Главная страница

Жидкостные ракетные двигатели. В. Г. Попов, Н. Л. Ярославцев К65 Жидкостные


Скачать 4.57 Mb.
НазваниеВ. Г. Попов, Н. Л. Ярославцев К65 Жидкостные
АнкорЖидкостные ракетные двигатели.doc
Дата19.05.2017
Размер4.57 Mb.
Формат файлаdoc
Имя файлаЖидкостные ракетные двигатели.doc
ТипДокументы
#7951
КатегорияПромышленность. Энергетика
страница7 из 16
1   2   3   4   5   6   7   8   9   10   ...   16


Рис.40

Кривые зависимости от угла конусности 2для ряда значений степени расширения газов в сопле.

По мере увеличения степени расширения газов, т. е. увеличения относитель­ной площади срезавеличинаиз-за роста потерь на трение уменьша­ется и её, экстремум сдвигается на большие углы конусности. Из графика следует, что оптимальные углы конусности при рка=100—1000. Этим данным соответствует значение=0,978— 0,972.

Профилированные сопла. Профилированные сопла в настоящее время широко распространены. Контур сверхзвуковой части выполняется по специ­альной образующей, которая сначала резко отклоняется от оси сопла, а затем, достигнув максимального угла отклонения в точке перегиба, плавно выравни­вается к концу сопла.

Профилированные сопла обладают определенными преимуществами по сравнению с коническими:

а) при одинаковой длине будут иметь меньшие угол конусности на срезе
и потери на непараллельность;

б) при одинаковой конусности на срезе и соответственно одинаковых по­
терях на непараллельность будут значительно более короткими.

Построение криволинейного контура производится по специальным схемам, основанным на свойствах сверхзвукового потока.

Независимо от схемы построения контура профилированные сопла, так же как и конические, имеют при определенных условиях экстремальное значение коэффициента соплаДействительно, если считать что сопло име­ет только потери на трение и неравномерность потока, то теоретический ко­эффициент=(будет иметь максимальное значение при опреде­ленной длине сопла). В самом деле, при данной схеме профилирования с уве­личением длины сопла уменьшается угол не параллельности на срезе и, сле­довательно, уменьшаются потери на неравномерность потока. С другой сто­роны, с увеличением длины сопла растут потери на трение. Отсюда произве­дение, так же как и при конических соплах, будет иметь где-то экс­тремум.

Оптимальные (профилированных сопл лежат при углах конусности на срезе порядка, соответствующие Рка- =500-1000.

Кольцевые сопла. Одним из перспективных методов уменьшения га­баритов двигателя является использование вместо обычных круглых сопел Лаваля кольцевых или сопел с центральным телом. В этих схемах принцип разгона газового потока до сверхзвуковой скорости остается прежним— геометрическим: дозвуковой поток разгоняется до скорости звука в сужаю­щемся канале, а затем в расширяющемся канале достигает сверхзвуковой ско­рости. Разница между обычным и новым соплом состоит в том, что новая схе­ма сопла имеет форму критического сечения не круглую, а кольцевую или щелевую.

На рис.41 представлена схема сопла с простым кольцевым критиче­ским сечением. Контур этого сопла получается, если вращать контур обычно­го сопла Лаваля с осью хх вокруг центральной оси 1-1.

Для образования кольцевой или щелевой формы критического сече­ния сопла, как видно из схемы, внутри сопла располагается тело вращения, называемое центральным телом.

Для сопла с центральным телом наиболее подходит торовая форма КС. В этом случае центральная часть КС и сопла (внутренняя полость цен­трального тела) оказывается свободной. В ней очень хорошо можно располо­жить турбонасосный агрегат, а также и все остальные агрегаты, обслуживаю­щие двигатель. В результате двигатель с новым соплом получается очень ком­пактным и коротким.

В качестве примера, подтверждающего сказанное, на рис.42,а приве­дены габариты двигателей ракеты «Сатурн-5» Ф-1, имеющего тягу Р = 7000 кН с обычным соплом на рис.42,6 — габариты двигателя ракеты «Сатурн-1В» Н-1 с тягой Р=900 кН, на рис.42,е — габариты двигателя Ф-1 с кольцевым (та­рельчатым) соплом.

Как видно, двигатель с кольцевым соплом оказывается в 100/40 что в 2,5 раза короче и равным по длине двигателю с тягой, почти в 8 раз меньшей. Отсюда соответственно уменьшаются габариты и всей ракеты, что в конечном

итоге приводит к заметному выигрышу в массе. Причем в полости централь­ного тела размещаются все агрегаты двигателя вместе с ТНА. Кольцевые со­пла с центральным телом используются для двигателей большой тяги.



Рис.41

Схема простого кольцевого сопла:

Da-диаметр выходного сечения;

nкр- высота кольца критического сечения;

Rкр- средний радиус кольцевой щели критического сечения



Рис.42

Сравнение размеров двигателей

6.10. Кольцевые сопла

Простая схема сопла с центральным телом легко может быть видоизменена так, что получится новая схема кольцевого сопла, представленная на рис.43,а, у которой центральную цилиндрическую поверхность тока, проходившую через ось контура сопла х х, заменили твердой стенкой. С точки зрения газовой динамики это вполне возможно, так как поверхность тока для газа так же непроницаема, как и твердая стенка. В результате получим схему сопла с центральным телом, которая в некоторых случаях может быть предпочтительнее: это сопло имеет внешнюю оболочку в виде простого цилиндра.

Газодинамическая схема течения в таком сопле практически ничем не отличается от схемы течения в предыдущем, если только учесть, что контур этого сопла соответствует «половине» контура предыдущего сопла.

Заметим здесь, что так как за выходной характеристикой АВ поток яв­ляется однородным, т. е. с постоянной и параллельной скоростью, то совер­шенно нет необходимости продолжать внешнюю цилиндрическую оболочку сопла дальше точки А. Следовательно, можно внешнюю оболочку «обрезать» по сечению, в котором находится точка А, и получить сопло, показанное на рис.43, б. Естественно, такое сопло более выгодно, так как оно меньше по массе и его удобнее охлаждать — меньше огневая поверхность. В случаях если из условия обеспечения необходимой степени расширения выходной диаметр сопла получается меньше диаметра корпуса ЛА, то внешний диаметр тогда можно сделать равным диаметру корпуса, а нужную площадь выходного сечения сопла получить за счет устройства центрального тела с плоским тор­цом.

Наконец, как и в круглых соплах, с целью сокращения длины и уменьшения потерь на трение более выгодным будет сопло не с полностью параллельным истечением, а с некоторой степенью непараллельности. Такое сопло получается, если соответственно «обрезать» предыдущее сопло.

Кроме рассмотренных выше схем кольцевых сопел известны и другие их разновидности. Например, на рис.44, представлены две интересные схемы сопел и их разновидности, отличительной чертой которых является располо­жение плоскости критического сечения под некоторым углом к центральной оси сопла. Причем расположение критического сечения может быть двояким: с наклоном сечения к оси (вектор скорости в критическом сечении направлен к оси сопла, схема а) и от оси (вектор скорости в критическом сечении на­правлен от оси сопла, схема б). Такие сопла также можно представить себе как полученные вращением некоторого основного контура сопла вокруг цен­тральной оси 1—1. Причем обе разновидности получаются в зависимости от расположения центральной оси 1—1 по отношению к исходному контуру. Первая схема (а) называется соплом с внешним расширением или штыревым соплом. Вторая схема (б) называется соплом с внутренним расширением или тарельчатым соплом.




Рис.43

Схемы кольцевых сопл с прямым критическим сечением

Кольцевые сопла с наклонным критическим сечением.



Рис.44

Схемы кольцевых сопл с наклонным критическим сечением

б.11.Требования, предъявляемые к распыливающему устройству ЖРД

Для эффективного сжигания жидкого топлива должно быть обеспечено егс полное испарение в заданное время и в нужном месте камеры сгорания двигателя. Для этого в нужный момент вся масса топлива, подаваемая в камеру сгорания, должна иметь максимальную поверхность. Значительное увеличение поверхности компонента может быть получено распылением его на мельчай-шие частицы. Поэтому распыливающее устройство ЖРД должно обеспечивать дробление жидких компонентов топлива, подаваемых в камеру сгорания под определенным давлением и в соответствующих количествах, на мельчайшие капли, быстрое и хорошее смешение их между собой. От того, насколько со­вершенно осуществляются эти процессы, в значительной мере зависят скорость

и полнота сгорания образующейся топливной смеси, величина потребного объ-ема камеры сгорания, ее размеры, удельный вес, устойчивость работы и другие характеристики. Чем совершеннее смесеобразование, тем экономичнее, устой-чивее и надежнее работа двигателя.

Процесс распыла жидких компонентов топлива зависит от их физиче-ских свойств, типа и конструкции форсунок, режима их работы и других фак­тов.

Форсунки двигателя дробят компоненты топлива на миллиарды ка-пель, имеющих поверхность, измеряемую десятками квадратных метров.

Если, например, 1 я жидкости до подачи в камеру сгорания имеет диа­метр около 0,124 м и поверхность -0,0483 м2, то после дробления ее на капли диаметром 100 мк (10

4.м ) суммарная поверхность жидкости увеличится почти в 1240 раз и будет составлять около 60 м2.

Состояние теории смесеобразования и горения топлива в ЖРД в на­стоящее время не позволяет еще производить точные расчеты этих процессов. Поэтому при проектировании головок камеры двигателя приходится исходить из необходимости удовлетворения основных требований к смесеобразованию,

используя при этом результаты исследований и опыт эксплуатации.

Распылительное устройство (головка камеры) ЖРД должно удовлетво­рять следующим требованиям.

V 1. Компоненты, топлива должны быть раздроблены на капли доста-шючно мелко и однородно, так как от тонкости распыла зависят качество смесеобразования, равномерность и скорость горения топлива.

В обычных схемах ЖРД тонкость распыла компонентов топлива зави­сит от типа, конструкции и производительности форсунок, их геометрических характеристик, перепада давлений на форсунках и других факторов.

Тонкость распыла компонентов топлива является качественным крите-г-ем смесеобразования и характеризуется средневесовым диаметром обра-зующихся капель. Чем меньше средний диаметр капель, тем лучше распыл и эффективнее процесс сгорание топлива.

Однородность распыла характеризуется изменением диаметров капель в факеле распыленного компонента топлива. Чем уже пределы, между которы-ми располагаются диаметры капелек распыливаемых компонентов топлива.

тем больше однородность распыла.

В современных ЖРД распыленные капли компонентов топлива имеют диаметр около 25—250 мк. Это значит, что 1 cм3 распиливаемой жидкости де­лится примерно на 6-106 капель. В азотно-кислотных двигателях средние весо­вые диаметры, капель керосина лежат в диапазоне 120—150 мк.

Топливо, состоящее из наиболее крупных капель, будет запаздывать с завершением смесеобразования и, следовательно, с завершением процесса диффузионно-турбулентного сгорания. При слишком грубом распыле, что воз­можно в результате неправильного выполнения распиливающего устройства или регулирования тяги двигателя изменением перепада давления компонентов топлива, может получиться резкое снижение эффективности процесса сгорания и неустойчивая работа.

Однако, тонкость распыла компонентов топлива сама по себе не явля­ется единственным средством улучшения качества рабочего процесса в камере сгорания двигателя. Система смесеобразования должна обеспечивать не только тонкий распыл и хорошее перемешивание компонентов топлива, но и органи­зованный подвод тепла для их подогрева, испарения и воспламенения.

2. Концентрация распыливаемых, компонентов топлива по попе­речному сечению камеры сгорания должна быть одинаковой, так как в про­тивном случае сгорание их будет неполным.

В начале камеры сгорания обычно получается грубо перемешанная го­рючая смесь, которая при дальнейшем движении по камере сгорания продол­жает перемешиваться и становится более однородной. Параллельно с этим процессом идут подогрев и испарение распыленных компонентов и выгорание образующейся горючей смеси.

Время завершения процесса сгорания топлива определяется главным образом скоростью смешения компонентов топлива. При прочих равных усло­виях смешение будет протекать тем интенсивнее, чем мельче газовые струйки компонентов топлива и больше скорость их относительно друг друга. Полнота сгорания топлива в конечном итоге определится отношением времени пребы­вания рабочего тела в камере сгорания ко времени, потребному для завершения процесса сгорания топлива.

Местные отклонения коэффициента состава топлива в камере сгорания от расчетного всегда приводят к неполноте сгорания и, следовательно, к пони­жению удельной тяги двигателя.

Доказано, что начальная неравномерность состава компонентов топли­ва в пределах шага между форсунками быстро выравнивается без заметного снижения удельной тяги двигателя, а неравномерность состава топлива при ее масштабе больше шага форсунок обычно не успевает выравниваться и значи­тельно снижает удельный импульс.

Для защиты оболочки камеры двигателя от перегрева иногда горючую смесь вблизи поверхности оболочки преднамеренно обогащают специальной подачей через периферийные форсунки около 2—4% горючего от общего рас­хода его в камеру сгорания. При этом головка двигателя обеспечивает постоян­ство коэффициента избытка окислителя в центральной части камеры сгорания и заниженное значение его у поверхности оболочки камеры.

3. Расходонапряженность топлива по поперечному сечению камеры сгорания должна быть одинаковой, так как там, где расход топлива будет больше расчетного, процесс сгорания будет неполным, а в местах, где этот расход окажется меньше указанного, объем камеры сгорания будет использо­ван неполностью.

Равномерность расхода топлива по поперечному сечению камеры сго­рания является количественным критерием распыла компонентов топлива. Этот критерий влияет на выбор формы камеры двигателя.

4. Зона смесеобразования топлива по длине камеры сгорания должна быть возможно короткой, так как в противном случае потребуется относи­тельно больший объем камеры сгорания, что может увеличить ее габариты и удельный вес.

Зона распыла компонентов лежит вблизи головки камеры, определяет­ся типом и конструкцией форсунок и характеризуется расстоянием от головки камеры до места проникновения капель. Эта зона при обычных струйных фор­сунках имеет большую длину, чем при центробежных форсунках.

Форма факела обусловливается в основном конструкцией рас­пылительной головки камеры и дальнобойностью струи распыливаемых ком­понента топлива.

5. Суммарный факел распыла компонентов топлива относительно оси камеры сгорания должен быть симметричным, так как если факел горящего топлива будет бить о поверхность оболочки камеры и сгорать на ней, то возможны ее перегрев и прогар.

Струя окислителя не должна бить по поверхности оболочки камеры, так как это вызовет быстрый ее прогар вследствие окисления металла.

Форсунки нужно расположить на головке так, чтобы результирующее направление потока топлива после столкновения всех струй было параллельно оси камеры. Это требование особенно относится к струйным форсункам с пе­ресекающимися струями.

Задачей конструктора является распределить форсунки на головке камеры так, чтобы при равномерном распределении компонентов топлива по поперечному сечению камеры сгорания не попадало много окислителя на стен­ки.

Уменьшения попадания компонентов топлива при распыле его фор­сунками на поверхность оболочки камеры можно добиться соответствующим направлением форсунок, изготовлением их со срезом под углом и т. п.

б. Перепад давлений компонентов топлива в форсунках должен быть оптимальным как по физической полноте сгорания топлива, так и по удель­ному весу системы топливоподачи двигателя.

При понижении перепада давлений распыливаемой жидкости в фор­сунках уменьшаются давление подачи топлива в камеру сгорания и, сле­довательно, мощность и вес системы топливоподачи, но при этом ухудшаются процессы смесеобразования и сгорания топлива. При повышении же перепада давлений в форсунках происходит обратное.

Удовлетворение этого требования практически сопряжено с больши­ми трудностями, и поэтому при расчете ЖРД перепадом давлений компонентов

топлива в форсунках обычно задаются на основании статистических данных. 7. Распыливающее устройство двигателя должно быть конструк­тивно простым и дешевым в производстве, мало чувствительным к измене­нию режима работы двигателя и к возможным вибрациям.

К распыливающему устройству двигателя с регулируемой тягой предъявляются дополнительные требования.

Опыты показывают, что перепад давлений в форсунках меньше 2 кг/см2, как и малое число форсунок, приводит к неудовлетворительному рас­пылу компонентов топлива и, следовательно, к неустойчивой работе двигателя.

Если при работе двигателя на минимальном режиме перепад давлений компонентов топлива в форсунках принять равным 2— 3 кг/см2, то при этом перепад давлений в форсунках на режиме номинальной тяги окажется резко завышенным (может быть в 5—10 раз больше, чем на режиме минимальной тяги), что весьма невыгодно из-за относительно большого веса системы топли-воподачи. Поэтому регулирование тяги двигателя изменением перепада дав­лений компонентов топлива в форсунках может быть оправдано только в не­большом диапазоне.

Выполнить все перечисленные выше требования к распыливающему устройству ЖРД можно путем правильного проектирования и конструирования головки камеры двигателя, т. е. целесообразным выбором ее формы, типа фор­сунок, их параметров, числа и схемы расположения на головке и т. д.

Правильная организация распыла компонентов топлива в ЖРД позво­ляет уменьшить объем камеры сгорания, ее габариты и удельный вес, повысить надежность, ресурс, экономичность и устойчивость работы двигателя. Качест­венное смесеобразование также облегчает условия зажигания топлива при за­пуске двигателя и снижает число аварий.

6.12.Типы топливных форсунок

Топливные форсунки ЖРД представляют собой весьма важные органы смесеобразования горючего и окислителя, подаваемых в камеру сгорания. От типа и конструкции форсунок в значительной мере зависит качество процесса смесеобразования.

Применяемые в двигателях форсунки в большинстве случаев не имеют специальной регулировки тонкости распыла, а некоторые из них вообще обла­дают невысокими качественными характеристиками.

Топливные форсунки ЖРД можно разделить по следующим ха­рактерным признакам.

1. По числу распыливаемых компонентов топлива одной форсункой:

а) однокомпонентные форсунки, предназначенные для распыла одного
компонента топлива;

б) двухкомпонентные форсунки, предназначенные для одновременного
распыла двух компонентов топлива.

2. По принципу действия форсунки:

а) струйные форсунки, подающие жидкость в камеру сгорания в виде струек в направлении своей оси;

б) центробежные форсунки, в которых движущаяся под напором дав­
ления жидкость закручивается и за счет развиваемого при этом центробежного
эффекта вытекает с определенной скоростью в камеру сгорания в виде тонкой
и легко разрушающейся конической пленки;

в) центробежно-струйные форсунки (смешанного типа).


1   2   3   4   5   6   7   8   9   10   ...   16


написать администратору сайта