Главная страница
Навигация по странице:

  • Трубчатые камеры

  • Жидкостные ракетные двигатели. В. Г. Попов, Н. Л. Ярославцев К65 Жидкостные


    Скачать 4.57 Mb.
    НазваниеВ. Г. Попов, Н. Л. Ярославцев К65 Жидкостные
    АнкорЖидкостные ракетные двигатели.doc
    Дата19.05.2017
    Размер4.57 Mb.
    Формат файлаdoc
    Имя файлаЖидкостные ракетные двигатели.doc
    ТипДокументы
    #7951
    КатегорияПромышленность. Энергетика
    страница6 из 16
    1   2   3   4   5   6   7   8   9   ...   16

    Рис.35

    Камера с вихревой головкой, выгорающей вставкой и неохлаждаемым насадком сопла.

    1-грибовидный распылитель окислителя; 2 - форсунки горючего; 3-коллектор горючего; 4 - выгорающая вставка; 5 - стенка камеры; 6 - сопловая приставка.

    лива, рис.36. Такая конструкция применима, если двигатель имеет сравнитель­но малую тягу, а диаметральные размеры летательного аппарата позволяют разместить бак вокруг камеры ЖРД. Стенка камеры сгорания может быть прак-тическиразгружена от действия сил давления газов, когда применяется, балон-ная подача топлива.

    Двухстенные конструкции применяются в тех случаях, когда камеры имеют регенеративное охлаждение. Они отличаются типами связей между стенками и формами каналов для наружного охлаждения. Двухстенные камеры могут быть совсем без силовых связей между стенками на участке между го­ловкой и соплом, с редко расположенными и часто расположенными связями.

    Двухстенные камеры без промежуточных связей могут выполнятся при малых диаметрах камеры сгорания, а также при низких давлениях в камере и температуре внутренней стенки порядка 250-400°С. При таких температурных условиях внутренняя стенка толщиной 2-5 мм обладает достаточной жестко­стью и способна без потери устойчивости выдержать нагрузку от сил давления охлаждающей жидкости и газов. Наружная стенка, имеющая ещё более благо­приятные температурные условия, также способна воспринять нагрузку от сил давления охлаждающей жидкости.



    Рис. 36

    ЖРД с камерой сгорания, размещенной внутри топливного бака:

    1 - стенка сопла; 2 - бак горючего; 3 - кожух; 4 - внутренняя стенка камеры сгорания; 5 - наружный корпус бака

    Внутренняя и наружная стенки в таких конструкциях связываются ме­жду собой через головку и вблизи обреза сопла, а иногда дополнительно у кон­ца камеры сгорания

    Применение конструкции без связи между стенками возможно для ка­мер сгорания двигателей с небольшой тягой или рулевых и вспомогательных двигателей при давлении в камере 15-20 кГ/см2. Развитие ЖРД, сопровож­дающееся увеличением диаметра камер, температуры горения и давления, вы­нудило перейти к конструкции сначала с редко расположенными, а затем и с часто расположенными связями.

    Редко расположенные связи выполняются в виде жестких колец, свя­зывающих стенки, что способствует уменьшению деформации. Кроме того, вблизи колец внутренняя и наружная стенки работают совместно, что повыша­ет общую несущую способность камеры. На участках между связями для раз­грузки от температурных напряжений, которые возникают от разности про­дольных температурных деформаций стенок, размещаются кольцевые компен­саторы, которые служат одновременно дополнительными ребрами жесткости.

    Такого типа конструкции применимы при толщине стенок порядка 5 мм и более, сравнительно низкой температуре стенок и давлениях в камере по­рядка 25-30кГ/см2. В весовом отношении конструкции с редко расположенны­ми связями невыгодны. Наиболее легкими и надежными являются конструкции с часто расположенными связями, находящимися столь близко друг от друга, что действие избыточного давления охлаждающей жидкости не вызывает

    сколько-нибудь заметных местных прогибов стенки и работоспособность каме­ры определяется только несущей способностью под действием сил давления газов и осевой силы. Стенки связываются между собой сваркой или пайкой .

    При сварном соединении на наружной стенке выполняются точечные или сплошные выштамповки. Точечные выштамповки могут быть круглыми или овальными с большой осью, направленной вдоль образующей камеры. То­чечная сварка производится в местах выщтамповок. Однако выштамповки при большой толщине стенок загромождают тракт охлаждающей жидкости и не позволяют расположить связи достаточно часто.

    Сплошные выштамповки под роликовую сварку могут располагаться в зависимости от принятого способа циркуляции охлаждающей жидкости -вдоль образующей камеры сгорания и сопла или по винтовой линии, как в конструкции камеры ЖРД с соединением стенок сваркой по винтовым вы-штамповкам. При многозаходной винтовой связи увеличивается длина кон­тактной поверхности стенок, по сравнению с продольными связями, что спо­собствует увеличению жесткости камеры и прочности связей.

    Повышение давления газов приводит к необходимости значительно уменьшить расстояние между связями, что возможно в паяных конструкциях. Для пайки используются твердые припои. Припои наносятся предварительно на спаиваемые поверхности. Пайка производится в печи. Твердые припои име­ют температуру плавления до 1500°С. При рабочей температуре в месте соединения 500°С допустимые напряжения в паяном шве составляют до 8 кГ/мм2,а при температуре 700°С - около 1 кГ/мм2.

    Паяные конструкции выполняются с ребрами и трубчатого типа.

    Простейшей является конструкция с припайкой ребер, выполненных задело с одной из стенок, по преимуществу с внутренней, к другой стенке. Реб­ра на внутренней стенке получают механической обработкой. Они могут иметь переменный шаг по сечениям камеры и сопла и располагаются вдоль обра­зующей или по винтовой линии. Для простоты ребра выполняются прямо­угольного профиля; толщина их должна быть наименьшей допустимой техно­логическими возможностями. Для уменьшения загромождения тракта охлаж­дающей жидкости и снижения веса ребра могут образовываться тонкостенны­ми штампованными профилями, которые затем либо припаиваются к обеим стенкам, либо припаиваются к одной стенке, а к другой не припаиваются. Трудности создания подобных паяных конструкций, где шов находится внутри охлаждающей полости, состоят в необходимости обеспечить гладкую поверх­ность шва и предотвратить затекание припоя в каналы рубашки. От этого тех­нологического недостатка свободны паяные трубчатые конструкции, у кото­рых шов находится снаружи каналов для охлаждения.

    Трубчатые камеры выполняются из отдельных тонкостенных трубок, уложенных вдоль образующей камеры сгорания и сопла, а иногда по винтовой линии. Трубки имеют прямоугольное, овальное и U-образное сечение. На не­цилиндрической части камеры сгорания и сопла площадь поперечного сече­ния трубок переменна. При относительно малых степенях расширения сопла и камера сгорания система охлаждения может быть образована из одного и того же количества трубок. Количество трубок выбирается таким, чтобы каждая

    трубка занимала дугу с центральным углом 0,75-1,25 градусов. При больших степенях расширения сопла при таком угловом шаге на срезе сопла трубки должны быть сильно сплющены, что технологически затруднительно. Поэтому в таких случаях применяются комбинированные конструкции, когда часть тру-роходит вдоль всей образующей камеры сгорания и сопла, а между ними на расширяющейся части сопла ставится по одной или по две укороченных трубки. Трубки спаиваются по боковым прилегающим поверхностям. На пая-ные швы при этом приходится весьма значительная нагрузка от газовых сил, стремящихся разорвать камеру вдоль образующей. Для обеспечения надлежа­щей прочности необходимо применять усиливающие элементы. Такими эле­ментами могут быть наружные кожухи, бандажи или сплошная обмотка.

    При толстостенном металлическом кожухе вес камеры значительно увеличивается. Поэтому чаще применяют отдельные усиливающие бандажи, расположенные почти вплотную друг к другу на камере сгорания и горловине сопла и с большими промежутками на расширяющейся части сопла. В отдель-ных конструкциях применяется обмотка снаружи трубчатой камеры проволо­кой квадратного сечения, которая может пропитываться связующей эпоксид-ной смолой. Вместо проволоки применяется и обмотка стеклопластиком с на­правленным расположением волокна.

    Специфичными условиями охлаждения может быть вызвано и приме-нение трехстенной трубчатой камеры, рис.37. В ней по внутреннему ряду тру_ бок охлаждающая жидкость течет от головки к срезу сопла, а по наружному ряду - в обратном направлении. Иногда, например, в конструкции цилиндриче­ской камеры ЖРД, применяется система охлаждения, при которой по одной из двух соседних трубок охлаждающая жидкость течет от головки к соплу, а по другой - в обратном направлении.



    Рис 37 Трехстенная камера:

    l-трубка наружного ряда; 2—трубки внутреннего ряда: 3— подвод горючего; 4—главный клапан горючего; 5—головка двигателя

    При трубчатой конструкции сравнительно просто может быть осуще­ствлен ввод в камеру отработанного газа из турбины ТНА для создания допол-нительной тяги. Окна для ввода газа имеют треугольную форму и образованы в том сечении сопла, где между основными длинными трубками вставлены уко­роченные трубки.

    На рис. 38 показана трубчатая камера двигателя RZ-2, работающего на топливе жидкий кислород - керосин. Тяга двигателя на земле 62 Т («620 кн), удельная тяга 245 кГ-сек/кг (24-102 н-сек/кг}; отношениеFK/F*=1,8т. е. камера сгорания скоростная; степень уширения сопла равна 8; давление в камере сго­рания 38 ата (3,73 н/м2).

    Охлаждение производится в «два хода». Охладитель по трубке прохо­дит в сопловой коллектор 24 и возвращается обратно по соседней трубке, после чего поступает в форсуночное днище головки 5.

    Жидкий кислород поступает в головку через угловой патрубок 2. Из головки кислород и керосин поступают в камеру сгорания, где смесь воспламе­няется от пиротехнического запальника 8, который в свою очередь поджигает­ся электрической искрой.

    Оболочка камеры выполнена из 312 спаянных никелевых трубок. Для повышения прочности набор трубок стягивается бандажными кольцами 13, которые на участке камеры сгорания образуют сплошную обечайку. Керосин, охлаждающий стенки камеры, подается во входной коллектор 6 и через отвер­стия 19 поступает в трубки.

    Камеры с регенеративным охлаждением могут иметь теплоизолирую­щие покрытие в тех случаях, когда недостаточна теплоемкость охладителя и нет внутреннего охлаждения, а также если применено топливо с очень высокой температурой горения.

    Стенки камер большей частью выполняются составными и соединяют­ся продольными и поперечными швами; реже применяются бесшовные камеры. Стенки цилиндрических камер сгорания свариваются из листового материала.

    Толщина внутренней стенки камеры определяется условиями охлажде-ния. В двигателях с высокой тепловой напряженностью толщина внутренней стенки составляет примерно 0,8-2мм. Толщина наружной стенки из условии необходимой несущей способности и в зависимости от действующей нагрузки, температуры, материала и допустимых радиальных деформаций имеет большие размеры.

    Внутренние стенки выполняются из жаростойких сталей или сплавов или из материалов с большой теплопроводностью, например, из меди, бронзы или алюминия. Наружные стенки при малых относительных нагрузках могут вы­полняться из малоуглеродистой или жаростойкой стали, а при больших на­грузках - из высокопрочных материалов.

    Толщины стенок трубок порядка 0,2-0,4 мм; материалами трубок слу­жат сталь, никелевые и алюминиевые сплавы.


    Рис.38

    Трубчатая камера двигателя:

    — карданная подвеска; 2— подвод жидкого О2; а—штуцер для замера давления: 4— фланец 5— головка, 6—входной коллектор керосина; 7— уплотнительное кольцо; 8—пирозапальник V— кабель; 10— камера сгорания; Л— место крепления рычага для управления вектором тяги 12— критическое сечение; 13 бандажные кольца; 14 сливной штуцер: 15—спрямляющая решетка;

    16—крышка головки; 17—подвод пускового горючего; 18-—фланец: 19—вход горючего 20— трубки, 21—силовое кольцо в критическом сечении; 22—фланец для крепления экрана 23— выходноесечение сопла; 24— коллектор горючего: 25—корпус головки: 26— подвод кислорода; 27—подвод пускового горючего; 28— подвод горючего

    6.8. Потери в соплах ракетных двигателей

    Сопло — необходимый элемент всякого ракетного двигателя, в кото­ром тепловая энергия продуктов сгорания преобразуется в кинетическую энергию истекающей из сопла струи газов. Величина кинетической энергии в конечном итоге определяет главную характеристику двигателя — удельный импульс. Всякий реальный процесс преобразования энергии сопровождается некоторыми потерями. В данном случае потери снижают кинетическую энер­гию струи и, следовательно, удельный импульс.

    Одна из задач организации рабочего процесса в соплах ракетных дви­гателей—снижение всякого рода потерь, максимальное приближение реально­го процесса истечения из сопла к идеальному. С другой стороны, сопло ракет­ного двигателя, особенно при современных больших степенях расширения газов в нем, представляет собой довольно громоздкую конструкцию и в общих габаритах и в массе двигателя занимает весьма заметную роль. Другая задача

    - всяческое снижение необходимых габаритов сопла ракетного двигателя.

    Таким образом, объединяя обе задачи, можно сказать, что при проек­тировании сопла ракетных двигателей основной целью является максимальное приближение процесса истечения к идеальному при минимальных габаритах сопла. Тогда сопло двигателя будет иметь минимальные потери при мини­мальной массе и габаритах.

    В соплах реактивных двигателей потери с достаточной точностью можно разделить на следующие виды:

    Потери трения. Этот вид потерь связан с трением газа о стенку. Нали­чие вязкого трения при течении газового потока вдоль стенки КС и сопла соз­дает силу, стремящуюся увлечь стенку в направлении потока, т. е. создает си­лу, противоположную тяге.

    Газодинамические потери. Этот вид потерь связан с неравномерно­стью поля скорости по величине и направлению на срезе сопла. Дело в том, что, рассматривая характеристики идеального или теоретического двигателя, подразумеваем одномерное течение в сопле и, следовательно, параллельное оси сопла истечение с одинаковой скоростью по всему срезу сопла. В дейст­вительности течение в соплах пространственное, близкое к его разновидности

    — осесимметричному потоку, с непараллельным и неравномерным истечени­
    ем. Это снижает тягу по сравнению с идеальным двигателем.

    Термодинамические потери. К термодинамическим процессам, кото­рые могут оказать отрицательное влияние на тяговые свойства сопла, относят недовыделение теплоты в сопле, за счет некоторой степени неравновесности и потери теплоты за счет теплоотдачи в стенку или в систему охлаждения. Эти потери отклоняют реальный процесс от идеализированного, и поскольку в обоих случаях имеют место потери тепловой энергии при расширении, то это вызывает и соответствующие потери тяги в сопле.

    Полные потери тяги в соплах. В общем случае суммарный коэффици­ент, отражающий все основные составляющие потери:



    где (при «хорошо» спрофилированных и изготовленных соплах):

    = 0,990—0,975 — коэффициент, отражающий потери тяги из-за трения, зависит главным образом от степени расширения газов в сопле и шероховато­сти внутренней поверхности сопла;

    = 0,990—0,985 — коэффициент, отражающий газодинамические потери. зависит главным образом от формы и особенностей профиля сопла; -- 0.990—0,995 — коэффициент, отражающий потери термодинамического ера, зависит главным образом от степени неадиабатичности процесса, степени расширения газов в сопле и рода топлива.

    В итоге, учитывая приведенные выше значения отдельных состав-

    ляющих, полный коэффициент сопла равен= 0,975— 0,940, т. ё. потери

    тяги в соплах составляют от 2,5 до 6,0%, рис.39. Пунктирная кривая расширя-

    ет область в сторону его увеличения при применении сопел с полированной

    внутренней поверхностью.



    Рис.39

    Примерное значение полного коэффициента профилированного соплав зависимости от степени расширения Рк/Pa.

    6.9. Схемы сопел ЖРД

    Применяемые в ракетных двигателях сопла могут быть разделены на конические, профилированные, кольцевые или сопла с центральным телом.

    Конические сопла. Это наиболее простая в техническом отношении схема сопла. Сверхзвуковая часть сопла выполняется в виде прямолинейного расходящегося конуса, а область критического сечения по дуге окружности. Несмотря на большие потери тяги по сравнению с профилированными, эти сопла во многих случаях используются в ракетных двигателях. Больше того, для двигателей, работающих при больших противодавлениях среды (подвод­ных) на режимах с отрывом потока в сопле, конические сопла оказываются более предпочтительными. С достаточной степенью точностью потери тягн на

    неравномерность поля скорости на срезе сопла или непараллельность истече­ния оцениваются соотношением:



    т. е. определяются в основном непараллельностью истечения, 2- угол ко­нусности сопла. Для безударности входа сопла область критического сечения рекомендуется выполнять по дуге радиуса R = (1— 0,75)d*. Если положить, что кроме потерь на неравномерность потока и трения других нет, то теоретический коэффициент сопла:



    будет иметь экстремум при некотором угле конусности. Действительно, при увеличении угла конусности потери непараллельности растут, потери трения уменьшаются, рис.40.


    1   2   3   4   5   6   7   8   9   ...   16


    написать администратору сайта