (cortex) и внутреннего слоя – медулла (medulla). Первичные клетки зародышевого пути обнаруживаются у человека на 3-й неделе эмбрионального развития в эндодерме желточного мешка. Затем под влиянием хемотаксических сигналов они мигрируют в гонады. Эта миграция не зависит от пола. Зачатки гонад могут развиваться в яичники или семенники. Дифференцировка мужской гонады наблюдается на 7-й неделе. На 36 день семенник начинает выделять андрогены (тестостерон), определяющий развитие мужского пола. Развитие женской гонады наблюдается на 8-й неделе. Результатом этого является образование женских гормонов – эстрогенов.

В норме Х-хромосомы содержат ген-репрессор – ген тестикулярной феминизации Tfm. Нормальная аллель гена Tfm определяет синтез белкового рецептора для андрогенов. Эти рецепторы имеются на поверхности клеток гонад обоих типов. Развитие по мужскому фенотипу зависит от гена Y-хромосомы – H-y-антигена. Его секретируют первичные мужские клетки зародышевого пути. H-y-антиген отвечает за выработку тестостерона. Как только эти клетки попадают в зачатки гонад, начинается дифференцировка семенников. Считалось, что мужской фенотип определяется всей мужской Y-хромосомой. Но в 1990 году был открыт ген (Sex Region Y), локализованный в Y-хромосоме. При его отсутствии генотип XY дает женский фенотип.

При сочетании половых хромосом ХY, белки-рецепторы воспринимают андрогены. Формируется нормальный мужской фенотип. В случае рецессивной мутации (tfm) рецепторы на поверхности клеток не синтезируются и гормон не воспринимается. Возникает несоответствие между мужским генотипом Х tfmY и формирующимся женским фенотипом (синдром Морриса).

Зачаточная гонада у человека бисексуальна до 6-й недели внутриутробного развития (Табл. 7).

  • Генотип особи XY вызывает развитие медуллы и формирует семенник на 7-8-й неделе.

  • Генотип особи ХХ вызывает развитие кортекса и формирует яичник на 8-9-й неделе внутриутробного развития.

Гонады детерминируют развитие первичных и вторичных половых признаков. Половые железы выделяют гормоны, которые вместе с гормонами эндокринных желез контролируют пути дифференцировки пола. Уровень гормонов в свою очередь контролируется генами.

Таким образом, процесс половой дифференцировки включает:

  1. Генетический контроль;

  2. Регуляторные функции гормонов.

Существует теория действия гормонов в качестве регуляторных факторов на гены. Они действуют только на специфические клетки-мишени. В клетке вырабатывается особый белок – рецептор, связывающийся с гормоном по заданному типу развития. После чего гормон приобретает свойства индуцировать работу одного или нескольких генов в хромосомах. Клетки-мишени женского организма воспринимают гормоны по женскому типу в большей степени, а клетки-мишени мужского организма – мужские гормоны. Соответственно в норме формируется женский или мужской фенотип. Таким образом, существует следующая схема:

  1. В клетках-мишенях вырабатывается белок-рецептор;

  2. Белок-рецептор связывается с гормоном;

  3. Инициируется работа нескольких генов в хромосомах.

Образование белков-рецепторов и гормонов контролируется в свою очередь генами. В случае мутаций возникает нарушение контроля, вызывающие аномалии. Примером служит описанный выше синдром Морриса или тестикулярной феминизации. У лиц с этим заболеванием отсутствуют белки-рецепторы к тестостерону и гормон не воспринимается. В силу этого, развитие по мужскому типу прекращается, и появляются женские фенотипические признаки. В исключительных случаях возможно исправление таких дефектов введением соответствующих гормонов.

Мутации таких генов вызывают:

  1. Нарушения синтеза белков-рецепторов;

  2. Отсутствие восприятия гормонов;

  3. Нарушение формирования пола.

Нормальная аллель, контролирующая синтез белкового рецептора для андрогенов – ХTfm. Рецессивная мутация гена, вызывающая нарушение синтеза рецептора – Хtfm.. При этом гормон по заданному типу не воспринимается.

Особенности детерминации пола у человека.

Таблица 7 — Этапы дифференцировки пола у человека

Периоды внутриутробного развития (недели).

Развитие гонад и половых признаков.

3

первичные половые клетки

5

закладка первичных гонад

6

гонада бисексуальна

7-8

развитие гонады по мужскому типу (семенников)

8-9

развитие гонады по женскому типу (яичников)

7-9

формирование гормонального пола

10-12

формирование внутренних половых органов

12-20

формирование наружных половых органов

Таблица 8 — Половой диморфизм

- Генетический:

сочетание хромосом: ХХ или ХY.

- Гаметный:

наличие гамет: яйцеклеток, сперматозоидов.

- Гонадный:

формирование желез: семенников или яичников.

- Гормональный:

функция мужских гормонов – тестостерона, женских гормонов – прогестерона, этрогена.

- Фенотипический:

формирование вторичных половых признаков по мужскому или женскому типу.

- Психологический:

половая и поведенческая принадлежность.

Нарушение полового самосознания.

Изначальная генетическая бисексуальность гонад является основой переопределения пола.

В результате нарушения воздействия гормонов или функций рецепторов клеток-мишеней может происходить переопределение пола.

В природе много факторов, ослабляющих действие генов, которые контролируют развитие пола. Например, у человека в гонадах одной особи могут развиваться в равной степени семенниковая и яичниковая часть.

Гермафродитизмявление интерсексуальности.

На основании клинических данных различают 3 типа интерсексов:

  1. Истинный гермафродитизм – наличие у особи гонад и половых клеток обоих полов;

  2. Мужской псевдогермафродитизм: имеются только тестикулы (семенники), фенотип – женский;

  3. Женский псевдогермафродитизм: имеются только яичники, фенотип – мужской.

Соотношение полов:

Первичное – в момент оплодотворения соотношение должно быть близким 1:1, так как встреча половых клеток равновероятна. При обследовании у человека обнаружено, что на 100 женских зигот образуется 140 160 мужских. Сперматозоиды, содержащие Y-хромосому, легче, подвижнее и имеют большой отрицательный заряд, в то время как яйцеклетка имеет положительный заряд. Поэтому, Y-содержащие сперматозоиды чаще оплодотворяют яйцеклетку.

Вторичное к моменту рождения на 100 девочек рождается 103-105 мальчиков. К 20 годам на 100 девушек приходится 100 юношей.

Третичное к 50 годам на 100 женщин приходится 85 мужчин, а к 85 годам на 100 женщин – 50 мужчин. Считается, что женский организм более приспособленный, что может быть объяснено наряду с другими причинами мозаицизмом женского организма по половым хромосомам.

В 1962 году М. Лайон высказала гипотезу об инактивации одной Х хромосомы у женского организма млекопитающих. У женского зародыша функционируют обе хромосомы до 16 дня эмбрионального развития. На 16-й день происходит инактивация одной хромосомы с образованием полового хроматина (тельца Барра). Процесс этот случайный, поэтому примерно в 1/2 клеток активной сохраняется материнская Х-хромосома, а отцовская инактивируется. В других – отцовская активна, а материнская хромосома инактивируется. Переактивация не происходит. Материнская и отцовская Х-хромосомы содержат аллельные, но не абсолютно одинаковые гены, т.е. в одной хромосоме может быть локализован доминантный аллель, а в другой – рецессивный. Обладание дополнительными аллелями расширяет приспособительные возможности организма.

Женский организм более устойчив к холоду, ионизирующему излучению, эмоциональным перегрузкам (женщины плачут чаще, вместе со слезами выделяются активные амины, в результате снижается кровяное давление).

Однако, если бы гипотеза работала без ограничений, то не было бы фенотипических различий между здоровыми женщинами с двумя Х хромосомами и больными Х0, или у мужчин XY и XXYY. Очевидно, Х хромосома инактивируется не полностью.

1   2   3   4   5   6   7   8   9   ...   17


написать администратору сайта