Главная страница
Навигация по странице:

  • Шарообразные

  • Жидкостные ракетные двигатели. В. Г. Попов, Н. Л. Ярославцев К65 Жидкостные


    Скачать 4.57 Mb.
    НазваниеВ. Г. Попов, Н. Л. Ярославцев К65 Жидкостные
    АнкорЖидкостные ракетные двигатели.doc
    Дата19.05.2017
    Размер4.57 Mb.
    Формат файлаdoc
    Имя файлаЖидкостные ракетные двигатели.doc
    ТипДокументы
    #7951
    КатегорияПромышленность. Энергетика
    страница5 из 16
    1   2   3   4   5   6   7   8   9   ...   16

    Рис.31

    Формы камер сгорания:

    а—цилиндрическая; б—полугепловое сопло; в—шарообразная; г— коническая; д, е—кольцевые

    К основным недостаткам цилиндрической камеры сгорания, по срав­нению с камерами других форм, относятся:

    1. при одинаковом объеме она имеет большую поверхность оболочки, что усложняет ее охлаждение;

    2. при прочих равных условиях она имеет худшую прочностную характе­ристику, что увеличивает ее удельный вес и стоимость;

    3. газовый поток в этой камере сгорания больше обжимается поверхностью оболочки, чем в шарообразной камере сгорания, что несколько гасит его тур­булентность и утоняет ламинарный слой газа около поверхности оболочки, снижая полноту сгорания топлива и, следовательно, удельный импульс и уве­личивая теплоотдачу от газов к оболочке;

    4. меньшая устойчивость работы в отношении высокочастотных колебаний, что ограничивает ее расходонапряженность, а также сужает пределы регулиро­вания тяги изменением расхода топлива.

    Цилиндрические камеры сгорания выполняются со съемными или при­варными головками. Эти камеры обычно стоят на двигателях малых и средних тяг однократного и многократного применения, где в первую очередь требуют­ся простота и дешевизна конструкции. В последнее время наиболее часто при­меняются камеры сгорания цилиндрической формы с плоской головкой и од-нокомпонентными центробежными форсунками. Примером ЖРД с цилин­дрической камерой сгорания могут служить двигатели ОРМ-65и РД-107, рис.32 Шарообразные и близкие к ним грушевидные камеры сгорания по сравнению с камерами сгорания других форм имеют следующие основные дос­тоинства:

    1) при заданном объеме они имеют относительно меньшую поверхность оболочки, что уменьшает удельный вес камеры сгорания и облегчает ее охлаждение;










    Рис. 32

    Двигатели с цилиндрической камерой сгорания: а-ОРМ-65 (1936 г.); б—РД-107 (1954—1957 гг.); 1 - внутренняя оболочка камеры; 2 - корпус; 3 - вкладыш; 4 - штуцер подачи окисли­теля; 5—форсунка окислителя; 6—головка; 7—форсунка горючего, 8—нить накаливания: 9— воспламеняющий состав; 10 — зажигательная шашка

    1. при заданном давлении в камере сгорания они имеют меньшую толщину оболочки, что уменьшает удельный вес камеры сгорания;

    2. оболочка этих камер сгорания обладает большей устойчивостью против вдавливания внутрь под воздействием на нее статического давления ох­лаждающей жидкости;

    3. процесс сгорания топлива в них протекает более полно благодаря сравни­тельно хорошей турбулизации газового потока, что повышает удельный импульс двигателя на 2—3%;

    4. при прочих равных условиях в этих камерах меньше теплоотдача от газов к оболочке камеры вследствие наличия около ее поверхности более тол­стого ламинарного слоя, ухудшающего теплоотдачу к оболочке от газов и

    облегчающего этим охлаждение камеры сгорания (газовый поток сравни­тельно меньше обжимается поверхностью оболочки).

    К основным недостаткам шарообразных камер сгорания относятся:

    1. сложность конструкции и технологии изготовления, что увеличивает ее стоимость;

    2. сравнительно больший диаметр камеры сгорания, что может потребовать увеличения миделя ракеты.

    Шарообразные камеры сгорания обычно имеют приварную ша­рообразную головку. Эту форму камеры сгорания имеют двигатели большой тяги со значительной продолжительностью работы, когда объем камеры сгора­ния настолько велик, что становится целесообразным предкамерный распыл компонентов, а также когда выгоды от уменьшения ее веса и повышения эко­номичности работы за счет формы преобладают над увеличением стоимости ее изготовления.

    Примером ЖРД с шарообразными камерами сгорания может служить немецкий спирто-кислородный двигатель А-4, рис.33.

    У конических камер сгорания по существу вся камера является вход­ной частью сопла. Они имеют пониженные значения Iуд по сравнению с дру­гими типами камер и вследствие этого не применяются, представляя только исторический интерес.

    Основной причиной снижения Iуд являются большие скорости продук­тов сгорания в камере. Вследствие этого превращение тепловой энергии в ра­боту расширения является менее полным, т.е. имеют место большие потери на тепловое сопротивление. Кроме того, в конических камерах зона распыливания и испарения занимает значительную часть её полного объёма; зона сгорания при этом уменьшается, что приводит к худшему сгоранию или требует увели­чения полного объёма камеры.

    Применение кольцевых камер сгорания в ЖРД определено исполь­зованием сопел с центральным телом. Различают цилиндрические и торовые кольцевые камеры сгорания.

    Кольцевые камеры круглого сечения (торовые) целесообразно приме­нять при разгоне газа в сопле с центральным телом до больших чисел М.

    По сравнению с другими типами кольцевые камеры сгорания имеют ряд недостатков. Поверхность их значительно больше, что приводит к увеличе­нию веса и затрудняет охлаждение камеры, особенно, «юбки» сопла. Кольцевая камера сгорания сложна в изготовлении, а для обеспечения её жесткости необ­ходимы либо специальные наружные рёбра жесткости, либо охлаждаемые стойки, связывающие наружный контур камеры с внутренним.

    Достоинствами кольцевой камеры сгорания являются: возможность регулирования модуля и направления вектора тяги, а также уменьшение вероятности возникновения вибрационного горения при раз­бивке камеры по окружности на ряд отдельных секций; пониженные продольные геометрические размеры, по сравнению с дру­гими типами камер;

    возможность установки в полости центрального тела ТНА или других аг­регатов.



    Рис.33

    Камера двигателя ракеты А-4: 1—верхняя полость; 2— главный клапан горючего; 3— нижняя полость горючего 4—форкамера; 5—"упор для передачи силы тяги на раму: 6—патрубок подвода горючего 7— тор; S—нижний пояс внутреннего охлаждения, 9—внутренняя оболочка камеры; 10— внешняя оболочка камеры;

    56

    11, 12 - пояса внутреннего охлаждения: и—дополнительный пояс внутреннего охлаждения; 14—

    верхний пояс внутреннего охлаждения

    6.6. Головки камер ЖРД и их конструкция

    Головка камеры двигателя является главным узлом, обеспечивающим правильную организацию смесеобразования в камере сгорания. Конструк-ция головки должна обеспечить устойчивое горение в камере, а также способствовать плавному выходу двигателя на режим и уменьшению импульса последействия. При проектировании головки должно быть осуществлено необ-мое размещение и надежное крепление форсунок, наиболее удобный под­вод компонентов к форсункам и технологически возможно более простое со­единение головки с камерой сгорания.

    На головке располагаются устройства для ввода в камеру топлива.

    Жидкое топливо подается в камеру форсунками, а в случае применения схемы

    с дожиганием газа, поступающего из ТНА, или при подаче топлива (например,

    перекиси водорода) в газообразном состоянии - через специальные окна, вы-

    полненные в головке. При двухкомпонентном жидком топливе головка имеет

    днe полости. В двигателях с регулированием тяги путем отключения групп

    форсунок эти полости могут иметь дополнительные перегородки, позволяющие

    отдельно подводить топливо к различным группам форсунок.

    На головке размещаются также узлы крепления двигателя, клапаны, служащие для запуска, отсечки и регулирования тяги двигателя, а в ряде случа­ев и антивибрационные устройства, и воспламенители.

    Основным требованием к конструкции головки является обеспечение заданных условий смесеобразования и защиты стенок камеры от чрезмерного нагрева и прогара. Эти задачи, как указывалось, решаются рациональным раз­мещением форсунок на головке, выбором производительности отдельных групп форсунок и их характеристик, а также надлежащим охлаждением двига­теля. Одновременно конструкция головки должна обладать достаточной жест­костью несмотря на ослабление ее стенок большим количеством отверстий под форсунки, обеспечивать возможность подвода компонентов с минимальным гидравлическим сопротивлением и иметь надежную защиту от перегрева горя­чими газами.

    Для наилучшего смешения компонентов на головке желательно раз­местить максимально возможное число форсунок. Минимальное расстояние между форсунками определяется условиями прочности стенки головки, усло­виями размещения в теле головки каналов для подвода компонентов, если го­ловка не имеет общей полости компонента, и, наконец, размерами форсунки. При центробежных форсунках определяющим фактором является размер фор­сунки, так как жесткость головки может быть обеспечена включением корпуса форсунки в силовую схему, а подвод компонентов в большинстве случаев осу­ществляется из общей полости. При струйных форсунках, имеющих относи­тельно малые размеры, минимальный шаг определяется при данном угле рас-пыла расстоянием от поверхности головки зоны соударения струй или усло-

    виями подвода компонента. В выполненных конструкциях при центробежных форсунках шаг составляет 6-30 мм, а при струйных форсунках минимальный шаг может быть доведен до 3 - 4 мм.

    Тот или иной способ размещения форсунок выбирается либо на осно­вании имеющегося опыта смешения компонентов топлива данного состава, либо из чисто конструктивных соображений, включающих подвод топлива и жесткость головки.

    Основными конструктивными элементами головки являются форсу­ночное днище и наружная стенка. В свою очередь форсуночное днище чаще бывает двухстенным и реже - одностенным. При двухстенном форсуночном днище головка в целом является трехстенной. Тогда стенку форсуночного днища, обращенную к камере сгорания, называют внутренней или огневой, а вторую средней.

    Одним из основных требований, предъявляемых к конструкции голов­ки, является обеспечение достаточной ее жесткости, а также сохранениягерме-тичности ее элементов при возможных деформациях.

    Головки камер ЖРД подразделяются на плоские, шатровые, сфериче­ские, цилиндрические и вихревые, рис.34.

    Плоские головки являются наиболее распространенным типом. Плоские головки камеры имеют различное конструктивное оформле­ние.- Иногда их выполняют трехстенной конструкции с отдельными полостями для горючего и окислителя. Верхнее днище обычно имеет шаровидную форму, тогда как последние два днища — плоские, в которых монтируют форсунки. При этом: компонент топлива, используемый для охлаждения камеры, поступа­ет в нижнюю полость головки, образуемую плоскими днищами, откуда через форсунки впрыскивается в камеру сгорания. Второй компонент топлива пода­ется прямо в верхнюю полость головки, образуемую шарообразным верхним и плоским средним днищами, а из нее затем поступает в камеру сгорания через сквозные трубки, пересекающие плоские днища головки и заканчивающиеся форсунками. Все три днища головки камеры связаны между собой. Верхнее днище связывается со средним плоским днищем косынками различной формы, а для связи плоских днищ можно использовать точечные выштамповки или развальцовку корпуса форсунок. Так как число форсунок обычно бывает весь­ма большим (измеряется сотнями), то последний способ связи между собой оболочек практически оказывается также достаточно надежным.

    Конструктивное оформление головки в основном зависит от вы­бранной формы камеры сгорания, ее диаметра, вида компонентов топлива, а также от того, какой компонент топлива используется для охлаждения камеры. Плоские головки применяются в камерах двигателей малых и средних тяг. Они наиболее удобны для цилиндрических камер сгорания благодаря конструктив­ной простоте и удобству расположения на них струйных и центробежных фор­сунок горючего и окислителя. Плоские головки в сочетании с цилиндрической камерой сгорания обеспечивают хорошую однородность поля скоростей и кон­центрацию компонентов топлива по поперечному сечению камеры.



    Рис.34

    Классификация головок камер ЖРД

    Преимущество плоских головок - в простоте конструкции; кроме того, плоские головки позволяют достаточно хорошо обеспечить однородность поля скоростей и концентраций топлива по поперечному сечению камеры сгорания. Недостатком плоских головок является относительно небольшая прочность и малая жесткость. Поэтому в плоских головках крegyогабаритных двигателей необходимо предусматривать подкрепляющие элементы, обеспечивающие тре­буемую прочность и жесткость головки.

    Сферические головки часто выполняются с предкамерами и применя­ются в основном в камерах спирто-кислородных двигателей средних и боль­ших тяг. Эта головка удачна и с точки зрения борьбы с явлениями, связанными с поперечными акустическими колебаниями, характерными для двигателей с камерой сгорания большого диаметра. Достоинство этой головки состоит в вы­сокой ее прочности и жесткости, а недостаток—в сравнительно сложной кон­струкции.

    Постановка предкамер на головке камеры облегчает экспери­ментальную отработку распыливающего устройства, так как в этом случае воз­можна предварительная доводка только одной предкамеры, что значительно проще и дешевле доводки всей распылительной плоской головки.

    Шатровые головки, по форме напоминающие шатер, находят примене­ние в двигателях малых и средних тяг, а также в качестве форкамер. Преиму­ществами шатровой головки являются большая, чем у плоской головки, по­верхность для размещения форсунок и хорошие прочностные свойства. Недос­татки головки - в сложности изготовления и неравномерности распределения топлива по сечению. При шатровой головке возможно образование «жгута» распыленного топлива.

    Вихревые и цилиндрические головки обеспечивают достаточно эффек­тивный распыл компонентов топлива, за счет их лобового соударения. Один из компонентов через подводящий коллектор и отверстия, выполненные в боко­вой стенке, подается во внутреннюю полость головки (в вихревой головке отверстия тангенциальны по отношению к полости смешения, а в цилиндриче­ской - перпендикулярны), а другой - направляется в нее через, как правило, струйные форсунки, установленные в верхней (вихревая) или периферийной (цилиндрическая) зоне головки. На внутреннюю полость вихревой головки камеры нанесено выгорающее покрытие, обеспечивающее охлаждение стенки.

    6.7. Конструктивные особенности выполнения систем охлаждения

    камер сгорания

    Камеры сгорания в основном выполняются двухстенными. В отдель­ных случаях находят применение одностенные и трёхстенные конструкции. Возможны и комбинированные конструкции, когда отдельные части камеры при принятой в целом двухстенной конструкции могут иметь одну или три стенки. Все эти различия в основном определяются принятой схемой охлажде­ния или тепловой защиты стенок.

    Простейшими являются одностенные камеры; они могут быть неохла-ждаемыми и охлаждаемыми. При малой продолжительности работы двигателя

    и невысоком тепловом режиме иногда применяются одноетенные камеры с ёмкостнымохлаждением.

    Значительно большую длительность работы обеспечивает нанесение на стенку теплоизолирующих покрытий и тугоплавких материалов или материа-лов с малой теплопроводимостью. Тогда стенка сохраняет относительно низ­кую температуру и её несущая способность практически не понижается к кон-цу работы двигателя. Применение теплоизолирующих покрытий, керамиче-ских, наносимых непосредственно на стенку, в некоторых случаях, например, при кратковременной работе двигателя с невысокой температурой в камере сгорания, может дать экономию в весе по сравнению с системой наружного охлаждения, до 20-30%.

    Находят применение также конструкции камер сгорания с теплоизоли-рующим покрытием, образующимся в процессе работы двигателя, рис.35. Если одностеночная камера выполняется из стекловолокна, пропитанного феноль-ными или эпоксидными смолами, то теплоизолирующее покрытие наносить не обязательно. При нагреве связующие вещества стеклопластика, выгорая, обуг-ливаются, образуя на обращенной к камере сгорания поверхности стенки по-крытие, плохо проводящее тепло и обеспечивающее сохранность механических свойств материала в невыгоревших слоях.

    В некоторых конструкции камера образована из стекловолокна с нена­правленным расположением волокон. Толстостенный корпус камеры сгорания жестко соединён с металлическим фланцем, с помощью которого корпус каме­ры винтами крепится к головке. Уплотнение достигается с помощью пазового стыка. Лучшими механическими свойствами под действием газовой нагрузки обладает корпус камеры сгорания, выполненный из стеклопластиковой узкой ленты с направленным расположением волокон, которая в процессе намотки укладывается ребром к оси камеры.

    Стенки камеры могут защищаться от нагрева, как в конструкции каме­ры с вихревой головкой и выгорающей вставкой, изготовленной из силиконо-вой ткани, пропитанной фенольными смолами. Вставка с зазором входит внутрь алюминиевого корпуса камеры сгорания со стороны расширяющейся части сопла. Кольцевой зазор между вставкой и корпусом заливается изоляци-онным материалом. К сопловому фланцу корпуса ка болтах крепится неохлаж-даемая сопловая приставка с рёбрами жесткости на наружной поверхности.

    Охлаждаемые одноетенные камеры могут быть с внутренними кана­лами и без каналов. В первом случае камера сгорания и сопло выполняются толстостенными с внутренними сверлеными и относительно редко располо­женными каналами. Для облегчения камера может изготавливаться из алюми­ниевого сплава. Недостатком такой конструкции является трудность выполне­ния каналов внутри стенки на сужающейся и расширяющейся части сопла. При этом требуется либо большая толщина стенки для возможности сверления на­клонного относительно оси камеры длинного канала, либо изготовление сопла из отдельных коротких отсеков.

    Наиболее просто осуществляется охлаждение одностенной камеры сгорания при размещении её непосредственно в баке одного компонента топ-


    1   2   3   4   5   6   7   8   9   ...   16


    написать администратору сайта