качество и безопасность продуктов питания. КАЧЕСТВО И БЕЗОПАСНОСТЬ ПРОДУКТОВ ПИТАНИЯ (1). Учебное пособие Минск 2008 Авторы З. В. Ловкис, докт техн наук, профессор
Скачать 7.39 Mb.
|
2.6.3. Витаминоподобные вещества Кроме вышеперечисленных витаминов существуют другие незаменимые органические (витаминоподобные) вещества, поступающие с пищей в незначительных количествах и обладающие специфическим биологическим действием. Краткая характеристика витаминоподобных веществ представлена в таблице 2.3. Таблица 2.3. – Витаминоподобные вещества
Жирорастворимые. Убихинон (кофермент Q, KoQ). Убихинониз-за чрезвычайно широкой распространенности во всех клетках организма был назван «вездесущим хиноном». KoQ содержится в различных растительных и животных тканях (сердце, печень, бурая жировая ткань животных, впадающих в спячку). По своей химической природе убихинон представляет 2,3-диметокси-5-метил-1,4-бензохинонс изопреноиднои цепью в положении 6 хинонового кольца. Как и близкие к нему по строению витамины К и Е, убихинон нерастворим в воде, но растворим в неполярных органических растворителях. В хлоропластах растений было открыто близкое к убихинону соединение пластохинон,который отличается от убихинона природой заместителей в ароматическом кольце: Число изопреноидных остатков в боковой цепи убихинона варьируется от 6 до 10, что соответственно отражается в обозначении: KoQ6, KoQ7 и др. В митохондриях клеток человека и животных присутствует убихинон только с 10 изопреноидными остатками, т.е. KoQ10. Растворы всех гомологов KoQn в этаноле имеют два максимума поглощения: при 275 и 405 нм. Убихинон медленно разлагается под действием кислорода воздуха, УФ- или солнечного света. KoQ10 является обязательным компонентом дыхательной цепи: благодаря своей растворимости в жирах он осуществляет перенос водорода в гидрофобной мембране митохондрий. Перенос водорода основан на легкообратимом восстановлении KoQ, который способен окисляться за счет восстановления биосубстратов, а также связывать возникающие в клетках свободные радикалы, протоны и электроны: Пластохиноны выполняют аналогичную функцию при транспорте электронов в процессе фотосинтеза. Убихинон синтезируется в клетках человека из мевалоновой кислоты и продуктов обмена фенилаланина и тирозина. Поэтому KoQ нельзя относить к классическим витаминам, однако при некоторых заболеваниях, развивающихся на фоне неполноценного питания, KoQ становится незаменимым пищевым фактором. Так, например, у детей, получающих с пищей недостаточное количество белка, развивается анемия, которая не поддается лечению известными препаратами (витамин В12, фолиевая кислота и др.). В этих случаях препараты KoQ дают положительный результат. KoQ оказался также эффективным при лечении мышечной дистрофии (в т.ч. генетической ее формы) и сердечной недостаточности. Витамин F. Под витамином F подразумевается совокупность ненасыщенных жирных кислот – линолевой, линоленовой и арахидоновой, которые не синтезируются в тканях организма, но необходимы для его нормальной жизнедеятельности. Витамин F содержится в растительных маслах, суточная потребность человека в нем сравнительно велика и составляет около 5 мг. Витамин F необходим для нормального роста и регенерации кожного эпителия, а также для синтеза простагландинов – важных биохимических регуляторов. Витамин F поддерживает запасы витамина А и способствует его более эффективному воздействию на обмен веществ. Витамин F снижает уровень холестерина в крови, и в связи с этим для профилактики атеросклероза в медицинской практике применяются препараты незаменимых жирных кислот – линетоли линол. Для предотвращения пероксидного окисления и сохранения биологической активности ненасыщенных жирных кислот требуется витамин Е. Гиповитаминоз F вызывает жировую инфильтрацию печени, остановку роста организма и поражение кожных покровов. Водорастворимые. Биофлавоноиды (витамин Р). В основе биофлавоноидов лежит дифенилпропановый скелет, образованный 15 атомами углерода С6-С3-С6, где ароматические группы соединены трехуглеродным алифатическим фрагментом. По степени окисления алифатической части различаются антоксантины (флавоны, флавонолы, флавононы, флаванолы, изофлавоны), антоцианы и катехины. Р-витаминные свойства обнаружены также у некоторых производных кумарина и у галловой кислоты. Разнообразие природных фенольных соединений связано с тем, что атомы водорода в молекуле флавоноидов замещаются оксигруппами, а те в свою очередь соединяются с метилом или углеводом, чаще всего это глюкоза, рамноза, рамноглюкоза и др. сахара. Биофлавоноиды – группа веществ, обладающих капилляроукрепляющим действием (геспередин, рутин, катехин). Многие биофлавоноиды – пигменты, придающие окраску цветам и плодам растений. Предполагается, что биологическая активность биофлавоноидов обусловлена их способностью тормозить окисление аскорбиновой кислоты, катализируемое ионами тяжелых металлов, с которыми биофлавоноиды образуют хелаты. Витамин Р усиливает действие витамина С и способствует его накоплению в организме. Биофлавоноиды способны также тормозить перекисное окисление липидов. При отсутствии в пище витамина Р капилляры кровеносных сосудов становятся проницаемыми для крови, что ведет к так называемой «пурпурной болезни» – множественным точечным кровообращениям. Препараты витамина Р снижают кровяное давление. Активностью витамина Р обладают и находимые в растительном мире (например, в чае) дубители – катехины. Особенно богаты биофлавоноидами листья чая, цветы и листья гречихи, плоды цитрусовых, шиповника, черной рябины. Указанные продукты являются сырьем для производства медицинских препаратов. n-Аминобензойная кислота (витамин Н1).n-Аминобензойная кислотавходит в состав фолиевой кислоты, активирует синтез пуриновых и пиримидиновых оснований, влияет на функцию щитовидной железы, является фактором роста и развития организмов. Действует как антиоксидант. Обладает солнцезащитными свойствами и часто используется в мазях против солнечных ожогов. Может вызвать аллергическую реакцию у людей, пользующихся солнцезащитными лосьонами. Разрушается в организме антибиотиками и алкоголем. Широко распространена во многих пищевых продуктах (печень, почки, сердце, грибы, дрожжи и др.). Холин (витамин В4). Холинучаствует в синтезе фосфатидов, ацетилхолина и является донором метальных групп в реакциях трансметилирования. Холином богаты мясо и продукты, получаемые из злаковых растений. У человека гиповитаминоз холина не описан. В медицинской практике используется препарат холина для лечения поражений печени, вызванных различными заболеваниями и интоксикациями. Инозит (витамин В8). Инозит широко распространен в растительных и животных тканях; в растениях образуется циклизацией молекулы глюкозы, содержится преимущественно в виде эфира фосфорной кислоты – фитина. Источником инозита являются мясные продукты, хлеб, картофель, некоторые овощи и фрукты. Суточная потребность человека в инозите составляет 1–1,5 мг. Гиповитаминоз инозита практически не встречается. Оротовая кислота (витамин В13). Оротовая кислотаусиливает рост микроорганизмов и высших животных. Является единственным циклическим соединением, включающимся в пиримидиновые нуклеотиды после введения его в организм извне, чем стимулирует рост растений и животных. Источниками витамина могут быть печень, молоко и дрожжи. При вскармливании недоношенных детей, при заболеваниях печени и сердца применяют оротат калия. Липоевая кислота (витамин N). Липоевая кислотавыполняет специфическую коферментную роль в реакциях окислительного декарбоксилирования сс-кетокислот, при переносе ацильных остатков и в других процессах. Липоевая кислота широко распространена в растениях и микроорганизмах. Ориентировочная суточная потребность человека в липоевой кислоте составляет 1–2 мг. Ее применяют при атеросклерозе, некоторых заболеваниях печени, сахарном диабете, различных интоксикациях. Пангамовая кислота (витамин B15). Пангамовая кислотаподобно метионину служит источником подвижных метильных групп. Участвует в биосинтезе метилированных соединений: холина и холидинфосфатидов, креатина и др. Витамин В15 улучшает тканевое дыхание, повышает использование кислорода в тканях и участвует в окислительных процессах, способствует синтезу белков. Действует как антиоксидант и способствует выведению токсинов, попадающих в организм из загрязненной окружающей среды. Содержится во многих продуктах питания, но потребность в ней человека неизвестна; в лечебных целях пангамовую кислоту используют в дозе 0,1–0,3 мг. Метилметионин (витамин U). Метилметионин является активной формой аминокислоты метионина. Участвует в синтезе холина и креатинина, оказывает стимулирующее воздействие при лечении язвенной болезни желудка и двенадцатиперстной кишки, гастритов. Содержится в соках сырых овощей, особенно в капустном соке. Карнитин (витамин Вт). Карнитин участвует в переносе длинноцепочечных ацилов жирных кислот через мембраны митохондрий. Стимулирует внешнесекреторную функцию поджелудочной железы, оказывает положительный эффект на сперматогенез и подвижность сперматозоидов. Содержится в мясных и прочих продуктах. При карнитиновой недостаточности происходит поражение скелетных мышц. Применение больших количеств карнитина облегчает течение этого заболевания. 2.6.4. Определение витаминов в продуктах питания Незаменимые вещества пищи, объединяемые под общим названием «витамины», относятся к различным классам химических соединений, что само по себе исключает возможность использования единого метода их количественного определения. Все известные для витаминов аналитические методы основаны либо на определении специфических биологических свойств этих веществ (биологические, микробиологические, ферментативные), либо на использовании их физико-химических характеристик (флуоресцентные, хроматографические и спектрофотометрические методы), либо на способности некоторых витаминов вступать в реакции с некоторыми реагентами с образованием окрашенных соединений (колориметрические методы). Несмотря на достигнутые успехи в области аналитической и прикладной химии методы определения витаминов в пищевых продуктах еще трудоемки и длительны. Это обусловлено рядом объективных причин, основные из которых следующие. 1.Определение ряда витаминов часто осложняется тем, что многие из них находятся в природе в связанном состоянии в виде комплексов с белками или пептидами, а также в виде фосфорных эфиров. Для количественного определения необходимо разрушить эти комплексы и выделить витамины в свободном виде, доступном для физико-химического или микробиологического анализа. Это достигается обычно путем использования особых условий обработки (кислотным, щелочным или ферментативным гидролизом, автоклавированием). 2.Почти все витамины – соединения весьма неустойчивые, легко подвергающиеся окислению, изомеризации и полному разрушению под воздействием высокой температуры, кислорода воздуха, света и других факторов. Следует соблюдать меры предосторожности: максимально сокращать время на предварительную подготовку продукта, избегать сильного нагрева и воздействия света, использовать антиоксиданты и др. 3.В пищевых продуктах, как правило, приходится иметь дело с группой соединений, имеющих большое химическое сходство и одновременно различающихся по биологической активности. Например, витамин Е включает 8 токоферолов, сходных по химическим свойствам, но отличающихся по биологическому действию; группа каротинов и каротиноидных пигментов насчитывает до 80 соединений, из которых только 10 в той или иной степени обладают витаминными свойствами. 4.Витамины принадлежат к различным классам органических соединений. Поэтому для них не могут существовать общие групповые реакции и общие методы исследования. 5.Кроме того, анализ затрудняет присутствие в исследуемом образце сопутствующих веществ, количество которых может во много раз превышать содержание определяемого витамина (например, стерины и витамин D). Для устранения возможных погрешностей при определении витаминов в пищевых продуктах обычно проводят тщательную очистку экстрактов от сопутствующих соединений и концентрирование витамина. Для этого используют различные приемы: осаждение мешающих анализу веществ, методы адсорбционной, ионобменной или распределительной хроматографии, избирательную экстракцию определяемого компонента и др. В последние годы для определения витаминов в пищевых продуктах с успехом стали использовать метод ВЭЖХ. Этот метод является наиболее перспективным, так как позволяет одновременно разделять, идентифицировать и количественно определять различные витамины и их биологически активные формы, что позволяет сократить время анализа. Физико-химические методы исследования витаминов.Методы основаны на использовании физико-химических характеристик витаминов (их способности к флуоресценции, светопоглощению, окислительно-восстановительным реакциям и др). Благодаря развитию аналитической химии, приборостроения физико-химические методы почти полностью вытеснили длительные и дорогостоящие биологические методы. Определение витамина С. Витаминб С (аскорбиновая кислота) может присутствовать в пищевых продуктах как в восстановленной, так и в окисленной форме. Дегидроаскорбиновая кислота (ДАК) может образовываться при обработке и хранении пищевых продуктов в результате окисления, что вызывает необходимость ее определения. При определении витамина С в пищевых продуктах используют различные методы: колориметрические, флуоресцентные, методы объемного анализа, основанные на окислительно-восстановительных свойствах АК, и ВЭЖХ. Ответственный момент количественного определения АК – приготовление экстракта образца. Извлечение должно быть полным. Наилучшим экстрагентом является 6% раствор метафосфорной кислоты, обладающей способностью осаждать белки. Используются также уксусная, щавелевая и соляная кислоты, а также их смеси. 1.Для суммарного и раздельного определения окисленной и восстановленной форм АК часто используют метод Роэ с применением 2,4-динитрофенилгидразинового реактива. АК (гулоновая кислота) под действием окислителей переходит в ДАК, а затем в 2,3-дикетогулоновую кислоту, которая образует с 2,4-динитрофенилгидразином соединения, имеющие оранжевую окраску. Сам 2,4-динитрофенилгидразин представляет собой основание, неспособное существовать в аци-форме. Однако соответствующие гидразоны под влиянием щелочей превращаются в интенсивно окрашенные аци-соли. При определении витамина С этим методом мешает присутствие восстановителей (глюкоза, фруктоза и др). Поэтому при большом содержании сахаров в исследуемом продукте используют хроматографию, что осложняет определение. Нитроформа Ацидоформа 2.В последнее время для определения общего содержания витамина С (сумма АК и ДАК) получил признание весьма чувствительный и точный флуоресцентный метод. ДАК конденсируясь с о-фенилендиамином, образует флуоресцирующее соединение хиноксалин, обладающее максимальной флуоресценцией при длине волны возбуждающего света 350 нм. о-Фенилендиамин ДАК Хиноксалин Интенсивность флуоресценции хиноксалина в нейтральной среде при комнатной температуре прямо пропорциональна концентрации ДАК. Для количественного определения АК ее предварительно окисляют в ДАК. Недостатком метода является достаточно дорогое оборудование. Методы, основанные на окислительно-восстановительных свойствах АК. 3.Из методов, основанных на окислительно-восстановительных свойствах АК, наибольшее применение нашел метод титрования раствором 2,6-дихлорфенолиндофенола, имеющим синюю окраску. Продукт взаимодействия АК с реактивом – бесцветный. Метод может быть использован при анализе всех видов продуктов. При анализе продуктов, не содержащих естественных пигментов, в картофеле, молоке используют визуальное титрование. В случае присутствия естественных красителей, используют потенциометрическое титрование или метод индофенол-ксилоловой экстракции. Последний метод основан на количественном обесцвечивании 2,6-дихлорфенолиндофенола аскорбиновой кислотой. Избыток краски экстрагируется ксилолом и измеряется оптическая плотность экстракта при 500 нм. В реакцию вступает только АК. ДАК предварительно восстанавливают цистеином. Для отделения АК от восстановителей, присутствующих в пищевых продуктах, подвергшихся тепловой обработке, или длительно хранившиеся экстракты обрабатывают формальдегидом. Формальдегид в зависимости от рН среды избирательно взаимодействует с АК и посторонними примесями восстановителей (рН = 0). Указанным методом определяют сумму АК и ДАК. 2,6-дихлорфенолиндофенол может быть использован и для фотометрического определения АК. Раствор реактива имеет синюю окраску, а продукт взаимодействия с АК – бесцветен, т.е. в результате реакции уменьшается интенсивность синей окраски. Оптическую плотность измеряют при 605 нм (рН = 3,6). 4.Еще одним методом, основанным на восстановительных свойствах АК, является колориметрический метод, в котором используется способность АК восстанавливать Fe(3+) до Fe(2+) и способность последнего образовывать с 2,2’-дипиридилом соли, интенсивно окрашенные в красный цвет. Реакцию проводят при рН 3,6 и температуре 70ºС. Оптическую плотность раствора измерят при 510 нм. 5.Фотометрический метод, основанный на взаимодействии АК с реактивом Фолина. Реактив Фолина представляет собой смесь фосфорномолибденовой и фосфорновольфрамовой кислот, т.е. это – известный метод, основанный на образовании молибденовых синей, поглощающих при 640–700 нм. 6.Для определения витамина С во всех пищевых продуктах с успехом может быть использован высоко чувствительный и специфичный метод ВЭЖХ. Анализ достаточно прост, лишь при анализе продуктов, богатых белками, необходимо предварительно удалить их. Детектирование осуществляется по флуоресценции. Кроме названных методов определения витамина С существует еще целый ряд способов, например, окисление хлоридом золота и образование гидроксамовых кислот, но эти методы не имеют практического значения. Определение тиамина (В1). В большинстве природных продуктов тиамин встречается в виде дифосфорного эфира – кокарбоксилазы. Последняя, являясь активной группой ряда ферментов углеводного обмена, находится в определенных связях с белком. Для количественного определения тиамина необходимо разрушить комплексы и выделить исследуемый витамин в свободном виде, доступном для физико-химического анализа. С этой целью проводят кислотный гидролиз или гидролиз под воздействием ферментов. Объекты, богатые белком, обрабатывают протеолитическими ферментами (пепсином) в среде соляной кислоты. Объекты, с высоким содержанием жира (свинина, сыры), для его удаления обрабатывают эфиром (тиамин практически нерастворим в эфире). 1.Для определения тиамина в пищевых продуктах используют, как правило, флуоресцентный метод, основанный на окислении тиамина в щелочной среде гексацианоферратом калия (3+) с образованием сильно флуоресцирующего в ультрафиолетовом свете соединения тиохрома. Интенсивность его флуоресценсции прямо пропорциональна содержанию тиамина (длина волны возбуждающего света 365 нм, испускаемого – 460–470 нм (синяя флуоресценция)). При использовании этого метода возникают трудности, связанные с тем, что в ряде объектов присутствуют флуоресцирующие соединения. Их удаляют очисткой на колонках с ионообменными смолами. При анализе мяса, молока, картофеля, пшеничного хлеба и некоторых овощей очистка не требуется. Тиамин Тиохром 2.Тиамин характеризуется собственным поглощением в УФ области (240 нм – в водном растворе, 235 нм – в этаноле), а значит он может быть определен методом прямой спектрофотометрии. 3.Для одновременного определения тиамина и рибофлавина используют ВЭЖХ. Определение рибофлавина (В2). В пищевых продуктах рибофлавин присутствует главным образом в виде фосфорных эфиров, связанных с белками, и, следовательно, не может быть определен без предварительного протеолитического расщепления. Свободный рибофлавин в значительном количестве содержится в молоке. При определении рибофлавина наибольшее распространение получили микробиологический и физико-химический (флуоресцентный) методы анализа. Микробиологический метод специфичен, высоко чувствителен и точен; применим ко всем продуктам, но длителен и требует специальных условий. Физико-химический метод разработан в двух вариантах, которые отличаются способом оценки флуоресцирующих веществ: вариант прямой флуоресценции (определение интенсивности флуоресценции рибофлавина) и люмифлавиновый вариант. 1.Свободный рибофлавин и его фосфорные эфиры обладают характерной желто-зеленой флуоресценцией при длине волны возбуждающего света 440–500 нм. На этом свойстве основан наиболее широко используемый флуоресцентный метод определения рибофлавина. Рибофлавин и его эфиры дают очень сходные спектры флуоресценции с максимумом при 530 нм. Положение максимума не зависит от рН. Интенсивность флуоресценции значительно зависит от рН и от растворителя (по-разному для рибофлавина и его эфиров), поэтому предварительно разрушают эфиры и анализируют свободный рибофлавин. Для этого используют гидролиз с соляной и трихлоруксусной кислотами, автоклавирование, обработку ферментными препаратами. Интенсивность желто-зеленой флуоресценции рибофлавина в УФ-свете зависит не только от его концентрации, но и от значения рН раствора. Максимальная интенсивность достигается при рН=6-7. Однако измерение проводят при рН от 3 до 5, так как в этом интервале интенсивность флуоресценции определяется только концентрацией рибофлавина и не зависит от других факторов – значения рН, концентрации солей, железа, органических примесей и др. Рибофлафин легко разрушается на свету, определение проводят в защищенном от света месте и при рН не выше 7. Следует отметить, что метод прямой флуоресценции не применим к продуктам с низким содержанием рибофлавина. 2.Люмифлавиновый вариант основан на использовании свойства рибофлавина при облучении в щелочной среде, переходить в люмифлавин, интенсивность флуоресценции которого измеряют после извлечения его хлороформом (голубая флуоресценция, 460–470 нм). Поскольку при определенных условиях в люмифлавин переходит 60–70% общего рибофлавина, при проведении анализа необходимо соблюдать постоянные условия облучения, одинаковые для испытуемого и стандартного раствора. Рибофлавин Люмифлавин Определение витамина В6. Для определения витамина могут быть использованы следующие методы: 1.Прямая спектрофотометрия. Пиридоксина гидрохлорид характеризуется собственным поглощением при 292 нм ( = 4,4·103) при рН = 5. 2.Метод Кьельдаля. Определение осуществляется по аммиаку, образующемуся при окислении витамина. 3.Фотометрический метод, основанный на реакции с 2,6-дихлорхинонхлоримином (реактив Гиббса) при рН 8–10, в результате которой образуются индофенолы, имеющие синюю окраску. Индофенолы экстрагируют метил-этилкетоном и измеряют оптическую плотность экстракта при 660–690 нм (реакцию Гиббса дают фенолы со свободным пара-положением). Индофенол 4.Флуоресцентный метод, основанный на том, что при облучении пиридоксина и пиридоксамина наблюдается синяя, а пиридоксаля – голубая флуоресценция. Определение витамина В9. Определение фолатов в пищевых продуктах в тканях и жидкостях организма представляет значительные трудности, т.к. в этих объектах они обычно присутствуют в связанной форме (в виде полиглютаматов); кроме того, большинство форм чувствительно к воздействию кислорода воздуха, света и температуры. Для предохранения фолатов от гидролиза рекомендуется вести гидролиз в присутствии аскорбиновой кислоты. В пищевых продуктах фолаты могут быть определены физическими, химическими и микробиологическими методами. Колориметрический метод основан на расщеплении птероилглутаминовой кислоты с образованием п-аминобензойной кислоты и родственных ей веществ и дальнейшем превращении их в окрашенные соединения. Однако из-за недостаточной специфичности этот метод применяется в основном для анализа фармацевтических препаратов. Для разделения, очистки и идентификации фолатов разработаны также методы хроматографии на колонках, бумаге и в тонком слое адсорбента. Определение витамина РР. В пищевых продуктах никотиновая кислота и ее амид находятся как в свободной, так и в связанной форме, входя в состав коферментов. Химические и микробиологические методы количественного определения ниацина предполагают наиболее полное выделение и превращение его связанных форм, входящих в состав сложного органического вещества клеток, в свободную никотиновую кислоту. Связанные формы ниацина освобождают воздействием растворов кислот или гидрооксида кальция при нагревании. Гидролиз с 1 М раствором серной кислоты в автоклаве в течение 30 минут при давлении 0,1 МПа приводит к полному освобождению связанных форм ниацина и превращению никотинамида в никотиновую кислоту. Установлено, что этот способ обработки дает менее окрашенные гидролизаты и может быть использован при анализе мясных и рыбных продуктов. Гидролиз с гидрооксидом кальция предпочтителен при определении ниацина в муке, крупах, хлебобулочных изделиях, сырах, пищевых концентратах, овощах, ягодах и фруктах. Ca(OH)2 образует с сахарами и полисахаридами, пептидами и гликопептидами соединения, почти полностью нерастворимые в охлажденных растворах. В результате гидролизат, полученый при обработке Ca(OH)2, содержит меньше веществ, мешающих химическому определению, чем кислотный гидролизат. 1.В основе химического метода определения ниацина лежит реакция Кенига, протекающая в две стадии. Первая стадия – реакция взаимодействия пиридинового кольца никотиновой кислоты с бромцианом, вторая – образование окрашенного производного глутаконового альдегида в результате взаимодействия с ароматическими аминами. (Сразу после добавления к никотиновой кислоте бромистого циана появляется желтая окраска глутаконового альдегида. В результате взаимодействия его с ароматическими аминами, вводимыми в реакционную смесь, образуются дианилы, которые интенсивно окрашены в желтый, оранжевый или красный цвет, в зависимости от амина (бензидин – красный, сульфаниловая кислота – желтый). Реакцию Кенига применяют для фотометрического определения пиридина и его производных со свободным -положением. Недостатком метода является его длительность, так как скорость реакций мала. 1 стадия Глутаконовый альдегид 2 стадия Дианил глутаконового альдегида Получение CNBr возможно двумя способами: 1. CN– + Br2 = CNBr + Br– 2. SCN– + Br2 + 4H2O = CNBr + SO42– + 8H+ + Br– Существует много модификаций проведения этой реакции в зависимости от температурного режима, рН, источника ароматических аминов. рН и амин существенно влияют на интенсивность и устойчивость развивающейся окраски. Наиболее устойчивую окраску дают продукты реакции никотиновой кислоты с бромродановым (бромциановым) реактивом и сульфаниловой кислотой или метолом (сульфатом пара-метиламинофенола). 2.Никотиновую кислоту и ее амид можно также определять спектрофотометрически благодаря их собственному поглощению в УФ-области. Никотиновая кислота характеризуется максимумом поглощения при 262 нм (Е = 4,4·103), а никотинамид при 215 нм, (Е = 9·103). 3.Для количественного определения ниацина широко используется микробиологический метод. Он простой, специфичный, но более длительный, чем химический. Микробиологический метод позволяет определять содержание ниацина в объектах, в которых химическим путем это сделать невозможно (продукты с высоким содержанием сахаров и низким уровнем ниацина). Определение -каротина. В ряде пищевых продуктов, особенно растительного происхождения, присутствуют так называемые каротиноиды. Каротиноиды (от лат. carota – морковь) – природные пигменты от желтого до красно-оранжевого цвета; полиненасыщенные соединения, содержащие циклогексановые кольца; в большинстве случаев содержат в молекуле 40 атомов углерода.) Некоторые из них (, -каротин, криптоксантин и др.) являются провитаминами (предшественниками) витамина А, так как в организме человека и животных могут превращаться в витамин А. Известно около десяти провитаминов А, но самым активным из них является -каротин. При анализе пищевых продуктов необходима предварительная обработка образца для извлечения, концентрирования каротина и очистки его от сопутствующих соединений. В этих целях широко используют экстракцию (петролейный эфир, гексан, ацетон и их смеси), омыление и хроматографию. При определении -каротина следует избегать нагревания. Но в некоторых случаях горячее омыление необходимо, например, когда отношение жира к -каротину больше, чем 1000:1 (молочные продукты, животные жиры, маргарин, яйца, печень). Омыление проводят в присутствии антиоксиданта. Избыток щелочи ведет к разрушению -каротина. Для отделения -каротина от сопутствующих пигментов широко применяют адсорбционную хроматографию на колонках с оксидом алюминия, магния. 1.Большинство применяемых в настоящее время физико-химических методов определения -каротина в пищевых продуктах основано на измерении интенсивности светопоглощения его растворов. Как соединения с сопряженными двойными связями, каротиноиды имеют характерные спектры поглощения в УФ и видимой области. Положение полосы поглощения зависит от числа сопряженных двойных связей в молекуле каротиноида и от применяемого растворителя. Максимальное поглощение -каротина наблюдается в бензоле при 464–465 нм, в гексане и петролейном эфире при 450451 нм. 2.В последнее время для определения -каротина и других каротиноидов чаще используется метод ВЭЖХ. Метод позволяет сократить время анализа, а значит и вероятность их разрушения под действием света и кислорода воздуха. Метод ВЭЖХ каротиноидов является классическим примером демонстрации возможностей метода разделять и количественно определять пространственные изомеры - и -каротина в овощах. Для определения каротина могут быть использованы и химические методы, например, основанные на реакции с хлоридом сурьмы (3+) в хлороформе (синий, 590 нм), аналогично витамину А, и с реактивом Фолина (синий, 640–700 нм). Однако из-за неспецифичности этих реакций они не нашли широкого применения. Определение витамина А. Важнейшими представителями витамина являются, как уже говорилось, ретинол (А1-спирт), рентиналь (А1-альдегид), ретиноевая кислота (А2). При количественном определении витамина А в пищевых продуктах используют различные методы: колориметрический, флуоресцентный, способ прямой спектроскопии и ВЭЖХ. Выбор метода определяется наличием той или иной аппаратуры, целью исследования, свойствами анализируемого материала, предполагаемым содержанием витамина А и характером сопутствующих примесей. Выделение витамина осуществляют кипячением со спиртовым раствором КОН в среде азота; и последующей экстракцией петролейным эфиром. 1.Для количественного определения веществ, обладающих А-витаминной активностью, может быть использован метод прямой спектрофотометрии, основанный на способности этих соединений к избирательному светопоглощению на разных длинах волн в УФ области спектра. Поглощение пропорционально концентрации вещества при измерении на тех длинах волн, где наблюдается свойственный данному соединению максимум абсорбции в используемом растворителе. Метод – наиболее простой, быстрый, достаточно специфичный. Дает надежные результаты при определении витамина А в объектах, не содержащих примесей, обладающих поглощением в той же области спектра. При наличии таких примесей метод может быть использован в сочетании со стадией хроматографического разделения. 2.Перспективным является флуоресцентный метод, основанный на способности ретинола флуоресцировать под действием УФ лучей (длина волны возбуждающего света 330–360 нм). Максимум флуоресценции наблюдается в области 480 нм. Определению витамина А этим методом мешают каротиноиды и витамин D. Для устранения мешающего влияния используют хроматографию на оксиде алюминия. Недостаток флуоресцентного метода – дорогостоящая аппаратура. 3.Ранее наиболее распространенным являлся колориметрический метод определения витамина А по реакции с хлоридом сурьмы. Используют раствор хлорида сурьмы в хлороформе (реактив Карр-Прайса). Механизм реакции точно не установлен и предполагают, что в реакцию вступает примесь SbCL5 в SbCl3. Образующееся в реакции соединение окрашено в синий цвет. Измерение оптической плотности проводят при длине волны 620 нм в течение 3–5 секунд. Существенным недостатком метода является неустойчивость развивающейся окраски, а также высокая гидролизуемость SbCl3. Предполагается, что реакция протекает следующим образом: Синий Эта реакция для витамина А не специфична, аналогичное окрашивание дают каратиноиды, но хроматографическое разделение этих соединений позволяет устранить их мешающее влияние. Определению витамина А перечисленными методами, как правило, предшествует подготовительная стадия, включающая щелочной гидролиз жироподобных веществ и экстракцию неомыляемого остатка органическим растворителем. Часто приходится проводить хроматографическое разделение экстракта. 4.В последнее время вместо колоночной хроматографии находит все более широкое применение ВЭЖХ, которая позволяет разделить жирорастворимые витамины (A, D, E, K), обычно присутствующие одновременно в пищевых продуктах, и количественно их определить с большой точностью. ВЭЖХ облегчает определение различных форм витаминов (витамин А-спирт, его изомеры, эфиры ретинола), что особо необходимо при контроле за внесением витаминов в пищевые продукты. Определение витамина Е. К группе веществ, объединяемых общим названием «витамин Е» относятся производные токола и триенола, обладающие биологической активностью -токоферолла. Кроме -токоферолла, известно еще семь родственных ему соединений, обладающих биологической активностью. Все они могут встречаться в продуктах. Следовательно, главная трудность при анализе витамина Е состоит в том, что во многих случаях приходится рассматривать группу соединений, имеющих большое химическое сходство, но одновременно различающихся по биологической активности, оценить которую можно только биологическим методом. Это трудно и дорого, поэтому физико-химические методы почти полностью вытеснили биологические. Основные стадии определения витамина Е: подготовка образца, щелочной гидролиз (омыление), экстракция неомыляемого остатка органическим растворителем, отделение витамина Е от мешающих анализу веществ и разделение токоферолов с помощью различных видов хроматографии, количественное определение. Токоферолы очень чувствительны к окислению в щелочной среде, поэтому омыление и эктсракцию проводят в атмосфере азота и в присутствии антиоксиданта (аскорбиновой кислоты). При омылении могут разрушаться ненасыщенные формы (токотриенолы). Поэтому при необходимости определения всех форм витамина Е, содержащихся в продукте, омыление заменяют другими видами обработки, например, кристаллизацией при низких температурах. 1.Большинство физико-химических методов определения витамина Е основано на использовании окислительно-восстановительных свойств токоферолов. Для определения суммы токоферолов в пищевых продуктах наиболее часто используют реакцию восстановления трехвалентного железа в двухвалентное токоферолами с образованием окрашенного комплекса Fe(2+) с органическими реагентами. Наиболее часто используют 2,2’-дипиридил, с которым Fe(2+) дает комплекс, окрашенный в красный цвет (λmax = 500 нм). Реакция не специфична. В нее также вступают каротины, стиролы, витамин А и др. Кроме того, интенсивность окраски существенно зависит от времени, температуры, освещения. Поэтому для повышения точности анализа токофероллы предварительно отделяют от соединений, мешающих определению, методом колоночной, газожидкостной хроматографии, ВЭЖХ. При определении Е-витаминной ценности продуктов, в которых -токоферол составляет более 80% общего содержания токоферолов (мясо, молочные продукты, рыба и др.), часто ограничиваются определением суммы токоферолов. Когда в значительных количествах присутствуют другие токоферолы (растительные масла, зерно, хлебобулочные изделия, орехи), для их разделения используют колоночную хроматографию. 2.Для определения суммы токоферолов может быть использован также флуоресцентный метод. Гексановые экстракты имеют максимум флуоресценции в области 325 нм при длине волны возбуждающего света 292 нм. 3.Для определения индивидуальных токоферолов несомненный интерес представляет метод ВЭЖХ, обеспечивающий в одном процессе как разделение, так и количественный анализ. Метод также характеризуется высокой чувствительностью и точностью. Детектирование проводят по поглощению или по флуоресценции. Определение витамина D. Количественное определение витамина в продуктах представляет собой чрезвычайно сложную задачу ввиду его низкого содержания, отсутствия чувствительных специфических реакций на витамин D и трудностей отделения его от сопутствующих веществ. До недавнего времени использовались биологические исследования на крысах или цыплятах. Биологические методы основаны на установлении минимального количества исследуемого продукта, излечивающего или предотвращающего рахит у крыс (цыплят), находящихся на рахитогенной диете. Степень рахита оценивается рентгенографически. Это достаточно специфичный и точный метод, позволяющий определять витамин D в концентрации 0,01–0,2 мкг%. При исследовании продуктов с содержанием витамина D свыше 1 мкг% может быть использован фотометрический метод, основанный на реакции кальциферолов с хлоридом сурьмы (образуется продукт, окрашенный в розовый цвет). Метод позволяет определять как холекальциферол (D3), так и эргокальциферол (D2). Анализ состоит из следующих операций: омыление (щелочной гидролиз), осаждение стеринов, хроматография (колоночная или распределительная) и фотометрическая реакция с хлоридом сурьмы. Метод пригоден для определения содержания витамина D в рыбьем жире, яйцах, печени трески, икре, сливочном масле, продуктах, обогащенных витамином. Описанный метод трудоемок, длителен. Витамин D2 необходимо защищать от света и воздуха, иначе происходит изомеризация. D3 – более устойчив. .Более быстрым, надежным и точным является все чаще применяемый метод ВЭЖХ, который успешно используется при анализе детских и диетических продуктов, обогащенных витаминов D. 3.Кальциферолы характеризуются собственным поглощением в УФ и могут быть определены методом прямой спектрофотометрии. В последние годы в целях определения витамина D успешно применяются хроматографические методы разделения, особенно тонкослойная и газо-жидкостная хроматография. В экспериментальных исследованиях для изучения обмена витамина D в организме животных и человека широко используются радиохимические методы в сочетании с тонкослойной или колоночной хроматографией на силикагеле или оксиде алюминия. Определение витамина К. Для определения витамина К применяют физические, химические, биологические методы, а также методы спектрографии, основанные на чувствительности витамина К к УФ-излучению. Для определения 2-метил-1,4-нафтохинонов предложено много колориметрических методов, основанных на цветных реакциях, которые они дают с рядом реактивов: 2,4-динитрофенилгидразином, N,N-диэтилдитиокарбаматом натрия, солями тетразолия и др. Но все эти методы и ряд других физических и химических методов недостаточно специфичны и полученные с их помощью результаты имеют весьма относительную ценность для определения содержания витамина К в пищевых продуктах, органах и тканях человека и животных. Удовлетворительные результаты дают колориметрические и спектрофотометрические методы в сочетании с хроматографией, очисткой и разделением витаминов К на колонках, на бумаге или в тонком слое адсорбента. Для определения витамина К перспективен метод газовой хроматографии. Наиболее надежными, специфичными и весьма чувствительными, но в тоже время самыми трудоемкими и дорогостоящими методами оценки К-витаминной активности пищевых продуктов, остаются биологические методы. Они основаны на определении количества исследуемого материала, которое устраняет К-авитаминоз, искусственно созданый у подопытных животных. Микробиологические методы определения витаминов. Для определения витаминов В6, В12, В9 , пантотеновой кислоты (В3) и биотина (Н) в пищевых продуктах успешно используют микробиологические методы анализа. Разработке микробиологических методов анализа предшествовало установление того факта, что многие микроорганизмы, так называемые ауксогетеротрофы, для своего роста и развития нуждаются в тех или иных витаминах. Обычно потребность этих микроорганизмов в витаминах, получаемых извне, ограничивается одним, двумя, реже несколькими. Ауксогетеротрофы сильно различаются между собой и по степени потребности в готовых витаминах. Так, встречаются формы, которые совершенно не растут на средах, если требуемый витамин в них отсутствует. Именно эти микроорганизмы являются наиболее подходящими для количественного определения витаминов. Чувствительность подобного тест-организма к определяемому витамину будет особенно велика, что позволит выявить в естественных продуктах наличие самых малых его количеств. Большинство микробиологических методов количественного определения витаминов в пищевых продуктах основано на реакции роста микроорганизмов. Обычный прием заключается в том, что питательная среда содержит все вещества, необходимые для роста, за исключением определяемого витамина. Интенсивность роста микроорганизма в этих условиях зависит от количества добавленного в среду витамина в виде его стандартного раствора или содержащегося в испытуемом гидролизате. Измеряют реакцию роста тест-организма, например, при помощи титрования образующихся кислых продуктов жизнедеятельности бактерий. Содержание определяемого витамина в анализируемом материале находят путем сопоставления ответной реакции роста тест-организма в стандартной и опытной серии проб. Достоинства микробиологических методов: 1.Они высокочувствительны, благодаря чему до сих пор остаются незаменимыми при анализе некоторых объектов. 2.Возможность определения витаминов в природном материале без дополнительных процедур, связанных с очисткой его от мешающих примесей, концентрированием витамина и другими приемами. Недостатки микробиологических методов: 1.Повышенные требования к чистоте посуды, реактивов, дистиллированной воды. 2.Трудоемкость, длительность. 3.Некоторые микроорганизмы способны усваивать аналоги витаминов и их производные или отдельные части молекулы витаминов. Существуют микробиологические методы для определения почти всех витаминов группы В. Из них при анализе пищевых продуктов в настоящее время сравнительно редко используются микробиологические методы определения тиамина (В1) и рибофлавина (В2), которые почти полностью вытеснены химическими методами. При определении ниацина (РР), витамина В6, пантотеновой кислоты (В3) применяют как микробиологические, так и физико-химические методы. Что касается витамина В12, фолацина (В9) и биотина, то для их определения в пищевых продуктах микробиологические методы являются наиболее доступными и надежными. Контрольные вопросы: Какие витамины относят к водо- и жирорастворимым? Какие функции выполняют витамины в организме человека? Дайте характеристику отдельных витаминов. В каких продуктах они присутствуют в максимальном количестве? Как кулинарная обработка и хранение продуктов питания влияет на содержание отдельных витаминов? Какие вещества называют витаминоподобными? Дайте их классификацию и характеристику. Какие причины осложняют определение витаминов в продуктах питания? Какие химические и физико-химические методы определения отдельных витаминов вы знаете? Что собой представляют биологические и микробиологические методы определения витаминов? Для определения каких витаминов они используются? |