Главная страница

расчет. Удк 621. 919 Р


Скачать 1.09 Mb.
НазваниеУдк 621. 919 Р
Анкоррасчет
Дата26.04.2023
Размер1.09 Mb.
Формат файлаdocx
Имя файлаraschet-diskovoy-modulnoy-frezy-dlya-narezaniya-kosozubogo-koles.docx
ТипДокументы
#1090872
страница9 из 10
1   2   3   4   5   6   7   8   9   10

CALCULATION OF A DISC MILLING CUTTER

FOR CUTTING A HELICAL GEAR WITH CLASSICAL (IN SOLIDWORKS) AND DISCRETE SOLID MODELING

I.A.Shchurov,shchurovia@susu.ru

South Ural StateUniversity,Chelyabinsk,RussianFederation
Designing disk modular cutters for cutting helical gears includes defining the tool profile. The problem of profiling tools that work according to the form-generating method has been solved for decades using analytical, graphic-analytical and graphical approaches. The modern practice of tool design is increasingly based on the use of CAD/CAM/CAE systems. Programs such as Solidworks allow us to create complex solids by stretching an elementary solid along some guide line. This corresponds to the formation of a concave surface of the part by the convex surface of the tool. Thus, at present, a basis has appeared for solving the problem of shaping disk tools using the indicated above CAD or CAM systems. Meanwhile, examples of solving such problems using CAD systems could not be found in the literature. The paper proposes a solution to this problem for the case of profiling a disk cutter when processing a helical gear. The direct problem was solved using one of the most common programs Solidworks. The inverse problem was solved only using the discrete solid modeling method. The imposition of the original CAD-profile of the gear on the similar wheel obtained by modeling the processing with the calculated


60

Bulletin of the South Ural State University. Ser. Mechanical Engineering Industry. 2022, vol. 22, no. 4, pp. 5262

ЩуровИ.А. Расчетдисковоймодульнойфрезыдлянарезаниякосозубогоколеса…

cutter showed their qualitative coincidence. Therefore, theses simulation and calculation methods can be applied in the production practice of design work on gear cutting.

Keywords:disk modular cutter, helicalgear, profiling,metallcuting, CAD,Solidworks.

References

1. Radzevich S.P. Generation of Surfaces Kinematic Geometry of Surface Machining. Taylor & Francis Group, 2014. 683 p.

2. Radzevich S.P. Theory of Gearing. Kinematics Geometry and Synthesis. Taylor & Francis Group, 2013. 684 p.

3. Vorontsov B., Bosansky M., Kirichenko I. et al. Methods of Designing Gear's Machining Tools with the Hyperboloid Cutting Part. JournalofMechanicalEngineering, 2020, vol. 70, no. 1. pp. 135– 132. DOI: 10.2478/scjme-2020-0013.

4. Hrytsay I. Gears with Asymmetric Tooth Profiles and New Alternative Method of Their Manu-facturing.Ukrainianjournalofmechanicalengineeringandmaterialsscience, 2017, vol. 3, mo. 2. pp. 32–37. DOI:10.23939/ujmems2017.02.032.

5. Fetvaci C. Generation Simulation of Involute Spur Gears Machined by Pinion-Type Shaper Cut-ters. Journal ofMechanicalEngineering, 2010, vol. 56, no. 10. pp. 644–652.

6. Han Z, Jlang C., Deng X. Machining and meshing analysis of face gears by power skiving. Jour-nalofAdvancedMechanicalDesign,Systems,andManufacturing, 2022, vol. 16, no. 1. pp. 1– 15. DOI: 10.1299/jamdsm.2022jamdsm0002/

7. Lin S-W., Han C-S., Tan J-B., Dong S. Mathematical models for manufacturing a novel gear shaper cutter. JournalofMechanicalScienceandTechnology, 2010, vol. 24. pp. 383–390. DOI 10.1007/s12206-009-1022-z.

8. Tomori Z., Bognar G.V. A production interference of internal gears interference at root fillet of shaper cutter. XXX. microCADInternationalMultidisciplinaryScientificConference, 2016, pp. 1–5.

9. Tretyak T.E., Gutsalenko Y., Shelkovoi A. et al. Mathematical modeling of the profile of a gear cutting rolling tool for machining of non-involute gear wheels. FiabilitatesiDurabilitateFiability& Durability, 2019, no. 2. pp. 111.

10. Kapelevich A.L., Shekhtman Y.V. ShekhtmanFabrication of Directly Designed Gears with Symmetric and Asymmetric Teeth. Geartechnology, 2014. pp. 86–91.

11. Lian G. Determining the Shaper Cut Helical Gear Fillet Profile. Geartechnology, 2006. pp. 57–67.

12. Fetvaci C. Definition of involute spur gear profiles generated by gear-type shaper cutters. Me-chanicsBasedDesignofStructuresandMachines, 2010, vol. 38. pp. 481–492. DOi: I0.1080/15397734.201050l275.

13. Marinov S., Alipiev O., Uzunov T. Interference of the profiles when meshing internal straight splines with gear shapers. MATECWebofConferences, 2019, vol. 287. Numder 01015. DOI: 10.1051/matecconf/201928701015.

14. Ryazantsev A., Shirokozhuhova A., Evchenko I. Development of a sophisticated tool for pro-cessing parts with an involute profile. IOPConf.Series:MaterialsScienceandEngineering, 2022, vol. 971. Number 022035. DOI:10.1088/1757-899X/971/2/022035.

15. Markowski T., Mucha J., Witkowski W. Automating the modelling process of involute spur gears with straight teeth. AdvancesinScienceandTechnologyResearchJournal, 2013, vol. 7, no. 19. pp. 66–69. DOI: 10.5604/20804075.1062369.

16. Tolvaly-Rosca F., Forgo Z. Mixed CAD Method to Develop Gear Surfaces Using the Relative Cutting Movements and NURBS Surfaces. ProcediaTechnology, 2015, vol. 19. pp. 20–27.

17. Zhang W. Digital Generating Method for Cylindrical Helical Gear based on Indexable Disk Milling Cutter. Int. J. Adv.Manuf. Technol, 2019. Under review. DOI: 10.21203/rs.3.rs-708854/v1.

18. Pasternak S., Danylchenko Y. Cutting forces in gear machining by disk milling cutters. Mechan-icsandAdvancedTechnologies, 2018, vol. 1 (82). pp. 5–11. DOI: 10.20535/2521-1943.2018.82.118609.

19. Huang C-L., Wei Y-C. Profile Analysis of Spur Gear Shaping Cutters Based on Sharpened Cut-ting Edges. Machines, 2022, vol. 10, no. 484. pp.1–15. DOI: 10.3390/machines1006048.

20. Litecka J. The Design of Gear Hobs Construction. InternationalJournalofInnovationandSci-entific Research, 2014, vol. 6, no. 1. pp. 1–8.
1   2   3   4   5   6   7   8   9   10


написать администратору сайта