качество и безопасность продуктов питания. КАЧЕСТВО И БЕЗОПАСНОСТЬ ПРОДУКТОВ ПИТАНИЯ (1). Учебное пособие Минск 2008 Авторы З. В. Ловкис, докт техн наук, профессор
Скачать 7.39 Mb.
|
Крахмальные фракции (амилоза и амилопектин) компактно упакованы в крахмальные зерна (или гранулы). Размеры зерен колеблются от 15 до 100 мкм. Крупные зерна картофельного крахмала имеют овальную форму и по внешнему виду напоминают раковины. Мелкие зерна имеют круглую форму, бороздки и глазок на них слабо заметны. Следует отметить, что картофельный нативный крахмал имеет довольно большое количество остатков фосфорной кислоты, о чем свидетельствует более интенсивное в сравнении с зерновыми крахмалами окрашивание полярными красителями. Фосфатные группы стабилизируют полимерные цепи крахмала. Клейстеры крахмалов содержащих значительное число фосфатных групп устойчивы к изменениям рН, а также стабильные к замораживанию-оттаиванию. Нагревание крахмалсодержащих продуктов при избытке воды до некоторой критической температуры обуславливает набухание зерен крахмала в тангенциальном направлении. Быстрое набухание происходит почти одновременно для каждого крахмального зерна. Повышение гидратации увеличивает размеры крахмальных зерен (зерна набухают) и приводит к разрыву всех имеющихся водородных мостиков внутри крахмала. Амилоза частично диффундирует из набухшего зерна и переходит в раствор, а основная масса крахмала, главным образом амилопектин, остается в нерастворенном виде. При определенной температуре зерно крахмала разрывается и находящиеся внутри зерна и растворенные в воде полисахариды, в основном амилоза, выливаются в раствор. Этот процесс называется клейстеризацией. Наличие в крахмале зерен, отличающихся размерами, не дает процессу клейстеризации пройти одновременно. Крупные зерна крахмала клейстеризуются первыми. Одним из наиболее характерных признаков завершающего процесс клейстеризации является образование крахмального клейстера и значительное повышение вязкости. Процесс клейстеризации крахмала можно наблюдать сравнивая морфологическую структуру нативного и физически модофицированного крахмала. Важная роль в определении вкуса картофеля принадлежит аминокислотам. Их в картофеле довольно много – в сумме примерно 10 г на килограмм сырого веса. Больше всего среди них пролина и аланина, которые придают клубням сладкий вкус; зато фенилаланин, триптофан и тирозин делают клубни горькими. Есть и такие аминокислоты, которые сами по себе вкуса не имеют, но усиливают приятный вкус, придаваемый другими веществами (такие вещества называют потенциаторами вкуса). Такова, например, аспарагиновая кислота. Заметно улучшает вкус и глутаминовая кислота. К числу потенциаторов относятся, и некоторые мононуклеотиды. Содержание мононуклеотидов заметно возрастает при варке картофеля (вероятно, в результате теплового разложения РНК) и падает в сырых клубнях, сохраняемых до весны. При переработке картофеля (технологической, кулинарной) наблюдается существенное снижение витаминов, аминокислот, сахаров, алкалоидов и других соединений. При разрушении картофельных клеток содержащиеся в них соединения с участием оксидаз окисляются кислородом воздуха до темноокрашенных химических соединений – меланоидинов. Среди оксидаз наибольший интерес представляет полифенолоксидаза (К.Ф. 1.10.3.1), катализирующая окисление монофенолов, полифенола, пирокитехина в соответствующие хиноны. Полифенолоксидазаой можно также назвать тирозиназу (К.Ф. 1.14.18.1), которая катализирует окисление аминокислоты тирозина с образованием темноокрашенных соединений – меланоидинов. Полагают, что только первые стадии биосинтеза меланоидинов являются ферментативными и катализируются оксидоредуктазами, тирозиназой, полифенолоксидазой. Последние стадии протекают с участием свободных радикалов. Так, предполагаемый механизм синтеза меланоидинов под влиянием тирозидазы состоит в окислении тирозина до 3,4-дигидроксифенилаланина (ДОФА) и ДОФА-хинона с последующей циклизацией, декарбоксилированием, окислением и полимеризацией. В этих превращениях участвуют различные исходные мономеры. Промежуточные продукты реакции обладают высокой активностью, вступают в различные реакции. Все это делает химический состав разнообразным.
Полярографическими исследованиями, позволяющими регистрировать поглощение кислорода и следить за реакцией сразу же после внесения фермента в реакционную смесь, выявлено наличие у монофенольной реакции индукционного периода длительностью 1–10 мин. Монофенолоксидазная активность довольно высокая и сохраняется до низкого напряжения кислорода в клетке. Монофенолоксидазная реакция преобладает над дифенолоксидазной. Из монофенолов образуются ο-дифенолы, поступающие в дальнейшем в общий метаболизм. В случае нарушении целостности ткани происходит высвобождение ο-дифенолов, увеличение концентрации кислорода в ткани за счет контакта ее с кислородом воздуха и, как следствие этого, протекание дифенолоксидазной реакции с образованием ο-хинонов. От процессов, происходящих при варке или жарении картофеля, во многом зависит вкус готового блюда. Так, в ходе тепловой обработки картофеля аминокислоты вступая в различные реакции, придают блюдам не только вкус, но и характерный аромат и даже цвет: например, известные всем чипсы своим золотисто-желтым цветом обязаны реакции взаимодействия между аминокислотами и сахарами, ее называют реакцией мелаидинообразования или реакцией Майара или сахароаминной реакцией. Американский ученый Л. Майлард (у нас его обычно именуют на французкий лад – Майар) в 1912 г. впервые и достаточно подробно описал реакцию между аминокислотами и восстанавливающими сахарами. Предположительный механизм данной реакции следующий. Аминокислоты способны вступать в реакцию с соединениями, содержащими карбонильную группу, например с восстанавливающими сахарами. В результате этой реакции происходит разложение, как исходной аминокислоты, так и реагирующего с ней восстанавливающего сахара. При этом из аминокислоты образуются соответствующий альдегид, аммиак и диоксид углерода, а из сахара – фурфурол или оксиметилфурфурол. Оксиметилфурфурол малоустойчив и легко разлагается с образованием муравьиной и левулиновой кислот; при его конденсации также могут образовываться гуминовые вещества. Гуминовые вещества небольшой степени конденсации растворимы в воде и окрашивают продукт в желтый цвет. Альдегиды, полученные при взаимодействии аминокислот с восстанавливающими сахарами, обладают специфическим запахом от которого в значительной степени зависит аромат пищевого продукта. С другой стороны, фурфурол и оксиметилфурфурол, возникающие в результате разложения сахара, легко вступают во взаимодействие с аминокислотами, давая темноокрашенные продукты – меланоидины, которые и придают продукту приятный цвет. Реакционная способность сахаров, участвующих в меланоидинообразовании, снижается в следующей последовательности: рибоза > ксилоза > арабиноза > галактоза > глюкоза > мальтоза > фруктоза. Чем короче углеродная цепьмонасахарида, тем легче он реагирует с аминокислотами. Если реакционную способность редуцирующих дисахаридов принять за единицу, то при прочих равных условиях гексозы имеют активность 2,5, а пентозы – 3,5 единицы. На активность сахаров влияет их стериохимическая конфигурация. Среди пентоз очень реакционноспособны ксилоза и рибоза, а среди гексоз самая высокая активность у галактозы. Из аминокислот легко вступают в реакцию меланоидинообразования основные аминокислоты, в первую очередь лизин. Активность аминокислот в реакции меланоидинообразования снижается в следующей последовательности: Lys > Gly > Met > Ala > Val > Gln > Phe > Cys > Tyr. Общая схема разрушения аминокислот при реакции меланоидинообразования описывается последовательностью реакций по Штреккеру: Продукты распада аминокислот также участвуют (уже без моносахаридов и других редуцирующих сахаров) в образовании меланоидинов. Под влиянием реакции меланоидинооразования в пищевых продукта наиболее сильно снижается (по сравнению с исходным сырьем) содержание диаминокарбоновых кислот. При меланоидинообразовании связывается до 25% белков, витаминов, снижается активность ферментов и многих биологически активных соединений, определяющих пищевую ценность получаемых продуктов. Стандартный меланоидин содержит гидроксильные, карбонильные и карбоксильные группировки, кратные и эфирные связи, а молекулярная масса колеблется между двумя и тридцатью тысячами. Многие исследователи, изучавшие реакцию Майара на различных примерах, выделили производные фурана, пиррола, пиридина, пиразина, карболина и других гетероциклических соединений. Образование меланоидинов в соответствии с дикетопиразинохиноидной гипотезы следующее: Процесс образования меланоидинов многостадиен и на каждой стадии сахароаминной реакции могут образовываться побочные продукты. Чередующиеся кратные связи хиноидной системы стабилизируются, принимая ароматический характер гетероциклических соединений. Меланоидины способны окисляться и восстанавливаться, причем первая реакция идет быстрее второй. В щелочных растворах меланоидины более устойчивы, чем в кислых. При термической обработке идет дальнейшая поликонденсация, а выше 400ºС образуются так называемые пиромеланоидиды. Меланоидины не расщепляются пищеварительными ферментами, и, следовательно, они не усваиваются. Однако они могут образовывать комплексы с белками-ферментами, виляя тем самым на их каталитическую активность. В структуре меланоидинов есть не спаренные электроны, они обладают свойствами стабильных свободных радикалов. Благодаря этому меланоидины выполняют защитные функции в организме. Они поглащают различные излучения, нейтрализуют и обезвоживают опасные для клеток вещества, образующиеся при действии ионизирующего излучения и некоторые химические вещества. Меланоидины могут существовать в нескольких окислительно-восстановительных состояниях. Таким образом, ключевое значение в формировании органолептических свойств картофеля (вкуса, запаха и цвета) принадлежит реакции Майара, особенности которой зависят от качественного и количественного состава аминокислот, белков и сахаров. Стэдлер и Моттрам из исследовательского центра при швейцарской компании Nestle в независимых экспериментах показали, что одним из продуктов реакции Майара является акриламид. Учёные обнаружили, что при нагревании в лабораторных условиях аспарагина с сахаром до 185С происходит образование акриламида: Следует отметить, что образование акриламида характерно для печеных и жареных блюд. Учёным пока не удалось обнаружить акриламид в варёных блюдах из картофеля. Возможно, это соединение не образуется в них потому, что они готовятся при более низкой температуре. Механизмы действия акриламида на организм человека в качестве канцерогена пока не выяснены. Возможно, у человека за тысячелетия к нему выработалась устойчивость. Исходя из этой гипотезы, можно предположить, что крысы подвержены специфическому действию акриламида, поскольку это вещество в их рационе не обычно: крысы не едят печёных и жареных блюд. Всемирная организация здравоохранения и Продовольственная и сельскохозяйственная Организация Объединенных Наций (ФАО) объявили о создании нового веб-сайта, который станет международным источником информации об акриламиде, токсичном веществе, обнаруженном в некоторых жареных или испеченных пищевых продуктах. На сегодняшний день ученые не связывают попадание акриламида в организм человека с возникновением раковых образований, но специалисты ФАО утверждают, что это вещество способно повреждать ДНК и наносить ущерб нервной и репродуктивной системе человека. Известно, что акриламид вызывает рак у животных и повреждает их нервную систему. Сегодня акриламид широко используется строго в соответствии с существующими положениями по охране окружающей среды при изготовлении пластмасс. Приятный и аппетитный запах приготовленного картофеля обеспечивается не только альдегидами, но и другими летучими веществами, образующимися при термической (кулинарной) обработке. Так, в наиболее вкусных клубнях много метанола, ацетона, этанола и совсем нет диметилсульфида; при хранении же картофеля появляется диметилсульфид, а этанола становится меньше – в результате вкус и аромат варенного и даже печеного картофеля сильно ухудшается. Аромат варенной или жареной картошки зависит отчасти и от жиров, хотя их в клубнях как будто и не много – в среднем всего около 1% (в пересчете на сухое вещество 0,3–0,5%). Кроме того, жиры играют большую роль в формировании органолептических свойств продукта влияя на его структуру. В составе картофеля присутствуют полифенольные соединения, хлоргеновая, кофейная и хинная кислоты и другие вещества, портящие его вкус. Большое количество фенолов обуславливают горечь и вяжущий вкус. Однако наиболее значительно портят вкус картофеля – алкалоиды, такие азотистые вещества как соланин, чаконин и скополетин. Содержание соланина и чаконина невелико – от 2 до 10 мг/100г. В картофеле присутствуют 6 гликоалкалоидов: α-, β-, γ-соланин, α-, β- и γ-чаконин имеющие общий алкалоид – соланидин, но разные углеводные компоненты. Так, α-соланин является основным гликоалкалоидом и состоит из алкалоида соланидина и трисахарида: рамноза-галактоза-глюкозы. Больше всего гликозидов содержится в кожуре, позеленевших клубнях, ростках и ботве: Соланин (М.м. 865,6) Состав остальных гликоалкалоидов картофеля следующий: β-соланин: соланидин+галактоза+глюкоза, γ-соланин: соланидин+галактоза, α-чаконин: соланидин+глюкоза+рамноза+рамноза, β-чаконин: соланидин+глюкоза+рамноза и γ-чаконин: соланидин+глюкоза. Алкалоиды не только ухудшают вкус, но и могут сделать клубни картофеля ядовитыми. Отравление может наступить, если содержание соланина и чаконина превышает 20 мг/100 г. Причем, на свету их содержание способно резко повышаться. Если выдержать клубни на солнце в течение шести часов содержание соланина вместо первоначальных 20 может превысить 50 мг/100 г. Содержание в картофеле 30 мг/100 г соланина может привести к появлению ясно выраженных признаков отравления. При варке содержание алкалоидов падает: под действием тепла они разрушаются, образуя более простые соединения. Однако данные простые соединения могут быть они не совсем безобидными. Некоторые фармакологи связывают широкое распространение в мире детской аллергии именно с алкалоидами картофеля. В настоящее время селекционерами получены полностью безалкалоидные сорта картофеля. Однако, с другой стороны, у совсем безалкалоидных форм картофеля вкус уже не тот – оказывается, вкусный картофель должен содержать хотя бы 1,9–2,5 мг/100 г алколоидов. Следует также отметить, что на вкус картофеля большое влияние оказывает агротехника возделывания, почвенно-климатические факторы, а также время и условия хранения. Так, высокие дозы азотных удобрений способствуют накоплению азотистых веществ тем самым, ухудшая вкус картофеля. Нейтрализовать действие высоких доз азота можно внесением калийных и фосфатных удобрений. Большое значение имеют процессы образования в клубнях картофеля избыточного количества сахара. Клубни с повышенным содержанием сахара не вкусны, не пригодны для переработки. Содержащийся в клубнях крахмал во время хранения постепенно превращается в сахар, который одновременно расходуется на дыхание. Если в клубнях приход и расход сахара равны, то нормальное количество его, определяемое в момент уборки сохранится без изменения. Такое равновесие в приходе и расходе картофеля может происходить только при температуре около 10ºС. При температуре ниже 10ºС образование сахара в клубнях усиливается и начинает превосходить расход, и чем ближе температура к 0ºС, тем активнее идут процессы сахарообразования и сахаронакопления при более низком расходовании на дыхание. Полагают, что для сахароаминной реакции оптимальным является соотношение сахара и азотного компонента 4:1. Таким образом, в формировании органолептических свойств картофеля принимают участие все его химические составляющие: аминокислоты, белок, сахара, жиры, алколоиды и т.д. Ключевое значение принадлежит сахароаминной реакции в результате которой образуется множество летучих и окрашенных продуктов, которые и обуславливают вкус, аромат и цвет картофеля подвергнутого термообработке. Текстуру картофеля обуславливает крахмал, содержащий большое количество фосфатных групп. Кроме этого на органолептические свойства картофеля большое влияние оказывает агротехника возделывания, почвенно-климатические факторы, а также время и условия хранения. § 1.2. Особенности процесса усвоения пищевых продуктов Все пищевые продукты, главным образом, состоят из белков, углеводов и липидов. В процессе пищеварения в желудочно-кишечном тракте млекопитающих три основных компонента пищи: углеводы, жиры и белки подвергаются ферментативному гидролизу, распадаясь при этом на составляющие строительные блоки, из которых они образованы. Этот процесс необходим для утилизации пищевых продуктов, поскольку клетки, выстилающие кишечник, способны всасывать в кровоток только относительно небольшие молекулы. Усвоение полисахаридов и даже дисахаридов становится возможным только после их полного гидролиза пищеварительными ферментами до моносахаридов. Аналогичным образом белки и липиды также должны быть гидролизованы до блоков, из которых они построены. Процесс пищеварения начинается с ротовой полости и желудка, тогда как конечные этапы переваривания всех основных компонентов пищи и всасывание в кровь составляющих их структурных блоков происходят в тонком кишечнике. Анатомически тонкий кишечник хорошо приспособлен для выполнения этой функции, поскольку он обладает очень большой площадью поверхности, через которую происходит всасывание. Тонкий кишечник характеризуется не только большой длиной ≈ 4,5 м), но также наличием на его внутренней поверхности множества складок с большим количеством пальцевидных выступов, называемых ворсинками. Каждая ворсинка покрыта эпителиальными клетками, несущими многочисленные микроворсинки. Ворсинки создают огромную поверхность, через которую продукты переваривания быстро транспортируются в эпителиальные клетки, а из них – в капилляры кровеносной системы и в лимфатические сосуды, расположенные в стенке кишечника. Площадь поверхности тонкого кишечника человека составляет ≈ 180 м2, т.е. лишь немногим меньше игровой площадки теннисного корта. В микроворсинках содержатся пучки актиновых микрофиламентов, соединенных в основаниях микроворсинок с сетью миозиновьк нитей. Эта система нитей обеспечивает волнообразные колебания микроворсинок, благодаря которым происходит местное перемешивание и лучшее всасывание переваренных питательных веществ. 1.2.1. Усвоение белков Белки пищи расщепляются ферментами в желудочно-кишечном тракте до составляющих их аминокислот (рис. 1.1). Белки, поступающие в желудок, стимулируют выделение гормона гастрина, который в свою очередь вызывает секрецию соляной кислоты обкладочными клетками желез слизистой желудка, а также пепсиногена главными клетками. Желудочный сок имеет рН от 1,5 до 2,5. Благодаря такой кислотности он действует как антисептик, убивая большинство бактерий и других клеток. Кроме того, в условиях низкого рН желудочного сока глобулярные белки подвергаются денатурации, их молекулы разворачиваются и вследствие этого внутренние пептидные связи полипептидных цепей становятся более доступными для ферментативного гидролиза. Пепсиноген, являющийся неактивным предшественником фермента, или зимогеном, превращается в желудочном соке в активный пепсин в результате ферментативного действия самого пепсина, т.е. путем автокатализа. В ходе этого процесса с N-конца полипептидной цепи пепсиногена отщепляются 42
1 Аминокислота
Рис. 1.1. – Переваривание белков: 1 – протеолитические ферменты аминокислотных остатка в виде смеси коротких пептидов. Остающаяся интактной остальная часть молекулы пепсиногена представляет собой ферментативно активный пепсин (К.Ф. 3.4.4.1). В желудке пепсин гидролизует те пептидные связи в белках, которые образованы ароматическими аминокислотами: тирозином, фенилаланином и триптофаном, а также рядом других; в итоге из длинных полипептидных цепей образуется смесь более коротких пептидов. Как только кислое содержимое желудка попадает в тонкий кишечник, в нем под влиянием низкого рН начинается секреция гормона секретина, поступающего в кровь. Этот гормон в свою очередь стимулирует выделение из поджелудочной железы в тонкий кишечник бикарбоната, что приводит к нейтрализации НС1 желудочного сока. В результате рН резко возрастает от 1,5–2,5, до ≈ 7. В тонком кишечнике переваривание белков продолжается. Поступление аминокислот в двенадцатиперстную кишку вызывает освобождение гормона холецистокинина, который стимулирует секрецию нескольких ферментов поджелудочной железы с оптимумом рН около 7. Три из них: трипсин (К.Ф. 3.4.4.4), химотрпсин (К.Ф. 3.4.4.5) и карбоксипептидаза (К.Ф. 3.4.2.1) – вырабатываются экзокринными клетками поджелудочной железы в виде ферментативно неактивных зимогенов: трипсиногена, химотрипсиногена и прокарбоксипептидазы, соответственно. Благодаря синтезу протеолитических ферментов в виде неактивных предшественников экзокринные клетки не подвергаются разрушению этими ферментами. Попав в тонкий кишечник, трипсиноген, под действием энтерокиназы, специализированного протеолитического фермента, секретируемого клетками кишечного эпителия, превращается в активную форму – трипсин. Свободный трипсин по мере своего образования также участвует в каталитическом превращении трипсиногена в трипсин. Образование свободного трипсина обусловлено отщеплением гексапептида от N-конца полипептидной цепи трипсиногена. Активный центр трипсина состоит из трех аминокислотных остатков: серин-195 (принято, что нумерация аминокислотных остатков в трипсине соответствует их положениям в проферменте), гистидин-57 и аспарагиновая кислота-102. Сорбционный участок содержит карбоксильную группу аспарагиновой кислоты-189, которая определяет специфичность трипсина к положительно заряженным субстратам. Механизм каталитического гидролиза включает стадию сорбции субстрата, расщепления пептидной связи с образованием ацилфермента и переноса ацильной группы на нуклеофильный акцептор. Трипсин гидролизует пептидные связи, образованные с участием карбонильных групп лизина и аргинина. Молекула химотрипсиногена представляет собой одну полипептидную цепь с несколькими внутрицепочечными дисульфидными связями. Попав в тонкий кишечник, химотрипсиноген превращается в химотрипсин под действием трипсина, который разрывает длинную полипептидную цепь химотрипсиногена в двух местах, выстригая дипептиды. Три фрагмента, образовавшиеся из исходной цепи химотрипсиногена, удерживаются, однако, вместе посредством перекрестных дисульфидных связей. Химотрипсин гидролизует пептидные связи, образованные остатками фенилаланина, тирозина и триптофана. Следовательно, трипсин и химотрипсин расщепляют полипептиды, образовавшиеся в желудке под действием пепсина, на пептиды меньшей величины. Этот этап переваривания белков протекает с очень высокой эффективностью, поскольку пепсин, трипсин и химотрипсин проявляют при гидролизе полипептидных цепей разную специфичность в отношении пептидных связей, образованных разными аминокислотами. Деградация коротких пептидов в тонком кишечнике осуществляется другими пептидазами. К ним относится в первую очередь карбоксипептидаза – цинксодержащий фермент, синтезируемый в поджелудочной железе в виде неактивного зимогена прокарбоксипептидазы. Активный центр карбоксипептидазы имеет форму кармана, в полости которого находится атом Zn. В активный центр входят также остатки глутаминовой кислоты, тирозина и аргинина. Функция последнего в механизме катализа – связывание С-концевой карбоксильной группы. Карбоксипептидаза последовательно отщепляет от пептидов С-концевые остатки. Тонкий кишечник секретирует также аминопептидазу (К.Ф. 3.4.1.1), отщепляющую от коротких пептидов один за другим N-концевые остатки. В результате последовательного действия этих протеолитических ферментов и пептидаз перевариваемые белки в конечном итоге превращаются в смесь свободных аминокислот, которые далее транспортируются через эпителиальные клетки, выстилающие тонкие кишки. Свободные аминокислоты проникают в капилляры ворсинок и переносятся кровью в печень. В желудочно-кишечном тракте человека не все белки перевариваются целиком. Большинство животных белков почти полностью гидролизуются до аминокислот, однако ряд фибриллярных белков, например кератин, переваривается только частично. Многие белки растительной пищи, в частности белки зерен злаков, неполностью расщепляются в силу того, что белковая часть семян и зерен покрыта неперевариваемой целлюлозной оболочкой (шелухой). Известно редкое заболевание стеаторрея (упорный понос), при котором ферменты кишечника не способны переваривать определенные водорастворимые белки зерна, в частности глиадин, повреждающий эпителиальные клетки кишечника. Из пищи таких больных исключают зерновые продукты. Другим заболеванием, связанным с отклонением от нормы активности протеолитических ферментов пищеварительного тракта, является острый панкреатит. При этом заболевании, обусловленном нарушением процесса выделения сока поджелудочной железы в кишечник, предшественники протеолитических ферментов (зимогены) превращаются в соответствующие каталитически активные формы слишком рано, будучи еще внутри клеток поджелудочной железы. В результате эти мощные ферменты воздействуют на ткань самой железы, вызывая глубокое и очень болезненное разрушение органа, что может привести к смертельному исходу. В норме зимогены, выделяемые поджелудочной железой, не активируются до тех пор, пока не попадут в тонкий кишечник. Поджелудочная железа защищается от самопереваривания и другим путем: в ней синтезируется особый белок – специфический ингибитор трипсина. Поскольку свободный трипсин активирует не только трипсиноген и химотрипсиноген, но также и зимогены двух других пищеварительных ферментов: прокарбоксипептидазу и проэластазу, ингибитор трипсина успешно предотвращает преждевременное образование свободных протеолитических ферментов в клетках поджелудочной железы. 1.2.2. Усвоение углеводов У человека из углеводов перевариваются в основном полисахариды: крахмал и целлюлоза, содержащиеся в растительной пище. Крахмал полностью расщепляются ферментами желудочно-кишечного тракта до составляющих их структурных блоков, а именно свободной D-глюкозы (рис. 1.2). Этот процесс начинается во рту во время пережевывания пищи благодаря действию фермента амилазы, выделяемого слюнными железами. Амилаза слюны гидролизует многие из α-(1→4)-гликозидных связей в крахмале и в гликогене. При этом образуется смесь, состоящая из мальтозы, глюкозы и олигосахаридов. Переваривание крахмала и других усвояемых полисахаридов с образованием D-глюкозы продолжается и завершается в тонком кишечнике, главным образом, под действием амилазы поджелудочной железы, которая синтезируется в поджелудочной железе и поступает через проток поджелудочной железы в верхний отдел тонкого кишечника. Этот отдел тонкого кишечника с наиболее высокой пищеварительной активностью называется двенадцатиперстной кишкой. Целлюлоза у большинства млекопитающих не подвергается ферментативному гидролизу и не используется из-за отсутствия ферментов, способных расщеплять β-(1→4)-связи между последовательными остатками D-глюкозы в целлюлозе. Вместе с тем непереваренная целлюлоза из растительной пищи создает ту массу (называемую иногда «клетчаткой» или «грубым кормом»), которая способствует нормальной перистальтике кишечника. У жвачных животных целлюлоза подвергается перевариванию, но не прямым путем, а под действием бактерий, находящихся в их рубце (желудке). Эти бактерии гидролизуют целлюлозу до D-глюкозы и далее сбраживают D-глюкозу до лактата, ацетата и пропионата, которые всасываются и поступают в кровь. Далее лактат и пропионат в печени жвачных превращаются в сахар крови. Гидролиз дисахаридов катализируют ферменты, находящиеся в наружном крае эпителиальных клеток, выстилающих тонкий кишечник. Сахароза, или тростниковый сахар, гидролизуется с образованием D-глюкозы и D-фруктозы под действием сахаразы, называемой также инвертазой (К.Ф. 3.2.1.26); лактоза гидролизуется до D-глюкозы и D-галактозы под действием лактазы, называемой также β-галактозидазой (К.Ф. 3.2.1.23); в результате гидролиза мальтозы под действием мальтазы образуются две молекулы D-глюкозы. Многим представителям азиатских и африканских рас во взрослом состоянии свойственна непереносимость лактозы, обусловленная исчезновением в их тонком кишечнике лактазной активности, имевшейся в грудном и детском возрасте. У людей с непереносимостью лактозы этот сахар остается в кишечнике в нерасщепленном виде и часть его подвергается сбраживанию под действием микроорганизмов. Это вызывает диаррею и образование газов в кишечнике.
1 Мальтоза 2 D-Глюкоза 3 4
Рис. 1.2. – Переваривание углеводов: 1 и 2 – амилолитические ферменты; 3 – сахараза (К.Ф. 3.2.1.26); 4 – лактаза (К.Ф. 3.2.1.23) В эпителиальных клетках, выстилающих тонкий кишечник, D-фруктоза, D-raлактоза и D-манноза частично превращаются в D-глюкозу. Смесь всех этих простых гексоз поглощается эпителиальными клетками, выстилающими тонкий кишечник, и доставляется кровью в печень. 1.2.3. Усвоение жиров Переваривание триацилглицеролов (нейтральных жиров) начинается в тонком кишечнике, куда из поджелудочной железы поступает зимоген пролипаза. Здесь пролипаза превращается в активную липазу (К.Ф. 3.1.1.3), которая в присутствии желчных кислот и специального белка, называемого колипазой, присоединяется к капелькам триацилглицеролов и катализирует гидролитическое отщепление одного или обоих крайних жирнокислотных остатков с образованием смеси свободных жирных кислот в виде их Na+- или К+-солей (мыл) и 2-моноацилглицеролов. Небольшое количество триацилглицеролов остается при этом негидролизованным (рис. 1.3).
Желчные кислоты
Жирные кислоты
Рис. – 1.3. Переваривание липидов: 1 – липаза (К.Ф. 3.1.1.3), желчные кислоты, Na+ Образовавшиеся мыла и нерасщепленные ацилглицеролы эмульгируются в виде мелких капелек под действием перистальтики (перемешивающие движения кишечника), а также под влиянием солей желчных кислот и моноацилглицеролов, которые являются амфипатическими соединениями и потому функционируют как детергенты. Жирные кислоты и моноацилглицеролы из этих капелек поглощаются кишечными клетками, где из них в основном вновь синтезируются триацилглицеролы. Далее триацилглицеролы проникают не в капилляры крови, а в небольшие лимфатические сосуды кишечных ворсинок – лактеали (иначе – млечные, или хилёзные, сосуды). Оттекающая от тонких кишок лимфа, называемая хилус (млечный сок), после переваривания жирной пищи напоминает по виду молоко из-за обилия взвешенных в ней хиломикронов – мельчайших капелек эмульгированных триацилглицеролов диаметром около 1 мкм. Хиломикроны имеют гидрофильную оболочку, состоящую из фолипидов и специального белка, который удерживает хиломикроны во взвешенном состоянии. Хиломикроны проходят через грудной проток в подключичную вену. После потребления жирной пищи даже плазма крови становится опалесцирующей из-за высокой концентрации в ней хиломикронов, но эта опалесценция исчезает через 1–2 ч, т.к. триацилглицеролы выводятся из крови, поступая главным образом в жировую ткань. Эмульгированию и перевариванию липидов в тонком кишечнике способствуют соли желчных кислот. Соли желчных кислот человека – это в основном гликохолат натрия и таурохолат натрия, обе они являются производными холевой кислоты, которая количественно преобладает среди четырех основных желчных кислот, присутствующих в организме человека. Соли желчных кислот являются мощными эмульгаторами; они поступают из печени в желчь, которая изливается в верхний отдел тонкого кишечника. После завершения всасывания жирных кислот и моноацилглицеролов из эмульгированных капелек жира в нижнем отделе тонкого кишечника происходит обратное всасывание также и солей желчных кислот, способствовавших этому процессу. Они возвращаются в печень и используются повторно. Таким образом, желчные кислоты постоянно циркулируют между печенью и тонким кишечником. Желчные кислоты играют исключительно важную роль в усвоении не только триацилглицеролов, но и вообще всех жирорастворимых компонентов пищи. Если желчные кислоты образуются или секретируются в недостаточном количестве, как это имеет место при ряде заболеваний, то непереваренные и непоглощенные жиры появляются в кале. При этом ухудшается всасывание жирорастворимых витаминов A, D, Е и К и может возникнуть пищевая недостаточность витамина А. Расщепленные питательные вещества попавшие в кровь транспортируются в печень. В клетках печени – гепатоцитах глюкоза, аминокислоты и свободные жирные кислоты включаются в обменные процеесы организма. Таким образом, процесс усвоение пищевых продуктов у млекопитающих осуществляется в желудочно-кишечном тракте и основан на ферментативно-кислотном гидролизе: полисахаридов (крахмала и целлюлозы) до ди- и моносахаридов, белков до аминокислот, липидов до жирных кислот, с последующим всасыванием клетками тонкого кишечника в кровь, поступлением с кровотоком в печень и включением в обменные процессы организма. Контрольные вопросы: Что происходит с химическим составом пищевых продуктов при переработке? Каким образом осуществляется сахароаминная реакция? Какими свойствами обладают меланоидины? Какие химические вещества обуславливают текстуру, цвет и аромат пищевых продуктов? Как происходит усвоение белков у млекопитающих? Как происходит усвоение углеводов у млекопитающих? Как происходит усвоение жиров у млекопитающих? Глава 2. |