Главная страница
Навигация по странице:

  • Рис. 10.1.1. Схема работы защитных устройств в системе тройного контроля

  • 10.2. ТИПОВЫЕ СТРУКТУРЫ И ПРИНЦИПЫ ФУНКЦИОНИРОВАНИЯ АВТОМАТИЧЕСКИХ СИСТЕМ ЗАЩИТЫ

  • АСЗ является составной частью системы управления (СУ) процессом и может использоваться в двух режимах

  • Рис. 10.2.1. Структурная схема простейшей АСЗ

  • Рис. 10.2.2. Структурная схема АСЗ, реализующей сложный алгоритм защиты

  • Ô( )=ñ

  • 10.3. АВТОМАТИЧЕСКАЯ ИНТЕЛЛЕКТУЛИЗИРОВАННАЯ СИСТЕМА ЗАЩИТЫ ОБЪЕКТА И УПРАВЛЕНИЯ УРОВНЕМ БЕЗОПАСНОСТИ

  • Рис. 10.3.1 Централизованная организация технического интеллекта химического производства

  • Рис. 10.3.2. Вариант децентрализованной организации системы обеспечения химического производства

  • 10.4. ТИПОВЫЕ ЛОКАЛЬНЫЕ ТЕХНИЧЕСКИЕ СИСТЕМЫ И СРЕДСТВА БЕЗОПАСНОСТИ

  • Системы предотвращения отклонений от допустимых рабочих режимов

  • Системы, предотвращающие разрушение деталей и узлов систем безопасности

  • Системы аварийной сигнализации

  • Такие системы используются для

  • Технические средства защиты

  • Способы предотвращения человеческих и организационных ошибок

  • В этой связи можно, например, на химическом предприятии предпринимать следующие меры

  • НТСиТР_Акимов_учебник. Учебное пособие Надежность технических систем и техногенный риск


    Скачать 7.5 Mb.
    НазваниеУчебное пособие Надежность технических систем и техногенный риск
    АнкорНТСиТР_Акимов_учебник.doc
    Дата03.02.2017
    Размер7.5 Mb.
    Формат файлаdoc
    Имя файлаНТСиТР_Акимов_учебник.doc
    ТипУчебное пособие
    #1925
    страница23 из 27
    1   ...   19   20   21   22   23   24   25   26   27
    § 10. Технические системы безопасности
    10.1. НАЗНАЧЕНИЕ И ПРИНЦИПЫ РАБОТЫ ЗАЩИТНЫХ СИСТЕМ
    Учитывая мощности современных технических систем, технологических линий или отдельных агрегатов, сложность алгоритмов управления ими, трудно ожидать от обслуживающего персонала безошибочной ориентации в каждой возможной аварийной ситуации и правильных оперативных действий, направленных на ликвидацию нарушений хода технологического процесса и предупреждение появляющихся опасностей. В связи с этим в состав сложной и потенциально опасной технической системы, помимо подсистемы автоматического регулирования, обеспечивающей при нормальном режиме работы поддержание параметров в заданных пределах, обязательно входит система защиты и блокировки, призванная путем автоматического переключения и введения резервного оборудования, снижения мощности или останова агрегата предотвратить развитие аварии. Таким образом, защита применяется для предотвращения повреждения и выхода из строя системы при возникновении аварийных режимов ее работы путем автоматического отключения (защита на отключение) или подачи сигналов (защита на сигнал). Различают защиту, основанную на непосредственном контроле за режимами работы систем или их элементов, и защиту при косвенном контроле за режимом работы оборудования, например: по параметрам привода, в частности электродвигателей; по характеристикам вибрации системы и др. Защита тесно связана с контролем и сигнализацией, например при изменении контролируемого параметра сначала может быть сформирован предупреждающий сигнал, а затем срабатывает защита.

    Если промышленная система спроектирована так, что она может выдерживать все нагрузки, возникающие в процессе обычных или предполагаемых экстремальных условий работы, то задачей системы контроля производственных процессов должно быть обеспечение безопасной работы установки в заданных пределах. Для этого можно использовать такие системы, как ручное управление, автоматический контроль, системы автоматического выключения, предохранительные устройства, системы аварийной сигнализации.

    Основная идея безопасности производственного процесса заключается в том, чтобы надежно обеспечивать безопасные условия его работы. На рис. 10.1.1 показано, как при помощи системы контроля переменные характеристики производственного процесса в случае нарушения нормального режима удерживаются в безопасных пределах.



    Рис. 10.1.1. Схема работы защитных устройств в системе тройного контроля: A - переменные характеристики процесса; t – время
    Переменными в контролируемом процессе могут быть температура, давление, скорость потока, соотношение некоторых компонентов смеси, скорость повышения температуры, понижения или повышения давления. Системы тройного контроля или защиты действуют следующим образом.

    Первая система. Как только переменные системы достигнут значения, превышающего установленный предел (C1), это регистрируется специальным сигналом на устройстве управления, после чего производится коррекция (чаще всего оператором вручную). Если этого действия не производится, и процесс при этом все же не создает опасных условий, включение следующей системы не происходит.

    Вторая система. Когда переменная величина показателя процесса превышает предельное значение (C2), автоматически включается система контроля, возвращающая эту переменную величину в диапазон её нормальных значений. Если этого сделать не удается, переменная величина показателя процесса может достичь таких значений, которые могут вызвать аварийную ситуацию.

    В этом случае появляется необходимость применения других предохранительных устройств, например разрывных мембран или предохранительных клапанов, действующих по принципу сброса давления, сливных емкостей и охлаждающих устройств.

    Третья система. При отсутствии предохранительных устройств с упомянутыми характеристиками в случае, когда переменная величина показателя процесса достигает значений, при которых повышается вероятность крупной аварии, становится необходимым установка независимой защитной системы, автоматически включающейся при нарушениях процесса, чреватых аварией.

    Примером такой системы является терморегуляционное устройство, регистрирующее превышение оптимальной температуры в процессе химических реакций. Как только достигается критическая температура, система включает дополнительное охлаждение процесса и добавляет в химическую смесь вещество, останавливающее реакцию.

    Чтобы такая система работала надежно, следует постоянно следить за работой всех активных составных частей оборудования, т.е. насосов, компрессоров, вентиляторов, которые в нужный момент должны срабатывать так, чтобы можно было избежать аварии.

    Для того чтобы работающий персонал мог полагаться не только на автоматические системы защиты, последние должны использоваться в сочетании с акустическими или световыми сигнальными устройствами. Более того, персонал должен быть хорошо обучен самостоятельно распознавать различные режимы работы оборудования, а также отдавать себе отчет в важности систем контроля.

    Необходимо помнить о том, что любая система контроля может не всегда правильно срабатывать в фазах включения и выключения производственного процесса. Поэтому этим фазам следует уделять особое внимание.

    10.2. ТИПОВЫЕ СТРУКТУРЫ И ПРИНЦИПЫ ФУНКЦИОНИРОВАНИЯ АВТОМАТИЧЕСКИХ СИСТЕМ ЗАЩИТЫ
    Представляется целесообразным рассмотреть типовые структуры автоматической системы защиты (АСЗ) на примере использования ее в химическом производстве. Выбор примера химической технологии не случаен - именно для них АСЗ достаточно детально разработаны.

    В нормальном режиме функционирования систем технологическим процессом управляет автоматическая система регулирования (АСР). Для управления в предаварийном режиме используется автоматическая система защиты. АСЗ является составной частью системы управления (СУ) процессом и может использоваться в двух режимах:

    - АСЗ непрерывно контролирует ход технологического процесса, но реагирует только на аварийные отключения регулируемого параметра;

    - АСЗ подключается к процессу только в момент возникновения аварийной ситуации как резерв АСР.

    Для АСЗ объектов химической технологии характерно то, что подавляющее большинство мер защиты сводится к разовым, но экстремальным по величине показателям воздействия на защищаемый объект (или процесс). При этом исходная информация о процессе чаще всего носит ярко выраженный позиционный характер.

    Структурные схемы АСЗ могут быть трех видов в зависимости от алгоритма защиты, определяемого сложностью процесса и многообразием аварийных ситуаций, эффективностью, экономичностью, надежностью и т. д.:

    - простейшие АСЗ;

    - АСЗ с развитой логической частью;

    - адаптивные АСЗ.

    В простейшем случае АСЗ строится так, что повышение (или снижение) параметра, по которому ведется защита, до предельного значения вызывает управляющее исполнительное воздействие. Одноканальная АСЗ, настроенная, например, на повышение допустимого значения контролируемого параметра, реализует простой алгоритм защиты. Структурная схема простейшей АСЗ представлена на рис. 10.2.1.



    Рис. 10.2.1. Структурная схема простейшей АСЗ
    Сигналы от измерительных преобразователей (ИП) поступают на анализаторы параметров процесса, представляющие собой устройства сравнения (УС). Одновременно с этим на анализаторы поступают допустимые значения параметров процесса от задающего устройства (ЗУ). Если какой-нибудь параметр оказался больше (или меньше) своего допустимого значения, то с соответствующего анализатора поступает сигнал в узел управляющих воздействий (УУВ), где происходит выбор управляющих (защитных) воздействий (УВ); сигналы с УУВ поступают к объекту управления через исполнительный механизм (ИМ). Исполнительных механизмов может быть несколько.

    Таким образом, в анализаторах происходит сравнение текущих значений параметров с допускаемыми. Различные параметры могут вызывать одинаковые и разные управляющие воздействия. Узел управляющих воздействий в основном реализует логическую функцию "ИЛИ", например, при синтезе диметилдиоксана из изобутилена и формальдегида падение давления промышленной воды ниже определенного уровня вызывает нарушение температурного режима ректификационных колонн, дефлегматоры которых охлаждаются промышленной водой. Поэтому система защиты, изображенная на рис 10.2.1, после сравнения текущего значения давления воды с заданным в аварийном случае выдает сигнал на УУВ. В результате срабатывают три исполнительных устройства: прекращается подача изобутилена; прекращается подача формальдегида и отсекается подача пара на кипятильники колонн. Следовательно, АСЗ с простым алгоритмом защиты реализует задачу - остановить процесс при возникновении предаварийной ситуации.

    Структурная схема АСЗ второго типа, реализующая сложный алгоритм, представлена на рис. 10.2.2.



    Рис. 10.2.2. Структурная схема АСЗ, реализующей сложный алгоритм защиты
    Структурная схема адаптивной АСЗ включает информационное устройство, состоящее из измерительных преобразователей (ИП) и усилительно-преобразующих устройств (УПУ), управляющее логическое устройство УЛУ и блок исполнительных механизмов (ИМ). Объем блока ИМ зависит от числа параметров, воздействующих на процесс при наличии аварийной ситуации. В функции УЛУ входят обработка информации от ИЛ по определенному алгоритму, результатом чего является оценка степени развития аварийной ситуации, выбор вида защитного воздействия, соответствующего данной степени развития аварийной ситуации и обеспечивающего безаварийность процесса, и выдача управляющего защитного воздействия на блок ИМ. УЛУ наряду с развитой логической частью включает в себя вычислительное устройство, в функции которого входит подготовка данных для определения необходимости ввода защитного воздействия с учетом экстраполяции изменения параметров защиты, характеризующих развитие аварийной ситуации, и последствий ввода защитных воздействий.

    В развитие вышесказанного формируется общая задача оптимизации структуры АСЗ. В самом общем виде задачу выбора структуры и параметров АСЗ потенциально опасных процессов можно описать в виде подлежащего минимизации функционала:

    min S = min{S( )+M[ ]},

    где m - вектор параметров технических устройств АСЗ (например, точность и надежность входящих в АСЗ измерительных преобразователей, надежность и быстродействие логических устройств и исполнительных механизмов и т.п.);

    S( ) - приведенные к общим единицам измерения затраты на построение системы и ее эксплуатацию как функция от векторов параметров;

    - усредненная по множеству М функция от несовершенства параметров технических устройств АСЗ, обозначаемых вектором ;

    М - область допустимых решений вектора .

    Для случая построения АСЗ для потенциально опасных процессов ограничение области допустимых решений необходимо сформулировать прежде всего как обеспечение требуемой безаварийности:

    Ô( )=ñ,

    где Ф( ) - функция критерия безаварийности от параметров технических устройств АСЗ;

    с - требуемое значение критерия безаварийности.

    10.3. АВТОМАТИЧЕСКАЯ ИНТЕЛЛЕКТУЛИЗИРОВАННАЯ СИСТЕМА ЗАЩИТЫ ОБЪЕКТА И УПРАВЛЕНИЯ УРОВНЕМ БЕЗОПАСНОСТИ
    В качестве системы защиты объекта и управления уровнем безопасности производства (объекта) может быть использована автоматическая интеллектуализированная система. Интеллектуализированная техника содержит в своем составе процессоры с соответствующим программным обеспечением. Эти средства и системы построены по многоуровневому функциональному принципу и увязаны в единый иерархический обоснованный комплекс управления безопасностью объекта (например, химического производства).

    Задачи, которые возлагаются на интеллектуализированные системы, следующие: Первая задача связана с обеспечением нормального функционирования. Режим нормального функционирования процесса характеризуется соответствием (в допустимых пределах) режимных параметров заданным значениям, которые определяются обычно условиями оптимального ведения процесса.

    Вторая задача обусловлена необходимостью локализации аварийных ситуаций связанных с нарушением технологического процесса. Третья задача - локализация аварийной загазованности помещений по параметрам пожаровзрыво- или токсобезопасности за счет интенсификации вентиляции или прекращения поступления вредных (горючих) веществ в виде газов (паров) в окружающую атмосферу.

    Очевидно, что за каждой из поставленных задач закрепляется и некоторое системное обеспечение. Первую задачу решает система управления, вторую - система противоаварийной автоматической защиты и третью - система газового анализа. Каждая из систем должна иметь свое программно-методическое обеспечение, алгоритмы контроля и управления самым принципиальным вопросом является степень агрегатирования технических средств. Здесь можно сформулировать две крайние концепции: максимальная централизация (синтез) или полная дезагрегатизация (декомпозиция). Максимальная централизация предусматривает единый процессор для решения всех поставленных задач и максимальное совмещение средств контроля и управления. Это означает, что информация, поступающая с преобразователей, размещенных на объекте контроля, обрабатывается в центральном процессоре по единому алгоритму, имеющему блок аварийной остановки, который и выполняет функции системы противоаварийной защиты. Информация с канала контроля загазованности также обрабатывается в центральном процессоре, который запускает по сформулированным принципам блок аварийной остановки вентиляции. Структура интелектуализированной системы, построенная по описанному принципу, приведена на рис. 10.3.1. Достоинством такой организации является высокий коэффициент использования процессора, который централизованно решает практически все интеллектуальные задачи, возникающие в процессе управлением производством. Вместе с тем, централизованная схема имеет принципиальный недостаток: канал противоаварийной защиты оказывается практически равнонадежным со системой управления. На практике это означает, что системой противоаварийной защиты будут "пропускаться" 50 аварийных ситуаций из 100. Значительно уменьшить количество "пропусков" можно только в том случае, если поднять надежность системы противоаварийной защиты (ПАЗ) на порядок по отношению к системе управления (СУ).



    Рис. 10.3.1 Централизованная организация технического интеллекта химического производства
    Исходя из этих соображений, предпочтительней может оказаться структура, представленная на рис. 10.3.2. Система построена в соответствии с "деревом задач" и практически полностью независима, т.к. имеет собственные, не связанные с СУ, каналы информации состояния объекта, полную функциональную независимость, вплоть до автономного питания. Очевидно, что любой потенциально опасный процесс имеет один или совокупность нескольких признаков, появление которых является предвестником возможных аварий. Эти признаки и являются информационными входами в системы ПАЗ. Для повышения надежности системы ПАЗ желательно, чтобы одна и та же информация об аварийных признаках поступала в систему по нескольким информационным каналам.



    Рис. 10.3.2. Вариант децентрализованной организации системы обеспечения химического производства
    Надежность системы ПАЗ увеличивает также и то, что она контролирует состояние небольшого количества параметров по независимым от системы управления каналам и обрабатывает информацию по более простому алгоритму. При появлении информации, которая специальным логическим устройством расшифровывается как предварительная, система вырабатывает управляющее воздействие; оно должно вывести процесс из предварительного состояния и по определенной программе произвести аварийный останов. Система ПАЗ управляет при этом штатными ИМ или специальной быстродействующей аварийной ИМ. Бесконфликтность с СУ обеспечивается блокировкой ее со стороны выхода системы ПАЗ на период проведения операции, остановка которых может привести к взрывам. По окончании такой операции блокировка снимается.

    10.4. ТИПОВЫЕ ЛОКАЛЬНЫЕ ТЕХНИЧЕСКИЕ СИСТЕМЫ И СРЕДСТВА БЕЗОПАСНОСТИ
    Отказ любой промышленной установки, входящей в систему, может привести к отказу всей системы и к аварии. Ниже кратко описываются варианты типовых локальных систем и средств безопасности для отдельных узлов, агрегатов, установок и т.п. и их назначение.

    Системы предотвращения отклонений от допустимых рабочих режимов

    Системы сброса давления. Разрывные мембраны и клапаны безопасности обеспечивают аварийный выпуск вещества из реакционного сосуда в атмосферу. Если выброшенное вещество образует взрывоопасную смесь с воздухом, необходимо не допустить его контакта с возможными источниками огня до того, как будет достигнут нижний концентрационный предел взрывоопасности. Если произошел выброс токсичного вещества, оно должно быть отведено во вспомогательную систему, например в нагнетательные адсорберы, скрубберы или установки каталитического дожигания.

    Датчики температуры и давления потока предназначены для автоматического аварийного включения систем аварийного охлаждения, остановки реакции или перепускной системы.

    Системы, препятствующие переполнению. Устройства контроля уровня веществ предотвращают переполнение сосудов; они автоматически прекращают подачу потока вещества и обеспечивают его отвод.

    Системы аварийного выключения оборудования. Это системы, отключающие производственное оборудование (например, насосы и компрессоры), открывающие или закрывающие быстродействующие клапаны с тем, чтобы обеспечить безопасность и целостность систем и всего предприятия. Эти системы могут приводиться в действие как вручную, так и автоматически.

    Системы, предотвращающие разрушение деталей и узлов систем безопасности

    Элементы и узлы систем безопасности должны быть оборудованы устройствами, обеспечивающими надежность их работы, в зависимости от важности их функций. В промышленных установках могут действовать различные системы, дублирующие функции этих узлов, или могут использоваться аналогичные дополнительные системы, например второй охлаждающий насос.

    Системы энергоснабжения

    Системам снабжения, таким как электроснабжения систем контроля, подачи сжатого воздуха в аппаратуру или подачи азота в качества инертного газа, может потребоваться второй источник питания, например аккумуляторные батареи, буферная емкость или дополнительный комплект баллонов для сжатого воздуха в случае неисправности основных источников.

    Системы аварийной сигнализации

    Эти системы (в которых используются сенсорные датчики) позволяют оператору определить причину неисправности при ее обнаружении.

    Такие системы используются для:

    а) управления параметрами процесса (например, температурой, давлением, скоростью потока, его количеством, уровнем, соотношением веществ в смеси, содержанием кислорода);

    б) обнаружения неисправностей в узлах системы (насосах, смесителях, компрессорах, вентиляторах и др.);

    в) обнаружения утечек (газовые детекторы, эксплозиметры);

    г) обнаружения открытого огня или дыма;

    д) обнаружения повреждения защитных устройств.

    Защитная автоматика

    В зависимости от типа и назначения систем используются механические, термические, электромагнитные средства (защита, основанная на непосредственном контроле) и различные реле (защита, основанная на косвенном контроле). Распространенным видом защиты является релейная, которая в основном предназначена для защиты электрооборудования. При срабатывании защиты поврежденный элемент или система автоматически отключается (защита на отключение) или появляется световой (звуковой) сигнал (защита на сигнал). Применяется также защита в виде прекращения подачи электроэнергии или сжатого воздуха к объекту.

    Разработка систем защитной автоматики основана на использовании ряда разделов теории управления и регулирования: теории информации и массового обслуживания (в системах автоматического контроля и сигнализации); теоретических основ электротехники (в системах защиты энергосистем и электрических цепей); синтеза релейно-контактных схем (в системах релейной защиты и блокировки). Развитие этих систем связано в настоящее время с использованием микропроцессорной техники.

    Технические средства защиты

    Работу систем безопасности на предприятии должны обеспечивать технические средства, за счет которых можно ослабить последствия несчастных случаев. К ним относятся:

    а) газовые детекторы;

    б) системы распыления воды (для охлаждения цистерн или для тушения пожара);

    в) струйно-водяные установки;

    г) системы для распыления пара;

    д) коллекторные сборники.

    Способы предотвращения человеческих и организационных ошибок

    Человеческие ошибки могут стать причиной крупных аварий. Поэтому их предотвращение должно расцениваться как один из важнейших аспектов обеспечения безопасности. В этой связи можно, например, на химическом предприятии предпринимать следующие меры:

    а) применять загрузочные шланги с разными соединительными штуцерами на установках по загрузке автомобилей-цистерн для предотвращения смешивания реактивных веществ (например, серной и азотной кислот);

    б) исключить возможность путаницы при определении места соединения монтажных проводов путем надлежащей маркировки и соответствующих разъемов;

    в) обеспечить блокировку предохранительных клапанов и выключателей, которые не должны работать одновременно;

    г) вести четкую маркировку переключателей, кнопок и панелей управления;

    д) организовать надежную систему коммуникаций для работающего персонала;

    в) использовать предохранительные устройства, исключающие случайные переключения;ж) проводить обучение работающего персонала.

    1   ...   19   20   21   22   23   24   25   26   27


    написать администратору сайта