Уравнение парной регрессии. Уравнение парной регрессии. Использование графического метода
Скачать 149.03 Kb.
|
Уравнение парной регрессии. Использование графического метода. Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X. Совокупность точек результативного и факторного признаков называется полем корреляции. На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер. Линейное уравнение регрессии имеет вид y = bx + a Оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где ei – наблюдаемые значения (оценки) ошибок εi, a и b соответственно оценки параметров α и β регрессионной модели, которые следует найти. Здесь ε - случайная ошибка (отклонение, возмущение). Причины существования случайной ошибки: 1. Невключение в регрессионную модель значимых объясняющих переменных; 2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры. 3. Неправильное описание структуры модели; 4. Неправильная функциональная спецификация; 5. Ошибки измерения. Так как отклонения εi для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то: 1) по наблюдениям xi и yi можно получить только оценки параметров α и β 2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке; Для оценки параметров α и β - используют МНК (метод наименьших квадратов). Метод наименьших квадратов дает наилучшие (состоятельные, эффективные и несмещенные) оценки параметров уравнения регрессии. Но только в том случае, если выполняются определенные предпосылки относительно случайного члена (ε) и независимой переменной (x). Формально критерий МНК можно записать так: S = ∑(yi - y*i)2 → min Система нормальных уравнений. a·n + b·∑x = ∑y a·∑x + b·∑x2 = ∑y·x Для расчета параметров регрессии построим расчетную таблицу (табл. 1)
Для наших данных система уравнений имеет вид 48a + 43232.91·b = 1139.81 43232.91·a + 40052371.89·b = 1046095.743 Домножим уравнение (1) системы на (-900.686), получим систему, которую решим методом алгебраического сложения. -43232.91a -38939276.776 b = -1026610.91 43232.91*a + 40052371.89*b = 1046095.743 Получаем: 1113095.114*b = 19484.833 Откуда b = 0.01751 Теперь найдем коэффициент «a» из уравнения (1): 48a + 43232.91*b = 1139.81 48a + 43232.91*0.01751 = 1139.81 48a = 383.008 a = 7.9793 Получаем эмпирические коэффициенты регрессии: b = 0.01751, a = 7.9793 Уравнение регрессии (эмпирическое уравнение регрессии): y = 0.01751 x + 7.9793 Эмпирические коэффициенты регрессии a и b являются лишь оценками теоретических коэффициентов βi, а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных. 1. Параметры уравнения регрессии. Выборочные средние. Выборочные дисперсии: Среднеквадратическое отклонение Коэффициент корреляции b можно находить по формуле, не решая систему непосредственно: |