Главная страница
Навигация по странице:

  • j

  • Онтология

  • Владимиров

  • Курдюмов

  • Пенроуз

  • Учебное пособие для вузов


    Скачать 2.92 Mb.
    НазваниеУчебное пособие для вузов
    Анкорlebedev.doc
    Дата17.05.2018
    Размер2.92 Mb.
    Формат файлаdoc
    Имя файлаlebedev.doc
    ТипУчебное пособие
    #19341
    страница36 из 42
    1   ...   32   33   34   35   36   37   38   39   ...   42

    Глава 2

    ШИЛОСОШИЯ НАУЧНОЙ КАРТИНЫ МИРА


    1 Философия механистической картины мира

    Научной философией Ньютона являлась экспери­ментальная философия. В ее основу были положены следующие правила философствования:

    1. Не должно приписывать природных причин сверх тех, которые истинны и достаточны для объясне­ния явлений.

    2. Следует, насколько возможно, приписывать одним и тем же следствиям одни и те же причины.

    3. Основой научных доказательств является экспери­мент, причем непосредственный, а не мысленный, как это предлагал Декарт.

    Принципы построения «Начал», где изложена ме­ханистическая картина мира, Ньютон заимствовал у Евклида: сначала формулируются аксиомы, или законы, затем из них выводятся следствия, которые можно про­верить на опыте. Декарт развивал гипотетическую фи­зику, в основе которой лежали умозрительные предпо­ложения, не следующие непосредственно из опыта. Физика принципов Ньютона основана на введении аксиом, которые могут не иметь логического обоснова­ния, но истинность которых доказывается опытом.

    Символом метафизики Ньютона является сформу­лированный им основной закон динамики:

    F=ma(8)
    где F— сила, действующая на тело с массой та,а— уско­рение, которое она сообщает этому телу. В этой фор­муле введены три метафизические категории: во-пер­вых, масса как мера инертности тел, во-вторых, сила — фактор, который изменяет состояние покоя или равно­мерного и прямолинейного движения, и ускорение —-характеристика свойств пространства и времени.

    Эти свойства, согласно Ньютону, парадоксальны: речь идет об абсолютно пустом пространстве и абсо­лютном времени. Оба метафизических понятия всегда вызывали большие споры. Сам Ньютон вкладывал в них теологический смысл. Бог, —писал он, — это «бес­телесное существо, живое, разумное, всемогущее, ко­торое в бесконечном пространстве, как бы в своем чувствилище, видит все вещи вблизи, прозревает их насквозь и понимает их благодаря непосредственной близости к ним». Ко времени Лапласа эти теологичес­кие рассуждения Ньютона были прочно позабыты.

    Введенная Ньютоном в законе всемирного тяготе­ния сила гравитации также явилась метафизической категорией: речь шла о мгновенном взаимодействии тел, передаваемом на любые расстояния, причем без каких-либо посредников. Это был загадочный принцип дальнодействия. Декарт пытался снять проблему, за­полнив пространство эфирными вихрями. Ньютон опроверг эту гипотезу как необоснованную: «причину свойств силы тяготения я до сих пор не смог вывести из явлений. Гипотез же я не измышляю».

    Позднее стало ясно, что для гравитации и других сил можно ввести понятие потенциала, определенного в каж­дой точке пространства. А это уже понятие поля, которое и можно рассматривать в качестве переносчика взаимо­действия. Ключевыми метафизическими категориями в механистической картине мироздания были понятия массы и инерции. Загадкой, не имевшей никакого объяс­нения, оставалось равенство гравитационной и инертной масс, которое с высокой точностью было доказано в кон­це XVIII в. в опытах Г. Кавендиша. Что касается инерции, то Ньютон мог дать о ее природе всего лишь тавтологи­ческий комментарий: «врожденная сила материи есть присущая ей способность сопротивления, по которой всякое отдельно взятое тело, поскольку оно предоставле­но самому себе, удерживает свое состояние покоя или равномерного и прямолинейного движения».

    В этих достаточно неясных рассуждениях скрыва­лась еще одна метафизическая тонкость: по существу речь шла о состоянии покоя или равномерного и пря­молинейного движения относительно абсолютного пространства, причем в абсолютном времени. Суще­ствовал только один способ определить систему коор­динат, связанную с абсолютным пространством, — связать ее со сферой неподвижных звезд. Во времена Ньютона это могло казаться приемлемым, но для нас лишено смысла. Пространство и время в классической картине мира — абсолютно самодостаточные катего­рии, существующие безотносительно чего-либо и ни­как не зависящие от присутствия в них материи.

    Абсолютно пустое пространство механистической картины мира обладает свойствами однородности и изот­ропности, откуда следуют законы симметрии: изменение координат или их поворот не влияют на законы механи­ки. В 1918 г. Э. Нетер показала, что отсюда следуют ме­ханические законы сохранения импульса mv и момента импульса mv2. Что касается закона сохранения кинети­ческой энергии mv2/2, то он является следствием равно­мерности хода часов абсолютного времени.

    Попытку объяснить свойство инерции предпринял Э. Мах, связав его с влиянием далеких звезд. Но это было объяснение ad hoc: речь шла о мгновенном воз­действии на межзвездных расстояниях.

    При всей своей загадочности инерция имела со­вершенно ясную количественную меру — массу. Со времен Ньютона ее принято рассматривать как основ­ную характеристику материи. Напомним, что, соглас­но Аристотелю, материя не поддается количественно­му описанию, т. к. представляет собой изменчивую и текучую субстанцию, а по Декарту материя — это про­тяженный континуум, заполняющий все пространство и доступный математическому описанию. Существова­ла и еще одна точка зрения на сущность материи, ко­торую отстаивал противник Декарта и сторонник ма­териалистического сенсуализма П. Гассенди: материя состоит из атомов, обладающих свойствами неделимо­сти, неизменности, тяжести и разделенных бестелес­ной пустотой. Близкую позицию занимал и Хр. Гюй­генс, который утверждал, что материя, состоящая из атомов, и пространство разделены, а действия на рас­стоянии быть не может.

    физическая модель мироздания, построенная в рамках механистического мировоззрения, явилась пло­дом свободного творения человеческого разума. Это была превосходная материалистическая модель, позво­ляющая решать большое количество практических за­дач, включая освоение космического пространства, и в наше время.
    | Философия квантовой теории

    Квантовая механика предсказывает не события, а их вероятности. Эйнштейн заметил по этому поводу, что он не верит, будто Бог играет в кости. Смысл кван-товомеханических предсказаний многим представлял­ся смутным. Р. Фейнман заявил в своей Нобелевской лекции: «Мне кажется, я смело могу заявить, что кван­товой механики никто не понимает».

    Рассмотрим основные варианты интерпретации смысла квантовомеханических расчетов. Наиболее рас­пространенным является подход, предложенный Ниль-сом Бором и Максом Борном и получивший название Копенгагенской интерпретации. Разъясняя смысл это­го подхода, Борн писал: «природа не может быть описа­на с помощью частиц или волн в отдельности, а только с помощью более сложной математической теории. Этой теорией является квантовая механика, которая заменя­ет собой обе эти модели и только с определенными ограничениями представляет ту или иную из них».

    В мире квантовых явлений мы имеем дело с законо­мерностями, не поддающимися детерминистическому анализу. Существенно новой чертой исследования этих явлений оказывается фундаментальное различие меж­ду макроскопическим измерительным прибором и мик­роскопическими изучаемыми объектами. Работу прибо­ров приходится описывать на языке классической фи­зики, не вводя кванта действия. В силу этих причин, если в классике взаимодействием между прибором и объек­том можно пренебречь, то в квантовой физике оно со­ставляет неотъемлемую часть самого явления. Эта осо- G19 бенность приводит к тому, что повторение одного и того же опыта дает, вообще говоря, разные результаты, ко­торые, следовательно, могут выражаться в форме веро­ятностных (статистических) закономерностей.

    Обобщая этот отказ от классического идеала де­терминизма, Бор сформулировал его в виде принципа дополнительности. Количественное выражение этот принцип находит, по его словам, в форме соотноше­ний неопределенности Гейзенберга (4), (5), которые фиксируют границы применимости к квантовым объек­там кинематических и динамических переменных, за­имствованных из классической физики. Развивая свои мысли о принципе дополнительности, Бор отметил, что он может быть применен также и при анализе процес­сов социокультурой динамики.

    Второй подход к интерпретации квантовой меха­ники называют неоклассическим. Сторонники этого подхода (Д. Бом и др.) полагают, что классический принцип причинности можно сохранить, если ввести в теорию некие скрытые неизвестные пока парамет­ры. Однако этот подход непродуктивен, т. к. никому из его защитников не удалось раскрыть природу этих скрытых параметров.

    Статистическую интерпретацию отстаивал Д.И. Бло-хинцев, который обратил внимание на тот факт, что объектом применения квантовой механики по существу являются не отдельные частицы, а квантовый ансамбль. А поэтому поведение микрочастиц определяется сово­купностью статистических закономерностей.

    В 1957 г. X. Эверетт предложил наиболее парадок­сальную интерпретацию, которая получила название многомировой. Его идея вызвала крайне противоречивую реакцию в научном сообществе, многие ее решительно отвергли как абсурдную, но некоторые ее приняли, по­скольку не увидели конкурентоспособных альтернатив.

    Известен квантово-механический парадокс, свя­занный с наблюдением интерференционной картины, возникающей при происхождении пучка электронов или светового луча (т. е. пучка фотонов) через пару узких щелей. Парадокс состоит в том, что интерферен­ционная картина возникает даже в том случае, когда на щель падает один электрон или один фотон. С точки зрения стандартной квантовой теории, это должно оз­начать, что фотон расщепляется на две части, одна из которых проходит сквозь одну щель, а другая через вторую, после чего обе части интерферируют на экра­не. Этого однако не может быть, потому, что фотон — это минимальная порция, квант электомагнитного из­лучения (см. формулу 3).

    Чтобы снять этот парадокс, Эверетт предложил гипотезу, согласно которой, кроме реальной Вселенной, в которой мы живем, параллельно существует множе­ство ее двойников — «теневых» Вселенных. Эти двой­ники, в которых обитают и бесчисленные дублеры уважаемых читателей, никак не проявляют себя. За одним исключением: при прохождении «нашего» элек­трона сквозь «наши» щели он взаимодействует со сво­им «теневым» партнером, снимая тем самым парадокс, от которого у физиков болит голова. То же самое про­исходит при всех других квантовых событиях.

    Природа реальности, гласит гипотеза Эверетта, состоит в том, что помимо нашего мира — параллельно с ним существует множество его двойников, причем число этих двойников увеличивается с каждой наносе­кундой. Д. Дойч, посвятивший обоснованию этих идей книгу «Природа реальности», предложил назвать этот непрерывно ветвящийся мир Мультиверсом (Multiverse от английского слова Universe, Вселенная). Смысл этой гипотезы он комментирует следующим образом: кто такие «мы ?», пока я пишу эти строки, множество «тене­вых» Дойчей делают то же самое и не одна копия этих Дойчей не занимает в Мультиверсе привилегированно­го положения. Между собой Дойчи — двойники никак не взаимодействуют, а потому нам никогда не узнать, разделяют ли они взгляды «нашего» Дойча на проблему реальности. Именно этот более чем странный мир опи­сывает, по его словам, квантовая механика.

    «Это не бред сивой кобылы, — говорит по этому поводу патриарх отечественной физики академик В.Л. Гинзбург. — Но я лично в это не верю, хотя есть серьезные ученые, которые верят».

    Значительно более простую и понятную интерпре­тацию парадоксов квантовой механики можно предло­жить, используя методологию торсионной физики. Если фотон — квант электромагнитного поля — представля­ет собой возмущенную под действием электрического заряда «нить» поляризованных фотонов, то при взаи­модействии этой «нити» с материальным объектом — парой щелей — происходит ее расщепление, что и объясняет возникающее в итоге явление интерферен­ции. Точно таким же образом можно объяснить и дру­гой парадоксальный эффект — квантовую телепорта-цию, которая была предсказана Эйнштейном в его совместной работе с Розеном и Подольским и недавно осуществлена де Мартини (Рим) и Цайлингером (Вена).

    Записав основное уравнение квантовой механики — волновое уравнение, — Шредингер не смог разъяснить непосредственный физический смысл волновой функ­ции. Ответ на этот вопрос дает торсионная физика. Из теории физического вакуума Г.И. Шипова следует, что волновая функция определяется через реальное торси­онное поле — поле кручения физического пространства. Источниками торсионного поля являются элементарные частицы, обладающие ненулевым спином, макроскопи­ческие тела — измерительные приборы, а также опера­торы, проводящие эксперимент с этой частицей. Одна­ко, торсионные поля приборов и операторов при прове­дении эксперимента никак не контролируются, а потому вносят в его результат элемент случайности. Результат опыта с квантовым объектом зависит, таким образом, от взаимодействия торсионных полей, созданных тремя различными источниками, два из которых подчиняются законам случая. По этой причине результаты опытов носят вероятностно-статистический характер. Торсион­ная интерпретация квантовой механики значительно более наглядна, чем копенгагенская или неоклассичес­кая, а тем более, чем «многомировая».
    9 Философия теории относительности

    Последние 40 лет своей жизни Эйнштейн потра­тил на то, чтобы понять мир материи как форму про­явления пустого искривленного пространства-време­ни. Один из ведущих специалистов по космологии Дж. Уилер сформулировал эту мечту Эйнштейна в виде


    [лава 2. Филоеопм научной картины мира

    рабочей гипотезы: «материя есть возмущенное состо­яние динамической геометрии».

    Основная категория относительности — это мет­рика, т. е. число, которое сопоставляется с двумя точ­ками (событиями). Суть общей теории относительнос­ти и всей геометрической картины мира состоит в обобщении теории Евклида по двум направлениям — во-первых, по увеличению размерности, а во-вторых, по переходу к искривленным пространствам.

    В 1916 г. на базе уравнений ОТО К. Шварцильд рассчитал метрику пространства —времени вокруг сферически симметричного материального объекта.

    Этот расчет послужил основой последующего раз­вития теории черных дыр — одного из наиболее инте­ресных объектов современной космологии. Из-под гравитационного радиуса этих удивительных объектов не может выйти ничто — ни у света, ни у каких-либо других тел не хватит энергии, чтобы преодолеть силу притяжения черной дыры.

    В 1921 г. Т. Калуца обобщил уравнения ОТО на случай пятимерной метрики.

    Пятая координата оказалась замкнутой на планков-ском масштабе 1043 см. Главным достижением тео­рии Калуцы оказалась геометризация электромагнит­ного поля: его пятимерные уравнения содержали урав­нения Максвелла.

    В связи с увеличением размерности ОТО возникает вопрос, почему реальное пространство нашего мира подчиняется трехмерной геометрии Евклида. В 1919 г. эту проблему исследовал П. Эренфест. Все классичес­кие физические поля — гравитационное, кулоновское электрическое, магнитное, производимое магнитным зарядом, — убывают обратно пропорционально квадра­ту расстояния. В мирах более высокой размерности эти зависимости оказались бы совершенно иными и, как следствие, и атомы и планеты потеряли бы устойчивость.

    Философский подход к проблемам топологии про­странства развивался М.А. Марковым. Исходный тезис его рассуждений — в сопоставлении двух линий ан­тичной философии на проблему делимости материи — линии Демокрита, который был сторонником идеи не­делимых атомов, и линии Эмпедокла, по мнению ко-

    РазделVII.Современна»научна»картинамира

    торого число первоэлементов бесконечно велико. Мар­ков предложил третью концепцию, альтернативную по его мнению двум классическим.

    Концепция Маркова основана на двух принципи­ально новых идеях. Первая из них состоит в том, что структурные части материи могут строиться из элемен­тов не меньшей, а большей массы: избыточная масса в соответствии с законом сохранения массы —энергии трансформируется в жесткое излучение. Заметим, что эту же идею использовал А.Е. Акимов в фитонной те­ории квантового вакуума.

    Вторая идея — это так называемая «ядерная демок­ратия»: способность элементарных частиц превращать­ся друг в друга, спонтанно исчезать и вновь возникать из вакуума. Классическая атомная теория не знала ничего подобного.

    Используя эти идеи, Марков предложил предста­вить элементарные частицы в виде почти замкнутых автономных вселенных, которые он назвал фридмона-ми. Из-за большого гравитационного дефекта масс полная масса замкнутой вселенной равна нулю. А ес­ли она замкнута не полностью, то ее масса может быть сколь угодно малой, например, равной массе элемен­тарной частицы. С точки зрения внешнего наблюдате­ля эта малая масса будет заключена внутри сферы таких же микроскопических размеров, как и элемен­тарная частица.

    «Фридмон с его удивительными свойствами, — пишет академик Марков, — не является порождением поэтической фантазии — без всяких дополнительных гипотез система уравнений Эйнштейна —Максвелла содержит фридмонные решения... Вселенная в целом может оказаться микроскопической частицей. Микро­скопическая частица может содержать в себе целую Вселенную».

    Глава 3

    ФИЛОСОФСКИЕ ПРОБЛЕМЫ СОВРЕМЕННОЙ НАУЧНОЙ КАРТИНЫ МИРА


    | Универсальная теория Вселенной

    По мнению С. Хокинга, в настоящее время на вопрос о том, может ли существовать единая теория всего реально существующего, следует дать три аль­тернативных ответа:

    1. Полная теория существует и когда-нибудь будет построена.

    2. Окончательной теории Вселенной нет, а есть бес­конечный набор все более совершенных теорий.

    3. Такой теории не существует, имеется граница, за которой нельзя предсказать что-либо определенное. За этими рассуждениями Хокинга скрывается

    неявный постулат, который состоит в том, что сам объект теоретизирования — Вселенная — в своих наи­более фундаментальных свойствах остается неизмен­ным. Между тем, если вспомнить основные принципы нелинейной науки и рассматривать Вселенную как большую самоорганизующуюся систему, то можно прийти к выводу, что у нас нет достаточных оснований считать этот постулат истиной в последней инстанции.

    Несмотря на эти сомнения, многие теоретики убеж­дены, что такая теория будет в конце концов создана. «Физика представляет собой единое целое, — пишет по этому поводу Р. Пенроуз, — и правильная кванто­вая теория гравитации, когда она, наконец, будет пост­роена, должна стать основой нашего досконального понимания законов природы».

    Полностью солидарен с ним и С. Хокинг, который утверждает, что «если мы действительно откроем пол­ную теорию..., тогда все мы, философы, ученые и про­сто обычные люди, сможем принять участие в дискус­сии о том, почему так произошло, что существуем мы и существует Вселенная. И если будет найден ответ на такой вопрос, это будет полным триумфом человечес­кого разума, ибо тогда нам станет понятным замысел Бога».

    Теоретики продолжали упорно работать над этой проблемой. А. Салам и С. Вайнберг создали единую теорию слабых и электромагнитных взаимодействий. На очереди теория Великого объединения, которая будет описывать также и сильные взаимодействия, а о теории суперструн думают как о прообразе еще более общей теории — супергравитации. На этом пути, по­мимо больших теоретических трудностей, физиков идет еще одна тяжелая проблема — экспериментальная невесомость: предсказания теорий становится все труднее проверить на опыте.

    Скорее всего, однако, до триумфа, о котором меч­тают теоретики, еще далеко. К тому же есть много фундаментальных вопросов, на которые эта теория, даже если она будет создана, не может дать убедитель­ных ответов.


    Вселенная состоит из вещества — главным обра­зом из протонов, электронов и нейтронов, — и антиве­щества, т. е. антипротонов и позитронов, имеющих противоположные электрические заряды. Ни теория относительности, ни квантовая механика не дают от­вета, почему при происхождении Вселенной из вакуу­ма возникла такая асимметрия.

    Внести ясность в этот парадокс можно с помощью модели «фитонного моря». Согласно существующим космологическим моделям, когда закончилась самая ранняя инфляционная стадия расширения Вселенной, ее температура была очень высока— 1016 эВ. При




    9 ПроОлема антивещества такой температуре в плазме должны были начаться процессы генерации частиц и античастиц, причем практически в равных количествах. Однако вследствие эффекта аннигиляции они должны были сразу же превращаться в фитонные ансамбли, что сопровожда­лось испусканием жесткого излучения.

    Анализируя протекание этих процессов, А.Д. Са­харов предположил, что скорости рождения частиц и античастиц должны немного различаться, а процессы разбаланса их концентрации должны протекать быст­рее, чем их взаимная аннигиляция.

    Достаточно, таким образом, предположить, что в силу неких нелинейных эффектов процесс генерации материи шел с небольшим переносом в пользу веще­ства, и тогда в итоге часть вещества осталась «невос­требованной» и составила материальную основу всех ныне существующих объектов во Вселенной, а другая, причем подавляющая часть, вместе со всем антивеще­ством оказалась «связанной» в форме фитонов.

    Что касается жестких гамма-квантов, испущенных при формировании фитонного «моря», то они сохра­нились к настоящему времени в форме реликтового из­лучения с температурой 3 °К, открытого А. Пензиасом и Р. Вильсоном. Количество этих реликтовых фотонов в миллиард раз превосходит суммарную численность протонов, из которых состоят все материальные объек­ты во Вселенной. Этот факт — прямое подтверждение того, что в момент своего рождения концентрации ча­стиц и античастиц различались весьма мало, разница между ними составляла порядка Ю-9 в пользу веще­ства. Именно из этих «избыточных» протонов и элек­тронов и развились позднее галактики, звезды и пла­неты, включая те, на которых затем зародилась жизнь.
    ■ Будущее Вселенной

    Стандартная фридмановская модель предсказыва­ет два варианта конца современной Вселенной — либо «тепловая смерть» в результате непрерывного расши­рения, либо последующее сжатие (Big Crush — Боль­шой Хлопок). Согласно теории, первому сценарию соответствует средняя плотность материи меньше, чем 10_29r/CM3i второму— больше этой величины. По данным астрофизики, современные оценки плотности как раз дают 1029г/см3, поэтому выбор между обо­ими эволюционными сценариями, оба из которых «хуже», остается как будто неопределенным.

    Однако наблюдения над аномалиями в движении звезд и галактик привели астрономов к выводу, что, кроме видимого вещества, во Вселенной должна су­ществовать недоступная прямым наблюдениям тем­ная материя, содержание которой намного превосхо­дит количество вещества. Вопрос о природе этой ма­терии неясен. Возможно, это холодный межзвездный газ, белые карлики, нейтрино или другие странные ча­стицы.

    Отличный от стандартных прогнозов взгляд на будущее Вселенной можно получить, используя идеи нелинейной науки. Факт рождения Вселенной из ваку­ума означает, что ее нельзя рассматривать как замкну­тую систему и, следовательно, ее эволюция подчиня­ется закономерностям теории самоорганизующихся си­стем. И следовательно теория Всего, о которой мечтают физики, должна включать динамическую неустойчи­вость. А это означает, по мнению И.Р. Пригожина, что по мере того, как Вселенная эволюционирует, обстоя­тельства создают новые закономерности.

    Одно из таких нестандартных обстоятельств — возможность рождения дочерних вселенных. Исход­ный постулат этой гипотезы состоит в том, что суще­ствует пространственно-временная пена — квантовые флуктации на уровне планковских масштабов. Суще­ствование этой пены можно проверить эксперимен­тально, наблюдая реакцию на нее мощных гамма-кван­тов с энергией порядка 1016ГэВ, излучаемых ядрами галактик или квазарами. Если зоны такой пены суще­ствуют, то становится возможным спонтанное рожде­ние обособленных пространственно-временных обла­стей, гравитационно отделенных от Вселенной-матери. Наблюдать их можно по мощным вспышкам излуче­ния, идущего «ниоткуда».

    Возможен индукционный механизм возникновения таких областей вследствие столкновения двух частиц сверхвысокой энергии (файербол).
    д Днтропный принцип

    Антропный принцип — это одна из наиболее ост­рых и спорных проблем современного миропредстав­ления. Область его применения — роль и место разум­ной жизни во Вселенной, а более конкретно — человека.

    Существуют три исторические парадигмы, дающие ответ на этот вопрос:

    1. Вселенная антропоморфна, она — целостный орга­низм, а человеком управляют высшие космические силы (Аристотель, Птолемей).

    2. Вселенная — механизм, созданный Богом, который сотворил человека по своему образу и подобию (Декарт, Ньютон).

    3. Стандартная космологическая модель, в рамках которой возникновение разумной жизни — прояв­ление законов случая.

    Анализ этих проблем привел к «антикоперникан-скому» перевороту в космической философии. Оказа­лось, что во Вселенной существует очень точная под­гонка фундаментальных физических констант, и даже малые отклонения от стандартных значений привели бы к такому изменению свойств Вселенной, что воз­никновение в ней человека стало бы невозможно. Эту проблему исследовал Г.М. Идельс, A.M. Зельманов, Б. Картер, Ф. Хойа, Н.Л. Розенталь, Дж. Уилер, Ф. Тип-лер, С. Хокинг и другие ученые. Эта удивительная при­способленность Вселенной к существованию в ней че­ловека получила название антропногопринципа(АП).

    В наиболее парадоксальной форме так называемо­го сильного АП эту идею сформулировал в 1973 г. Б. Картер, использовавший парафраз известного афо­ризма Декарта: «Cogito, ergo mundus talis est» («Я мыс­лю, следовательно, Вселенная такова, какова она есть»). Есть и другие, не менее парадоксальные формулиров­ки АП. С. Хокинг: «Вселенная такова, какой мы ее наблюдаем, по той причине, что существует человек». Ф. Хойа: «Здравая интерпретация фактов дает возмож­ность предположить, что в физике, а также в химии и биологии экспериментировал "сверхинтел\ект" и что в природе нет слепых сил, заслуживающих внимания». Дж. Уилер: «В некотором странном смысле это являет­ся участием Бога в Создании Вселенной».

    Ф. Типлер предложил финалистскую версию АП, в основе которой лежит постулат вечности жизни, точ­нее реализации программы производства информации. Физическая природа носителей информации при этом несущественна, это вовсе не обязательно человек. Цель этого процесса состоит в управлении крупномасштаб­ной структурой Вселенной, а его финал — точка Оме­га, бесспорный Разум, потенциально владеющий бес­конечно большим объемом информации.

    На основании своей концепции Типлер утвержда­ет, что Вселенная должна быть закрытой. Она потен­циально содержит точку Омега как финал, в котором сливаются все мировые линии событий.

    Этот всеохватывающий эволюционизм Типлера — не что иное, как тотальная колонизация Космоса ант­ропоморфным «развертывающимся богом». Сточки зрения синергетики это несомненно модель эволюци­онного тупика.

    Значительно более рационалистическая интерпре­тация АП принадлежит Н.Л. Розенталю, который пред­ставил его как принцип целесообразности. Наши ос­новные физические законы, считает он, подчиняются гармонии, которая обеспечивает существование основ­ных состояний. На конкретных примерах варьирова­ния величиной фундаментальных констант Розенталю удается показать конструктивную роль АП.

    Близкую точку зрения разделяют СП. Курдюмов и Б.Н. Князева. Сложное, отмечают они, связано с иерар­хическим принципом строения и с необходимостью должно рассматриваться в эволюционном аспекте. На этом основании они формулируют эволюционный по­стулат АП: сложный спектр структур-аттракторов су­ществует лишь для узкого, уникального класса сцена­риев с нелинейными зависимостями. Недостаток си­нергетической интерпретации АП состоит в том, что авторы не смогли указать решения задачи морфогене­за, т. е. усложнения, перехода от простых структур к сложным.
    рУниверсальная история

    И. Пригожину, Э. Янгу и Н.Н. Моисееву принадле­жит идея универсального эволюционизма. Структура современной общепризнанной картины мира носит как бы мозаичный характер: она состоит из автономных блоков — физика, космология, биология, геохимия и др., — которые, хотя и связаны между собой, но не выдержаны в духе единой универсальной эволюцион­ной парадигмы.

    Смысл принципа универсального эволюционизма состоит в том, чтобы представить все эволюционные процессы, происходящие в мире, начиная с возникно­вения Вселенной, образования вещества, звезд и галак­тик и до социокультурной динамики как целостный процесс самоорганизации всего сущего, подчиняю­щийся общим фундаментальным закономерностям и развивающийся в целостном многомерном онтологи­ческом пространстве.

    Концепция универсального эволюционизма пока далека от завершения и существует скорее в виде исследовательской программы. Это, однако, не умень­шает ее онтологического, гносеологического и этичес­кого значения. Третий из числа этих аспектов при обсуждении проблемы может вызвать недоумение, однако именно он занимает центральное место во всей концепции.

    Дело в том, что из концепции универсального эво­люционизма в качестве следствия можно получить принцип коэволюции человеческого социума и среды обитания, включая космическое пространство. Этот принцип — прямой результат применения методов нелинейного мышления. Для поддержания устойчиво­го, неразрушающегося режима социальной эволюции этот принцип играет фундаментальную роль. Он явля­ется прямой антитезой классического принципа меха­нистического миропредставления — «природа не храм, а мастерская, и человек в ней — хозяин»,— следова­ние которому и привело к экологическому кризису.
    jСловарь ключевых терминов
    Бифуркация — нарушение устойчивости эволюционного ре­жима системы, приводящее к возникновению после точки бифуркации квантового спектра альтернативных вирту­альных сценариев эволюции. Бифуркации возникают в ус­ловиях нелинейности и открытости как следствие измене­ния свойств, а не имманентных свойств самой системы. Вследствие потери системной устойчивости в зоне бифур­кации фундаментальную роль приобретают случайные факторы. Это обстоятельство имеет важное значение в процессах социокультурной динамики и приводит к ново­му, нелинейному пониманию соотношения необходимос­ти и свободы воли. В рамках нелинейного мышления сво­боду следует донимать не как осознанную необходимость, а как возможность выбора среди виртуальных альтерна­тив, но одновременно и нравственную ответственность за этот выбор.

    Большой взрыв — сингулянтность пространства-времени, приведшая к возникновению 13,7 миллиардов лет назад и последующей эволюции нашей Вселенной. Согласно стан­дартной космологической модели, Вселенная возникла как результат этой сингулярности. Теоретическим обо­снованием этой теории явилось решение нестационар­ных уравнений относительности, полученное в 1922 г. А.А. Фридманом. В пользу этой теории свидетельствует два экспериментальных факта. Во-первых, это открытие разбегания далеких галактик, сделанное в 1929 г. на основа­нии регистрации красного смещения в спектрах их излу­чений. Во-вторых, это открытие реликтового фонового излучения с температурой 3,5 °К, равномерно заполняю­щего космос. Это открытие было сделано в 1964 г. А. Пен-зисом и Р. Вильсоном. В 1948 г. Г, Гамов теоретически по­казал, что если на ранних стадиях после Большого взрыва Вселенная была очень горячей, то впоследствии в процес­се ее расширения свободный фотонный газ должен был охладиться примерно до 5 °К, что и наблюдалось на экспе­риментах.

    Согласно современным космологическим теориям, воз­никновение Вселенной явилось следствием фазового пере­хода квантового вакуума. Ее первоначальные размеры со­ответствовали планковским масштабам— 10_33см, 1043с. А. Гут, С. Хокинг, А.Д. Линде показали, что в промежуток времени от 1034 до 1032с Вселенная испытывала стадию сверхбыстрого, или инфляционного, расширения, когда ее размеры увеличились в 1030 раз. В процессе расшире­ния Вселенной началось формирование элементарных частиц, а ко времени порядка 100 миллионов лет звезд и галактик.

    Вакуум — в житейском понимании пустота, отсутствие реаль­ных частиц. Но даже в классическом понимании сосуд, из которого откачали воздух, заполнен электромагнитным из­лучением, поступающим с его стенок. В квантовой механике вводится понятие физического вакуу­ма как основного состояния квантовых полей, обладающих минимальной энергией и нулевыми значениями импульса, углового момента, электрического заряда, спина и др. Физический, или квантовый, вакуум также не является пустотой: он содержит виртуальные частицы, которые рождаются в нем за промежутки времени порядка 10 22 с как следствие квантовых флуктаций в соответствии с соотношениями неопределенности Гейзенберга. Хотя ин­дивидуально виртуальные частицы (электроны, прото­ны и др.) наблюдать нельзя, как ансамбль они оказывают приборно регистрируемое воздействие на свойства реаль­ных частиц.

    Вакуум — фундаментальное понятие, т. к. его свойства определяют свойства всех относительных состояний мате­рии. Все, что происходит в нашем мире, обусловлено в ко­нечном счете измерениями геометрических характерис­тик квантового вакуума. Гносеология— общее учение о познании, его структуре, ме­тодах, принципах, закономерностях функционирования и развития.

    Квантовая механика— теория, описывающая свойства и за­коны движения физических объектов, для которых раз­мерность действия (эрг х с) сопоставима с планковским масштабомп.= 6,62х 1027эргхс. Этому условию удовлет­воряют микрочастицы, а потому можно сказать, что кван­товая механика — это наука, описывающая свойства мик­ромира.

    Квантовая механика включает в себя систему специальных понятий и соответствующий им математический аппарат.

    Законы квантовой механики образуют фундамент наук о строении вещества. Методы квантовой механики позволи­ли решить большое количество научных задач: расшиф­ровка атомных спектров, объяснение периодической сис­темы элементов Д. И. Менделеева, строение и свойства атомных ядер, теория фотоэффекта, физики твердого тела и полупроводников, ядерные и термоядерные реакции и др. В области макромасштабов уравнения квантовой меха­ники переходят в уравнения обычной классической ме­ханики.

    Космология — наука, изучающая Вселенную как единое це­лое, ее строение и эволюцию.

    Термин «космология» образован из греческих kosmos — мир, гармония и logos — учение, слово. Теоретическим ба­зисом космологии является физическая теория, а ее экспе­риментальные методы основаны на использовании астро­номических наблюдений и специальных космических аппаратов.

    Первой научной системой мира явилась геоцентрическая система, разработанная К. Птолемеем (II в. н. э.). В XVI в. Н. Коперник проанализировал недостатки этой модели и обосновал необходимость перехода к гелиоцентрической системе. Открытие Коперника стимулировало развитие физической теории. Впервые использовав телескоп для наблюдения небесных явлений, Г. Галилей получил много­численные экспериментальные свидетельства в пользу ге­лиоцентрической системы мира. И. Ньютон открыл закон всемирного тяготения и разработал классическую меха­нику, с помощью которой удалось теоретически описать большинство небесных явлений.

    В начале 1922 г. А.А. Фридман нашел нестационарные ре­шения общей теории относительности, а в 1929 г. Э. Хаббл открыл эффект красного смещения в спектрах излучения далеких галактик. Из открытий Фридмана и Хаббла следо­вало, что Вселенная расширяется, причем этот процесс начался 13,7 миллиардов лет назад в процессе так называе­мого Большого взрыва, когда Вселенная имела микроско­пические размеры.

    Современная космология опирается на мощную экспери­ментальную базу: радиоастрономические, инфракрасные, рентгеновские и другие методы наблюдения. При исследо­вании планет и их спутников, астероидов и комет активно используются специализированные космические зонды, оснащенные богатой измерительной аппаратурой. Разра­ботаны космические аппараты для наблюдений с около­земной орбиты, крупнейшим из которых является теле­скоп «Хаббл».

    Открытия в области космологии для развития физической теории имеют принципиальное значение для совершен­ствования современного миропредставления.

    Натурфилософия — общее учение о природе, законах ее су­ществования и развития, как одной из «сфер» бытия, су­щественно отличающегося от других его «сфер» — обще­ства, культуры, сознания, человека.

    Научная картина мира — совокупность общих представле­ний науки определенного исторического периода о фун­даментальных законах строения и развития объективной реальности.

    Нелинейная наука — научное направление, исследующее процессы в открытых нелинейных системах. Нелинейная наука включает в себя комплекс близко родственных смежных научных дисциплин: термодинамику необрати­мых процессов (И. Пригожий), теорию катастроф (Р. Том, В.И. Арнольд), синергетику, или теорию самоорганизую­щихся систем (Г. Хакен, СП. Курдюмов). Методы нелинейной науки находят широкое применение не только в естественно-научных исследованиях, но также в сфере гуманитарных научных дисциплин (социо- и фу-туросинергетика, демография, образование и др.). По сво­ему влиянию на культуру и развитие цивилизации в XX в. нелинейная наука занимает третье — в порядке очередно­сти, но не по важности — место вслед за теорией относи­тельности и квантовой механикой.

    Нелинейная наука послужила основой существенного уточнения современной общенаучной парадигмы и приве­ла к возникновению нового феномена в рамках системы научного миропредставления ■— нелинейного, или синер-гетического, мышления.

    Онтология — философское учение о бытии, его основных ви­дах, подсистемах, «сферах», общих закономерностях их строения, функционирования, динамики и развития.

    Самоорганизация — фундаментальное понятие синергетики, означающее упорядочивание, т. е. переход от хаоса к структурированному состоянию, происходящее спонтан­но в открытых нелинейных системах. Именно свойства открытости и нелинейности являются причиной этого процесса. Открытость — этосвойство систем, проявляю­щееся в их способности к обмену веществом, энергией и информацией с окружающей средой, а нелинейность — многовариантность путей эволюции. Математически не­линейность проявляется в наличии в системе уравнений величин в степенях выше первой либо в зависимости ко­эффициентов от свойств среды.

    Процесс, альтернативный самоорганизации — автодезор­ганизация, или диссипация. Диссипация — это процесс рассеяния энергии, ее превращение в менее организован­ные формы — в конечном счете в тепло. Эти процессы диструкции могут иметь разную форму: диффузия, вяз­кость, трение, теплопроводность и т. д. Самоорганизация может вести к переходу системы в ус­тойчивое состояние — аттрактор (attrahere на латыни означает притяжение). Отличительное свойство состоя­ния аттрактора состоит в том, что оно как бы притягива­ет к себе все прочие траектории эволюции системы, оп­ределяемые различными начальными условиями. Если система попадает в конус аттрактора, она неизбежно эволюционирует к этому состоянию, а все прочие про­межуточные состояния автоматически диссипируют, затухают.

    Теория относительности — наука, основной смысл которой со­стоит в утверждении: в нашем мире не происходит ничего, кроме кручения пространства и изменения его кривизны. Возникновение теории относительности связано с неудачей обнаружить движение Земли относительно эфира, который, согласно представлениям классической физики, должен был заполнять космическое пространство. Соответствующий эксперимент был в 1887 г. поставлен А. Майкельсоном и Э. Морли и неоднократно повторен впоследствии. Чтобы объяснить этот результат, X. Лоренц выдвинул ги­потезу о сокращении мины тел вдоль направления их дви­жения. Но это была всего лишь теория ad hoc. Решение проблемы было найдено в 1905 г. А. Эйнштейном в его ра­боте по специальной теории относительности. В основе этой теории лежат два постулата: 1. Все законы физики имеют один и тот же вид во всех инерциональных системах отсчета. 2. Во всех системах скорость света постоянна. Развивая эту теорию, в 1918 г. Г. Минковский показал, что свойства нашей Вселенной следует описывать вектором в четырехмерном пространстве-времени. В 1916 г. Эйнш­тейн сделал следующий шаг и опубликовал общую теорию относительности (ОТО) — фактически теорию гравита­ции. Причиной тяготения, согласно этой теории, является искривление пространства вблизи массивных тел. В каче­стве математического аппарата в ОТО использован тен­зорный анализ.


    глаВа з. философские нровлемы современной научной картины мира

    Из теории относительности следует род важных следствий. Во-первых, закон эквивалентности массы и энергии. Во-вторых, отказ от гипотез о мировом эфире и абсолютных пространстве и времени. В-третьих, эквивалентность грави­тационной и инерционной масс.

    Теория относительности нашла многочисленные экспери­ментальные подтверждения и используется в космологии, физике элементарных частиц, ядерной технике и др. физика — наука, изучающая фундаментальные и наиболее общие свойства и законы движения объектов материаль­ного мира. Понятия физика и физические законы — осно­ва всего естествознания.

    Термин «физика» (от греческого physis — природа) вве­ден в науку Аристотелем. Развитие физики как современ­ной науки началось после обоснования Н. Коперником ге­лиоцентрической системы мира: физика Аристотеля противоречила этой системе. Принципиальной важности шаг сделан Г. Галилеем, который превратил физику в экс­периментальную науку. И. Ньютон ввел в физическую те­орию математический аппарат изобретенного им (и неза­висимо от него Г. Лейбницем) дифференциального и интегрального исчисления. Используя синтез эксперимен­тальных и теоретических методов, Ньютон создал класси­ческую механику, которая к началу XIX в. приобрела со­временную форму.

    Целью физики является формулировка общих законов природы и объяснение конкретных явлений. Основные разделы физики: классическая механика, термодинамика и статистическая физика, теория электромагнетизма, те­ория относительности, квантовая механика. Физика слу­жит научной основой большого числа технических при­ложений (гидромеханика, теория тепломассообмена, техническая механика, микроэлектроника и др.).
    3 Вопросы для оОсуждвния

    1. Парадигма античной натурфилософии.

    2. Гипотетическая физика Декарта и физика принци­пов Ньютона.

    3. Метафизика в физике Ньютона.

    4. Механистическая картина мира.

    5. Философские основания и принципы теории от­носительности.

    РаздвлVII.Современнаянаучнаякартинамира

    1. Стандартная космологическая модель.

    2. Философские основания и мировоззренческое зна­чение квантовой механики.

    3. Философские основания и принципы нелинейной науки и синергетического мышления.




    1. Эволюционная парадигма в современной картине мира.

    2. Принципы самоорганизации и бифуркационный характер эволюции открытых нелинейных систем.

    3. Онтологические и гносеологические проблемы современной научной картины мира.


    1 Литература

    ВладимировЮ.В.Метафизика. М., 2002. ГейзенбергВ.Физика и философия. Частьицелое. М., 1989. КаменевА.С.Современное естествознание. М., 2007. Концепции современного естествознания / Под ред. С.А. Лебедева. М„ 2007.

    КурдюмовСП.,КнязеваЕ.Н.Основания синергетики. М.,

    2002.

    ЛебедевС.А.Современная философия науки. М., 2007.

    ЛесковЛ.В.Нелинейная Вселенная. М., 2003.

    ЛиндеА.А..Физика элементарных частиц и инфляционная космология. М., 1990.

    ПенроузР.Новый ум короля. М., 2003.

    ПриюжинИ.,СтенгерсИ.Порядок из хаоса. М., 2000.

    ХакенГ.Тайны природы. Синергетика: наука о взаимо­действии. М.; Ижевск, 2003.

    ХокингС.От Большого взрыва до черных дыр. М., 1990.

    ШиповГ.И.Теория физического вакуума. М., 1997.

    ЭйнштейнА.,ИнфельдЛ.Эволюция физики. М., 2001.

    Laszlo У. The Whispering Pound. A Personal Guide to the Emerging Vision of Science. Rockport MA, 1996.

    1   ...   32   33   34   35   36   37   38   39   ...   42


    написать администратору сайта