Главная страница
Навигация по странице:

  • 5.6. Водородная энергетика

  • 5.7. Вторичные энергоресурсы

  • 5.8. Биомасса как возобновляемый источник энергии

  • Прямое сжигание биомассы

  • 2. Получение биогаза

  • Общая Энергетика - Учебное Пособие [2009]. В. П. Казанцев Общая энергетика


    Скачать 7.69 Mb.
    НазваниеВ. П. Казанцев Общая энергетика
    АнкорОбщая Энергетика - Учебное Пособие [2009].doc
    Дата22.04.2017
    Размер7.69 Mb.
    Формат файлаdoc
    Имя файлаОбщая Энергетика - Учебное Пособие [2009].doc
    ТипДокументы
    #5273
    страница16 из 17
    1   ...   9   10   11   12   13   14   15   16   17

    Среди машинных преобразователей наиболее известны паро– и газотурбинные установки, работающие на всех наземных тепловых и атомных электростанциях. Пригодны они и для работы в космосе, но в этом случае необходим специальный теплообменник–излучатель, выполняющий роль конденсатора пара. При этом если в наземной паротурбинной установке теплота конденсации отводится циркулирующей водой, то в условиях космоса отвод тепла отработавшего в турбине пара или газа (если это газовая турбина) возможен только излучением. Поэтому энергоустановка должна быть замкнутой. Принципиальная схема замкнутой газотурбинной установки СКЭС показана на рис. 5.3,а. Здесь солнечная радиация, собранная концентратором 1 на поверхности солнечного котла 2, нагревает рабочее тело — инертный газ и под давлением, создаваемым компрессором 3, подает горячий газ на лопатки газовой турбины 4, приводящей в действие электрогенератор переменного тока 5. Отработавший в турбине газ поступает сначала в регенератор 6, где подогревает рабочий газ после компрессора, облегчая тем самым работу основного нагревателя – солнечного котла, а затем охлаждается в холодильнике–излучателе 7. Наземные испытания трехкиловаттной газотурбинной установки были проведены в 1977 году в Физико–техническом институте АН Узбекистана. КПД этой установки составил 11 %.


    Возможно создание энергоустановки с паротурбинным преобразователем (рис. 5.3, б). Здесь собранная концентратором 1 солнечная энергия нагревает в солнечном котле 2 рабочую жидкость, переходящую в насыщенный, а затем и в перегретый пар, который расширяется в турбине 4, соединяющей с электрогенератором 5. После конденсации в холодильнике–излучателе 7 отработавшего в турбине пара его конденсат, сжимаемый насосом 8, вновь поступает в котел. Поскольку подвод и отвод тепла в этой установке осуществляются изотермически, средние температуры подвода и отвода оказываются выше, чем в газотурбинной установке (при одинаковых температурах подвода тепла), а удельные площади излучателя и концентратора могут оказаться меньше, чем в газотурбинной установке.




    Рис. 5.3. Принципиальные схемы газотурбинной (а)

    и паротурбинной (б) солнечных электростанций
    На острове Сицилия еще в начале 80–х годов дала ток СЭС мощностью 1 МВт. Принцип ее работы башенный: зеркала фокусируют солнечные лучи на приемнике–теплогенераторе, расположенном на 50–метровой высоте. Там вырабатывается пар с температурой более 600 °С, который приводит в действие традиционную паровую турбину с подключенным к ней генератором тока. Неоспоримо доказано, что на таком принципе могут работать электростанции мощностью до 20 МВт, а также и гораздо больше, если группировать подобные модули, подсоединяя их друг к другу. На аналогичном принципе работает Крымская солнечная электростанция мощностью 5 МВт.

    Несколько иного типа электростанция в Алькерии на юге Испании. Ее отличие в том, что сфокусированное на вершину башни солнечное тепло приводит в движение натриевый круговорот, а тот уже нагревает воду до образования пара. У такого варианта ряд преимуществ. Натриевый аккумулятор тепла обеспечивает не только непрерывную работу электростанции, но дает возможность частично накапливать избыточную энергию для работы в пасмурную погоду и ночью. Мощность испанской станции имеет всего 0,5 МВт. Но на ее принципе могут быть созданы куда более крупные – до 300 МВт. В установках этого типа концентрация солнечной анергии настолько высока, что КПД паротурбинного процесса здесь ничуть не хуже, чем на традиционных тепловых электростанциях.

    Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Но, тем не менее, станции–преобразователи солнечной энергии строят и они работают.

    От недостатков, присущих машинным преобразователям, в известной степени свободны энергоустановки с так называемыми безмашинными преобразователями: термоэлектрическими, термоэмиссионными и фотоэлектрическими (солнечные батареи), непосредственно преобразующими энергию солнечного излучения в электрический ток.

    Термоэлектрогенераторы (ТЭГ) основаны на открытом в 1821 году немецким физиком Т.И. Зеебеком термоэлектрическом эффекте, состоящем в возникновении на концах двух разнородных проводников термо–ЭДС, если концы этих проводников находятся при разной температуре.

    Открытый эффект первоначально использовался в термометрии для измерения температур. Энергетический КПД таких устройств–термопар, подразумевающий отношение электрической мощности, выделяемой на нагрузке, к подведенному теплу, составлял доли процента. Только после того, как академик А.Ф. Иоффе предложил использовать для изготовления термоэлементов вместо металлов полупроводники, стало возможным энергетическое использование термоэлектрического эффекта, и в 1940–1941 годах в Ленинградском физико–техническом институте был создан первый в мире полупроводниковый термоэлектрогенератор. В 40–50–е годы была разработана теория термоэлектрического эффекта в полупроводниках, а также синтезированы весьма эффективные (по сей день) термоэлектрические материалы.

    Термоэмиссионный преобразователь (ТЭП) явился следствием открытого Эдисоном явления, получившего название термоэлектронной эмиссии. Подобно термоэлектричеству, оно долгое время применялось в технике слабых токов. Позднее ученые обратили внимание на возможности использования метода для преобразования тепла в электричество.
    По мнению специалистов, наиболее привлекательным является создание фотоэлектрических преобразователей (ФЭП) солнечной энергии (использовании фотоэлектрического эффекта в полупроводниках). Это один из наиболее распространенных ныне и перспективных способов преобразования света – фотоны передают свою энергию электронам в полупроводниках, и в нагрузке возникает электрический ток.

    К сожалению, производство полупроводниковых фотоэлементов недешево и эффективность наземных СЭС мала из-за неустойчивых атмосферных условий и, соответственно, относительно сла­бой интенсивности солнечной радиации и колебаний, обусловленных чередованием дня и ночи. Известные пути преодоления этих препятствий создание аккумуляторов энергии и комбинированных солнечно–топливных или солнечно–атомных энергосистем, а также применение концентрирующих солнечную энергию устройств, повышающих ее плотность. К сожалению, эти решения не нашли широкого применения особенно в странах, расположенных в высоких широтах, из-за неконкурентоспособности с традиционными электростанциями.

    КПД современных солнечных батарей достигает 1315 %. Наиболее перспективным для создания преобразователей СКЭС ультратонкие солнечные элементы, имеющие КПД порядка 15 % при удельных характеристиках 1 кВт/м2 и 200 Вт/кг. Для создания СКЭС мощностью 10 ГВт площадь солнечных батарей составила бы 50 км2 при весе 10 тыс. тонн.

    Тем не менее, солнечные фотоэлементы уже сегодня находят свое специфическое применение. Они оказались практически незаменимыми источниками электрического тока в ракетах, спутниках и автоматических межпланетных станциях, а на Земле – в первую очередь для питания телефонных сетей в не электрифицированных районах или же для малых потребителей тока (электромобили, радио­аппаратура, электрические бритвы и т.п.). Полупроводниковые солнечные батареи впервые были установлены на третьем советском искусственном спут­нике Земли, запущенном на орбиту 15 мая 1958 года.

    С конца 60–х годов началась интенсивная теоретическая и экспериментальная проработка различных вариантов мощных СКЭС на геосинхронной орбите и отдельных элементов их конструкции, но сегодня эти сооружения все еще относятся к наиболее сложным и самым дорогостоящим техническим методам использования гелиоэнергии.
    5.6. Водородная энергетика
    Водород, самый простой и легкий из всех химических элементов, можно считать идеальным топливом. Он имеется всюду, где есть вода. При сжигании водорода образуется вода, которую можно снова разложить на водород и кислород, причем этот процесс не вызывает никакого загрязнения окружающей среды. Водородное пламя не выделяет в атмосферу продуктов, которыми неизбежно сопровождается горение любых других видов топлива: углекислого газа, окиси углерода, сернистого газа, углеводородов, золы, органических перекисей и т.п. Водород обладает очень высокой теплотворной способностью: при сжигании 1 г водорода получается 120 Дж тепловой энергии, а при сжигании 1 г бензина – только 47 Дж.

    Водород можно транспортировать и распределять по трубопроводам, как природный газ. Трубопроводный транспорт топлива – самый дешевый способ дальней передачи энергии. К тому же трубопроводы прокладываются под землей, что не нарушает ландшафта. Газопроводы занимают меньше земельной площади, чем воздушные электрические линии. Передача энергии в форме газообразного водорода по трубопроводу диаметром 750 мм на расстояние свыше 80 км обойдется дешевле, чем передача того же количества энергии в форме переменного тока по подземному кабелю. На расстояниях больше 450 км трубопроводный транспорт водорода дешевле, чем использование воздушной линии электропередачи постоянного тока.

    Водород – синтетическое топливо. Его можно получать из угля, нефти, природного газа, либо путем разложения воды. Согласно оценкам, сегодня в мире производят и потребляют около 20 млн. т водорода в год. Половина этого количества расходуется на производство аммиака и удобрений, а остальное – на удаление серы из газообразного топлива, в металлургии, для гидрогенизации угля и других топлив. В современной экономике водород остается скорее химическим, нежели энергетическим сырьем.

    Сейчас водород производят главным образом (около 80 %) из нефти. Но это неэкономичный для энергети­ки процесс, потому что энергия, получаемая из такого водорода, обходится в 3,5 раза дороже, чем энергия от сжигания бензина. К тому же себестоимость такого во­дорода постоянно возрастает по мере повышения цен на нефть.

    Небольшое количество водорода получают путем электролиза. Производство водорода методом электро­лиза воды обходится дороже, чем выработка его из нефти, но оно будет расширяться и с развитием атом­ной энергетики станет дешевле. Вблизи атомных элек­тростанций можно разместить станции электролиза воды, где вся энергия, выработанная электростанцией, пойдет на разложение воды с образованием водорода. Правда, цена электролитического водорода останется выше цены электрического тока, зато расходы на тран­спортировку и распределение водорода настолько малы, что окончательная цена для потребителя будет вполне приемлема по сравнению с ценой электроэнергии.

    Сегодня исследователи интенсивно работают над удешевлением технологических процессов крупнотон­нажного производства водорода за счет более эффек­тивного разложения воды, используя высокотемпера­турный электролиз водяного пара, применяя катализа­торы, полунепроницаемые мембраны и т.п.

    Большое внимание уделяют термолитическому мето­ду, который (в перспективе) заключается в разложе­нии воды на водород и кислород при температуре 2500 °С. Но такой температурный предел инженеры еще не освоили в больших технологических агрегатах, в том числе и работающих на атомной энергии (в высо­котемпературных реакторах пока рассчитывают лишь на температуру около 1000 °С). Поэтому исследовате­ли стремятся разработать процессы, протекающие в не­сколько стадий, что позволило бы вырабатывать водо­род в температурных интервалах ниже 1000 °С.

    В 1969 году в итальянском отделении «Евратома» была пущена в эксплуатацию установка для термолитического получения водорода, работающая с КПД 55 % при температуре 730 °С. При этом использовали бромистый кальций, воду и ртуть. Вода в установке разлагается на водород и кислород, а остальные реаген­ты циркулируют в повторных циклах. Другие – скон­струированные установки работали – при температурах 700–800 °С. Как полагают, высокотемпературные реак­торы позволят поднять КПД таких процессов до 85 %. Сегодня мы не в состоянии точно предсказать, сколько будет стоить водород. Но если учесть, что цены всех современных видов энергии проявляют тен­денцию к росту, можно предположить, что в долго­срочной перспективе энергия в форме водорода будет обходиться дешевле, чем в форме природного газа, а возможно, и в форме электрического тока.

    Когда водород станет столь же доступным топливом, как сегодня природный газ, он сможет всюду его заме­нить. Водород можно будет сжигать в кухонных плитах, в водонагревателях и отопительных печах, снабженных горелками, которые почти или совсем не будут отли­чаться от современных горелок, применяемых для сжи­гания природного газа.

    При сжигании водорода не остается никаких вредных продуктов сгорания. Поэтому отпадает нужда в системах отвода этих продуктов для отопительных устройств, работающих на водороде, Более того, образующийся при горении водяной пар можно считать полезным продуктом — он увлажняет воздух (как известно, в современных квартирах с цен­тральным отоплением воздух слишком сух). Отсут­ствие дымоходов не только способствует экономии строительных расходов, но и повышает КПД отопле­ния на 30 %.

    Водород может служить и химическим сырьем во многих отраслях промышленности, например при про­изводстве удобрений и продуктов питания, в металлур­гии и нефтехимии. Его можно использовать и для вы­работки электроэнергии на местных тепловых электро­станциях.
    5.7. Вторичные энергоресурсы
    Прогрессивное направление и развитие промышленности – создание безотходных производств, по технологии которых используются все элементы производственного процесса, а также энергия реакции технологических процессов для получения полезной продукции. Однако технологические процессы сопровождаются материальными и энергетическими отходами.

    На технологический процесс расходуется определенное количество топлива, электрической и тепловой энергии. Кроме того, сами технологические процессы протекают с выделением различных энергетических ресурсов – теплоносителей, горючих продуктов, газов и жидкостей с избыточным давлением. Далеко не все количество этой энергии используется в технологическом процессе или агрегате; такие неиспользуемые в процессе (агрегате) энергетические отходы называютвторичными энергетическими ресурсами (ВЭР).

    Количество образующихся вторичных энергетических ресурсов достаточно велико. Поэтому полезное их использование – одно из важнейших направлений экономии энергетических ресурсов. Утилизация этих ресурсов связана с определенными затратами, в том числе и капитальными, поэтому возникает необходимость экономической оценки целесообразности такой утилизации.

    Под ВЭР понимают энергетический потенциал продукции, отходов, побочных и промежуточных продуктов, образующихся при технологических процессах, в агрегатах и установках, который не используется в самом агрегате, но может быть частично или полностью использоваться для энергосбережения других агрегатов (процессов).

    ВЭР промышленности делятся на три основные группы:

    1) горючие;

    2) тепловые;

    3) избыточного давления.

    Горючие (топливные) ВЭР – химическая энергия отходов технологических процессов химической и термохимической переработки сырья. К таким отходам относят:

    • побочные горючие газы плавильных печей (доменный газ, газ шахтных печей, конверторный газ и т.д.);

    • горючие отходы процессов химической и термохимической переработки углеродистого сырья (синтез, отходы электродного производства, горючие газы при получении исходного сырья для пластмасс и т.д.);

    • твердые и жидкие топливные отходы, непригодные для дальнейшей технологической переработки;

    • отходы деревообработки, целлюлозно–бумажного производства.

    Тепловые ВЭР – это тепло отходящих газов при сжигании топлива, тепло воды или воздуха, использованных для охлаждения технологических агрегатов и установок, теплоотходов производства, например, горячих металлургических шлаков.

    Одним из весьма перспективных направлений использования тепла слабо нагретых вод является применение так называемых тепловых насосов, работающих по тому же принципу, что и компрессорный агрегат в домашнем холодильнике. Тепловой насос отбирает тепло от сбросной воды и аккумулирует тепловую энергию при температуре около 90 °С, иными словами, эта энергия становится пригодной для использования в системах отопления и вентиляции.

    Следует отметить, что пока еще большое количество тепловой энергии теряется при так называемом "сбросе" промышленных сточных вод, имеющих температуру 40–60 °С и более, при отводе дымовых газов котельных установок с температурой 200–300 °С, а также в вентиляционных системах промышленных и общественных зданий, животноводческих комплексов (температура удаляемого из этих помещений воздуха не менее 20–25 °С).

    Особенно значительны объемы тепловых вторичных ресурсов в черной и цветной металлургии, в химической, газовой и других отраслях промышленности.

    Вторичные энергетические ресурсы избыточного давления преобразуются в механическую энергию, которая или непосредственно используется для привода механизмов и машин или преобразуется в электрическую энергию.

    Примером применения этих ресурсов может служить использование избыточного давления доменного газа в утилизационных бескомпрессорных турбинах для выработки электрической энергии.

    ВЭР имеются также на электрических станциях и представляют собой тепловые отходы или потери тепла, получаемые в процессе энергопроизводства. На гидроэлектростанциях такими тепловыми отходами являются только тепловыделения в гидрогенераторах станций.

    ВЭР электростанций по своей величине значительно меньше, чем на промышленных предприятиях, и непрерывно уменьшаются по мере повышения экономичности энергопроизводства.

    Различают следующие основные направления использования потребителями ВЭР:

    • топливное – непосредственно в качестве топлива;

    • тепловое – непосредственно в качестве тепла или выработки тепла в утилизационных установках;

    • силовое – использование электрической или механической энергии, вырабатываемой из ВЭР в утилизационных установках;

    • комбинированное, т.е. тепловая и электрическая (механическая) энергия, одновременно вырабатываемые из ВЭР в утилизационных установках.

    Показатели использования ВЭР.

    Для оценки выхода и использования ВЭР применяются следующие показатели:

    1) Выход ВЭР – количество ВЭР, образующихся в процессе
    производства в данном технологическом агрегате за единицу времени.

    1. Выработка энергии за счет ВЭР – количество энергии, получаемое при использовании ВЭР в утилизационной установке. Выработка энергии отличается от ее выхода на величину потерь тепла в утилизационной установке. Различают возможную, экономически целесообразную, планируемую и фактическую выработки энергии.

    2. Использование ВЭР – количество используемой у потребителей энергии, вырабатываемой за счет ВЭР в утилизационных установках.

    4) Экономия топлива за счет ВЭР – количество первичного топлива, которое экономится в результате использования ВЭР.
    5.8. Биомасса как возобновляемый источник энергии
    Эффективным возобновляемым источником энергии является биомасса. Ресурсы биомассы в различных видах есть почти во всех регионах мира, и почти в каждом из них может быть налажена ее переработка в энергию и топливо. На современном уровне за счет биомассы можно перекрыть 6–10 % от общего количества энергетических потребностей промышленно развитых стран.

    Биомасса сегодня является четвертым по значению топливом в мире, давая ежегодно 1250 млн. т условного топлива энергии и составляя около 15 % всех первичных энергоносителей (в развивающихся странах – до 38 %).

    Россия обладает 20 % мировых лесных запасов, но в лесу ежегодно остается до 500 млн. кубометров перезрелой древесины, которая захламляет леса, увеличивает пожарную опасность. На различных стадиях переработки древесины появляются древесные отходы, которые составляют около 40 % от исходного сырья. В России имеется достаточная сырьевая база для использования древесины в качестве энергетического топлива.

    Растительная биомасса, в том числе древесное сырье, является единственным видом возобновляемого ресурса. При разумном использовании этого сырья оно может обеспечить потребности современной цивилизации как в промышленной продукции (бумага, стройматериалы, мебель), так и в энергетическом топливе. Ежегодная потребность мировой энергетики составляет 10 млрд. тонн условного топлива. Прирост растительной биомассы может полностью удовлетворить потребности человечества, поскольку ежегодно на поверхности Земли выращивается порядка 60 млрд. м3, что эквивалентно 30 млрд. т угля.

    Рассмотрим направления использования биомассы.

    1. Прямое сжигание биомассы

    Биомасса, главным образом в форме древесного топлива, является основным источником энергии приблизительно для 2 млрд. чел. В целом биомасса дает седьмую часть мирового объема топлива, а по количеству полученной энергии занимает наряду с природным газом третье место. Из биомассы получают в 4 раза больше энергии, чем дает ядерная энергетика.

    Древесное топливо относится к экологически чистым видам топлива, минимально загрязняющим окружающую среду. В нем практически отсутствует сера, и содержание азота не превышает 1 % от массы, то есть при сжигании древесины образуется очень мало вредных окислов азота и серы.

    Существует два способа использования древесины в качестве топлива  – прямое одностадийное сжигание в слоевых топках на колосниковой решетке и двухстадийное сжигание, включающее предварительное превращение твердой древесины в газовое топливо с последующим сжиганием газа в различных устройствах (камерных топках, паровых и водогрейных котлах, в химических печах, в двигателях внутреннего сгорания, в бытовых печах и газовых плитах). Область использования газового топлива значительно шире, технологичнее, легче автоматизируется, меньше загрязняет окружающую среду.

    В зависимости от способа подвода теплоты различают два метода газификации: автотермический и аллотермический. При осуществлении автотермического процесса газификации теплота, необходимая для осуществления реакций, получается в процессе сжигания части исходного топлива внутри аппарата – газогенератора (газификатора). В настоящее время генераторы автотермического метода газификации наиболее конструктивно разработаны и получили широкое распространение.

    Газовое топливо, получаемое в газогенераторах на воздушном дутье, может быть использовано в стационарных топочных устройствах, газовых турбинах и двигателях внутреннего сгорания вместо жидкого топлива и природного газа. В аллотермических газогенераторах необходимая для процесса нагревания исходного топлива и процесса газификации теплота подается внутрь газогенератора или через поверхность стенок, или путем подачи нагретого до 800–1000 °С газового теплоносителя.

    Аллотермические газогенераторы в настоящее время находятся в стадии экспериментальных исследований и опытной проверки. Газовое топливо, получаемое с их помощью, может быть использовано для бытовых нужд, для заправки газовых баллонов и в качестве топлива для транспортных средств, при баллонной системе хранения.

    2. Получение биогаза

    В нетрадиционной энергетике особое место занимает переработка биомассы (органических сельскохозяйственных и бытовых отходов) метановым брожением с получением биогаза, содержащего около 70 % метана, и обеззараженных органических удобрений. Чрезвычайно важна утилизация биомассы в сельском хозяйстве, где на различные технологические нужды расходуется большое количество топлива и непрерывно растет потребность в высококачественных удобрениях. Всего в мире в настоящее время используется или разрабатывается около 60–ти разновидностей биогазовых технологий.

    Биогаз – это смесь метана и углекислого газа, образующаяся в процессе анаэробного сбраживания в специальных реакторах – метантанках, устроенных и управляемых таким образом, чтобы обеспечить максимальное выделение метана. Энергия, получаемая при сжигании биогаза, может достигать 60–90 % энергии исходного материала. Очень важное достоинство процесса переработки биомассы состоит в том, что в ее отходах содержится значительно меньше болезнетворных микроорганизмов, чем в исходном материале.

    Получение биогаза экономически оправдано и является предпочтительным при переработке постоянного потока отходов (стоки животноводческих ферм, скотобоен, растительных отходов и т.д.). Экономичность заключается в том, что нет нужды в предварительном сборе отходов, в организации и управлении их подачей; при этом известно, сколько и когда будет получено отходов.

    Получение биогаза, возможное в установках самых разных масштабов, особенно эффективно на агропромышленных комплексах, где существует возможность полного экологического цикла. Биогаз используют для освещения, отопления, приготовления пищи, для приведения в действие механизмов, транспорта, электрогенераторов.

    Подсчитано, что годовая потребность в биогазе для обогрева жилого дома составляет около 45 м3 на 1 м2 жилой площади, суточное потребление при подогреве воды для 100 голов крупного рогатого скота – 5–6 м3. Потребление биогаза при сушке сена (1 т) влажностью 40 % равно 100 м3, 1 т зерна – 15 м3, для получения 1 кВт·ч электроэнергии – 0,7–0,8 м3.
    1   ...   9   10   11   12   13   14   15   16   17


    написать администратору сайта