Главная страница
Навигация по странице:

  • 3.2.4. Тепловые схемы АЭС

  • 3.2.5. Технологические схемы и компоновка АЭС

  • Общая Энергетика - Учебное Пособие [2009]. В. П. Казанцев Общая энергетика


    Скачать 7.69 Mb.
    НазваниеВ. П. Казанцев Общая энергетика
    АнкорОбщая Энергетика - Учебное Пособие [2009].doc
    Дата22.04.2017
    Размер7.69 Mb.
    Формат файлаdoc
    Имя файлаОбщая Энергетика - Учебное Пособие [2009].doc
    ТипДокументы
    #5273
    страница11 из 17
    1   ...   7   8   9   10   11   12   13   14   ...   17

    3.2.3. Ядерное топливо
    Топливом для АЭС является ядерное топливо, содержащееся в ТВЭЛах, представляющих собой тепловыделяющие сборки (ТВС). Для современных мощных реакторов загрузка составляет от 40 до 190 тонн. Особенность процесса в том, что масса выгружаемых после отработки определенного срока ТВС такая же, как и масса свежезагружаемых. Происходит лишь частичная замена ядерного горючего на продукты деления. Выгружаемое из реактора топливо имеет все еще значительную ценность. Поэтому для АЭС расход ядерного горючего не является характерной величиной, а степень использования внутриядерной энергии характеризуется глубиной выгорания.

    К ядерному топливу относят делящиеся изотопы тяжелых элементов. Делящимися изотопами называются нуклиды, которые делятся при взаимодействии с низкоэнергетическими нейтронами.

    К таким изотопам относятся U235, U233, Рu239 и Рu241, среди которых только первый существует в природе. Период полураспа­да остальных изотопов сравнительно мал, и за время, прошедшее с момента образова­ния во Вселенной химических элементов в процессе ядерного синтеза, они успели полностью распасться.

    U233 образуется при захвате нейтронов сырьевым изотопом Th232, единственным стабильным изотопом тория. Торий не имеет делящихся нуклидов и является только воспроизводящим материалом.

    Рu239 образуется аналогично из сырьевого изотопа U238. Более тяжелый делящийся изотоп Рu241 образуется в результате двух по­следовательных захватов нейтронов ядром Рu239.

    Хотя при начальном образовании вещества во Вселенной относительные коли­чества изотопов U235 и U238 в естественном уране должны быть примерно одинаковыми, меньший период полураспада первого из них (0,71·109 лет по сравнению с 4,5·109 лет) привел к тому, что к настоящему времени содержание U235 в естественном уране очень сильно снизилось.

    Вопрос об использовании плутония для сокращения потребления естественного урана должен решаться с учетом того обстоятельства, что стоимость его извлечения из облученного топлива достаточно высока. Это связано как с высоким уровнем радиоак­тивности отработанного топлива, так и с высокой токсичностью самого плутония.

    Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворе­ния быстро растущих потребностей в топ­ливе. Кроме того, необходимо учиты­вать все увеличивающийся объем потреб­ления угля и нефти для технологических целей мировой химической промышленности, которая становится серьезным конкурентом тепло­вых электростанций. Несмотря на откры­тие новых месторождений органического топ­лива и совершенствование способов его добычи, в мире наблюдается тенденция к относительному увеличению его стоимости. Это создает наиболее тяжелые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, которая уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.
    3.2.4. Тепловые схемы АЭС
    В любой АЭС различают теплоноситель и рабочее тело. Рабочее тело – это среда, совершающая работу, преобразуя тепловую энергию в механическую. Рабочим телом обычно является водяной пар. Контур рабочего тела всегда замкнут и добавочная вода в него поступает лишь в небольших количествах.

    Назначение теплоносителя на АЭС – отводить тепло, выделяющееся на реакторе. Для предотвращения отложений на тепловыделяющих элементах необходима высокая чистота теплоносителя. Поэтому для него также необходим замкнутый контур, тем более что теплоноситель реактора всегда радиоактивен.

    АЭС называется одноконтурной, если контуры теплоносителя и рабочего тела не разделены. Преимущества этой схемы: простота и большая экономичность по сравнению с 2–х и 3–х контурными схемами. Недостаток – все оборудование работает в радиационно–активных условиях.

    АЭС называется двухконтурной, если контуры теплоносителя и рабочее тело разделены. Контур теплоносителя – первый контур, контур рабочего тела – второй. Преимущества: оборудование не работает в радиационно–активных условиях. Недостаток: более низкая экономичность и более высокая сложность по сравнению с одноконтурной схемой.

    АЭС называется трехконтурной, если помимо раздельных контуров теплоносителя и рабочего тела присутствует также и промежуточный контур.

    Промежуточный контур призван предотвратить опасность выброса радиоактивных веществ в случае, если давление в первом контуре выше, чем во втором, и возможно перетекание теплоносителя, вызывающее радиоактивность второго контура, если теплоноситель (например, металлический натрий) интенсивно взаимодействует с паром и водой.

    На АЭС, работающей по одноконтурной схеме (рис. 3.21, а), пар образуется в активной зоне реактора и оттуда направляется в турбину.

    В некоторых случаях до поступления в турбину пар подвергается перегреву в перегревательных каналах реактора. Одноконтурная схема наиболее проста. Однако образующийся в реакторе пар радиоактивен, поэтому большая часть оборудования АЭС должна иметь защиту от излучений.

    В процессе работы электростанции в паропроводах, турбине и других элементах оборудования могут скапливаться выносимые из реактора с паром твердые вещества (содержащиеся в воде примеси, продукты коррозии), обладающие наведенной активностью, что затрудняет контроль оборудования и его ремонт.

    По двухконтурной и трехконтурной схемам (рис. 3.21, б и в) отвод теплоты из реактора осуществляется теплоносителем, который затем передает теплоту рабочей среде непосредственно или через теплоноситель промежуточного контура. На АЭС, работающих по двухконтурной или трехконтурной схеме, рабочая среда и теплоноситель второго контура в нормальных условиях нерадиоактивны, поэтому эксплуатация электростанций существенно облегчается. Кроме того, продукты коррозии паропроводов, конденсаторов и турбинного тракта не попадают в реактор. Однако капитальные затраты в этом случае значительно выше, особенно при трехконтурной схеме.



    Рис. 3.21. Одноконтурная (а), двухконтурная (б) и трехконтурная (в) тепловые схемы АЭС: 1 – реактор; 2 – промежуточный теплообменник; 3 – парогенератор, 4 – турбогенератор; 5 – конденсатор; 6 – конденсатный насос; 7 – пар от отбора; 8 – пар на регенеративный подогреватель; 9, 13 – регенеративные подогреватели низкого и высокого давления; 10 – деаэратор; 11 – пар на деаэратор;

    12 – питательный насос
    Такие схемы следует применять, когда вероятность контакта активного теплоносителя с водой должна быть полностью исключена, например, при использовании в качестве теплоносителя жидкого натрия, так как его контакт с водой может привести к крупной аварии. В трактах АЭС, работающих по двухконтурной схеме, даже при небольших нарушениях плотности возможен контакт активного натрия с водой, и аварию ликвидировать было бы довольно трудно. При трехконтурной схеме контакт активного натрия с водой исключен.

    Во всех приведенных на рис. 3.21 схемах конденсат после конденсатора турбины проходит систему регенеративного подогрева, которая, по существу, не отличается от применяемой на обычных тепловых электростанциях.

    АЭС, производящие электроэнергию и тепло, так же, как и ТЭЦ, могут иметь турбины с противодавлением, конденсацией и регулируемыми отборами. На рис. 3.22 представлены четыре наиболее распространенные тепловые схемы АТЭЦ, снабжающие потребителей и электрической, и тепловой энергией.

    Эффективна также схема, в которой отвод теплоты на теплофикацию осуществляется от теплоносителя, уже охлажденного в парогенераторе (ПГ). Такую схему можно применять как в сочетании с отбором теплоты от турбины, так и при турбинах чисто конденсационного типа. Чем выше отвод теплоты в теплообменнике, тем ниже температура теплоносителя на входе в реактор и больше его тепловая мощность. Так как капитальные затраты по реакторному залу остаются при этом неизменными (а реакторный зал – один из наиболее дорогостоящих элементов АЭС), то экономические показатели станции улучшаются.

    В атомной энергетике находят применение также схемы, в которых реактор используется только для выработки теплоты (теплофикации). На атомных станциях теплоснабжения реактор работает при низких температурах, и его можно изготовить из относительно недорогих материалов. Эта схема (см. рис. 3.22, г) относительно проста, легко регулируется, и в ряде случаев может оказаться экономически выгодной.

    Рис. 3.22. Упрощенная тепловая схема АТЭЦ с турбогенератором

    с противодавлением (а), с конденсацией и промежуточным отбором пара (б), теплообменником в первом контуре (в), а также схема установки для централизованного теплоснабжения (г): 1 – реактор; 2 – парогенератор, 2' – теплообменник первого контура ТП; 3 – РОУ; 4 – турбогенератор; 5 – пар в теплообменник контура теплового потребителя (ТП); 6 – конденсатор; 7 – конденсатный насос; 8 – конденсат из контура ТП; 8' – охлажденная вода из теплообменника ТП; 9 – пар на регенеративный подогрев и в деаэратор; 10 – система регенеративного подогрева конденсата и питательной воды; 11 –циркуляционный насос; 12 – теплообменник
    Пар или горячая вода, передающие теплоту потребителю, ни в коей мере не должны быть радиоактивными. Можно полагать, что крупные АТЭЦ в основном не будут работать по одноконтурным схемам. Однако даже при двухконтурной схеме на станциях с водяным теплоносителем прямой отпуск пара потребителю из отборов турбины недопустим, так как при появлении протечек в ПГ радиоактивный пар может попасть к потребителю.

    На АЭС теплота может поступать к тепловому потребителю (ТП) с паром от паропреобразователей и с горячей водой от сетевых подогревательных установок. На рис. 3.23 приведена схема подвода теплоты тепловому потребителю на ACT. Теплообменники первого контура ТП (второго контура ACT) размещены в корпусе реактора. На блоках ACT мощностью 500 МВт (АСТ–500), построенных в нашей стране, в контуре реактора давление равно 1,6 МПа, в первом контуре теплоносителя 1,2 МПа, а в линиях, подающих горячую воду потребителю теплоты, – 1,6 МПа.



    Рис. 3.23. Упрощенная схема подвода теплоты к тепловому

    потребителю на ACT: 1 – реактор; 2 – теплообменник контура

    теплового потребителя (сетевой подогреватель); 3 – ТП;

    4 – циркуляционный насос; 5 – сетевой насос
    Так как это давление выше, чем в промежуточном контуре (между контурами реактора и теплового потребителя), возможность попадания радиоактивной среды к ТП при появлении неплотностей исключена.

    В схеме, изображенной на рис. 3.22, в, в промежуточном контуре (между теплообменником 12 и теплообменником контура ТП) также следует поддерживать более низкое давление, чем в контуре ТП, чтобы при появлении неплотностей не было протечек в контур теплового потребителя.

    Аварийность оборудования на АЭС никак не выше, чем на обычных электростанциях. Однако последствия некоторых аварий, сопровождающихся выбросом радиоактивных элементов (теплоносителя, радиоактивных газов, продуктов разрушения тепловыделяющих элементов), могут быть весьма тяжелыми. Поэтому в последние годы большое внимание уделялось созданию такой конструкции реактора и схемы контура теплоносителя, при которых выброс радиоактивных веществ полностью исключен (АСТ–500 относится к первому поколению таких установок).

    Сопоставляя тепловые схемы электростанций на органическом и ядерном топливах легко заметить, что контуры АЭС всегда замкнуты, в то время как газовый контур обычной ТЭС всегда разомкнут. При разомкнутой схеме температура выбрасываемого в окружающую среду отработавшего теплоносителя выше температуры окружающей среды. Поэтому в тепловом отношении схема с замкнутым контуром теплоносителя всегда экономичнее, чем схема с разомкнутым контуром.

    Таким образом, применение схем с замкнутым контуром теплоносителя на АЭС не только необходимо, но и целесообразно, так как тепловая экономичность цикла при этом возрастает. Кроме того, следует иметь в виду, что теплоноситель АЭС представляет определенную ценность (иногда его стоимость сравнительно велика).
    3.2.5. Технологические схемы и компоновка АЭС
    Технологические схемы АЭС весьма разнообразны и определяются как типом реактора, так и числом контуров. Технологическая схема и компоновка оборудования первого контура двухконтурной АЭС с реактором на тепловых нейтронах показана на рис. 3.24.

    Ядерное топливо, находящееся в ТВЭЛах определенной формы, доставляется в контейнерах 1 на электростанцию и с помощью перегрузочного крана 3 загружается в активную зону реактора 4. Кассеты с отработавшими ТВЭЛами помещаются в бассейн 2, где выдерживаются в течение определенного времени. Когда радиоактивность горючего и материала кассет уменьшается до нормативных значений, кассеты в контейнерах вывозят на перерабатывающие заводы.


    Рис. 3.24. Технологическая схема первого контура АЭС:

    1 – контейнер; 2 – бассейн; 3 – перегрузочный кран; 4 – реактор;

    5 – мостовой кран реакторного зала; 6 – главная задвижка; 7 – главный циркуляционный насос; 8 – парогенератор;

    9 – трубопроводы питательной воды;

    10 – трубопроводы вторичного пара
    Теплота, выделяющаяся в реакторе и воспринятая теплоносителем, передается рабочей среде в парогенераторе (ПГ) 8. При трехконтурной схеме между теплоносителем первого контура и рабочей средой имеется еще промежуточный контур (см. рис. 3.21, в).

    Пар, образовавшийся в ПГ (при двухконтурных и трехконтурных схемах) или в реакторе (при одноконтурной схеме), направляется по паропроводу к турбине. На схеме первого контура двухконтурной АЭС (см. рис. 3.24) пар направляется к турбине по трубопроводу 10, питательная вода подается в ПГ по линии 9.

    Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, песок. Оборудование реакторного контура должно быть полностью герме­тичным. Предусматривается система конт­роля мест возможной утечки теплоноси­теля, принимают меры, чтобы появление неплотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружаю­щей местности. Оборудование реакторно­го контура обычно устанавливают в герметичных боксах, которые отделены от остальных помещений АЭС биологической защитой и при работе реактора не обслу­живаются. Радиоактивный воздух и не­большое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС специальной системой вентиляции, в которой для исключения возможно­сти загрязнения атмосферы предусмот­рены очистные фильтры и газгольдеры выдержки. За выполнением правил радиационной безопасности персоналом АЭС сле­дит служба дозиметрического контроля.

    При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек

    ТВЭЛов предусматривают быстрое (в течение несколько секунд) глушение ядер­ной реакции; аварийная система расхо­лаживания имеет автономные источники питания.

    Наличие биологической защиты, систем специальной вентиляции и аварийного расхо­лаживания и службы дозиметрического контро­ля позволяет полностью обезопасить обслуживающий персонал АЭС от вред­ных воздействий радиоактивного облу­чения.

    Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличительная особенность боль­шинства АЭС – использование пара сравнительно низких параметров, на­сыщенного или слабо перегретого.

    При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепари­рующие устройства. Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара. В связи с тем, что теплоноситель и со­держащиеся в нем примеси при прохож­дении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины од­ноконтурных АЭС должно полностью исключать возможность утечки теплоно­сителя. На двухконтурных АЭС с высо­кими параметрами пара подобные требо­вания к оборудованию машинного зала не предъявляются.

    В число специфичных требований к компоновке оборудования АЭС входят: минимально возможная протяженность коммуникаций, связанных с радиоак­тивными средами, повышенная жест­кость фундаментов и несущих конст­рукций реактора, надежная организа­ция вентиляции помещений.

    В реакторном зале размещены: реактор с биологической защитой, запасные ТВЭЛы и аппаратура контроля. АЭС скомпонована по блочному принципу реактор–турбина. В машинном зале рас­положены турбогенераторы и обслужи­вающие их системы. Между машинным и реакторным залами размещены вспомогательное оборудование и системы управле­ния станцией.

    В большинстве промышленно развитых стран (Россия, США, Англия, Фран­ция, Канада, Германия, Япония и др.) мощность действующих и строящихся АЭС к 2000 году доведена до десятков гигаватт. По данным Международного атомного агентства ООН установленная мощность всех АЭС в мире к 2000 году превысила 300 ГВт.

    За годы, прошедшие со времени пуска в эксплуатацию пер­вой АЭС, было создано несколько конструкций ядерных реак­торов, на основе которых началось широкое развитие атомной энергетики в нашей стране.

    АЭС, являющиеся наиболее современным видом электростанций, имеют ряд существенных преимуществ перед другими видами электростанций: при нормальных условиях функционирования они абсолютно не загрязняют окружающую среду, не требуют привязки к источнику сырья и, соответственно, могут быть размещены практически везде. Новые энергоблоки имеют мощность практически равную мощности средней ГЭС, однако коэффициент использования установленной мощности на АЭС (80 %) значительно превышает этот показатель у ГЭС или ТЭС. Об экономичности и эффективности атомных электростанций может говорить тот факт, что из 1 кг урана можно получить столько же теплоты, сколь­ко при сжигании примерно 3000 т каменного угля.

    Значительных недостатков АЭС при нормальных условиях функционирования практически не имеют. Однако нельзя не заметить опасность АЭС при возможных форс–мажорных обстоятельствах: землетрясениях, ураганах и т.п., так как здесь старые модели энергоблоков представляют потенциальную опасность радиационного заражения территорий из–за неконтролируемого перегрева реактора.

    Основной конструктивной деталью гетерогенной активной зо­ны является ТВЭЛ, в значительной мере определяющий ее надежность, размеры и стои­мость. В энергетических реакторах, как правило, используются стержневые ТВЭЛы с то­пливом в виде прессованных таблеток двуокиси урана, заключенных в оболочку из ста­ли или циркониевого сплава. ТВЭЛы для удобства собираются в тепловыделяющие сборки (ТВС), которые устанавливаются в активной зоне ядерного реактора.

    Большие тепловые потоки, проходящие через поверхность ТВЭЛов, и значитель­ная энергонапряженность топлива требуют наличия исключительно высокой стойкости и надежности ТВЭЛов. Помимо этого, условия работы ТВЭЛов осложняются высокой ра­бочей температурой, достигающей 300–600 °С на поверхности оболочки, возможностью тепловых ударов, вибрацией, наличием потока нейтронов (флюенс достигает 102 нейтрон/м2).

    К ТВЭЛам предъявляются высокие технические требования:

    1. простота конструкции;

    1. механическая устойчивость и прочность в потоке теплоносителя, обеспечи­вающая сохранение размеров и герметичности;

    2. малое поглощение нейтронов конструкционным материалом ТВЭЛа и мини­мум конструкционного материала в активной зоне;

    3. отсутствие взаимодействия ядерного топлива и продуктов деления с оболоч­кой ТВЭЛов, теплоносителем и замедлителем при рабочих температурах.

    Геометрическая форма ТВЭЛа должна обеспечивать требуемое соотношение площади поверхности и объема и максимальную интенсивность отвода теплоты тепло­носителем от всей поверхности ТВЭЛа, а также гарантировать большую глубину выго­рания ядерного топлива и высокую степень удержания продуктов деления. ТВЭЛы должны обладать радиационной стойкостью, иметь требуемые размеры и конструкцию, обеспечивающие возможность быстрого проведения перегрузочных операций; обла­дать простотой и экономичностью регенерации ядерного топлива и низкой стоимостью.

    В целях безопасности надежная герметичность оболочек ТВЭЛов должна сохра­няться в течение всего срока работы активной зоны (3–5 лет) и последующего хранения отработавших ТВЭЛов до отправки на переработку (1–3 года). При проектировании ак­тивной зоны необходимо заранее установить и обосновать допустимые пределы повре­ждения ТВЭЛов (количество и степень повреждения). Активная зона проектируется та­ким образом, чтобы при работе на протяжении всего ее расчетного срока службы не превышались установленные пределы повреждения ТВЭЛов. Выполнение указанных требований обеспечивается конструкцией активной зоны, качеством теплоносителем, характеристиками и надежностью системы теплоотвода. В процессе эксплуатации воз­можно нарушение герметичности оболочек отдельных ТВЭЛов. Различают два вида та­кого нарушения: образование микротрещин, через которые газообразные продукты де­ления выходят из ТВЭЛа в теплоноситель (дефект типа газовой плотности); возникнове­ние дефектов, при которых возможен прямой контакт топлива с теплоносителем.

    Условия работы ТВЭЛов в значительной мере определяются конструкцией актив­ной зоны, которая должна обеспечивать проектную геометрию размещения ТВЭЛов и необходимое с точки зрения температурных условий распределение теплоносителя. Через активную зону при работе реактора должен поддерживаться ста­бильный расход теплоносителя, гарантирующего надежный теплоотвод.

    Активная зона должна быть оснащена датчиками внутриреакторного контроля, которые дают инфор­мацию о распределении мощности, нейтронного потока, температурных условиях ТВЭЛов и расходе теплоносителя.

    Активная зона энергетического реактора должна быть спроектирована так, что­бы внутренний механизм взаимодействия нейтронно–физических и теплофизических процессов при любых возмущениях коэффициента размножения устанавливал новый безопасный уровень мощности. Практически безопасность ядерной энергетической установки обеспечивается, с одной стороны, устойчивостью реактора (уменьшением ко­эффициента размножения с ростом температуры и мощности активной зоны), а с дру­гой стороны – надежностью системы автоматического регулирования и защиты.

    С целью обеспечения безопасности конструкция активной зоны и ха­рактеристики ядерного топлива должны исключать возможность образования критиче­ских масс делящихся материалов при разрушении активной зоны и расплавлении ядер­ного топлива. При конструировании активной зоны должна быть предусмотрена воз­можность введения поглотителя нейтронов для прекращения цепной реакции в любых случаях, связанных с нарушением охлаждения активной зоны.

    Активная зона, содержащая большие объемы ядерного топлива для компенсации выгорания, отравления и температурного эффекта, имеет как бы несколько критиче­ских масс. Поэтому каждый критический объем топлива должен быть обеспечен сред­ствами компенсации реактивности. Они должны размещаться в активной зоне таким образом, чтобы исключить возможность возникновения локальных критических масс.
    1   ...   7   8   9   10   11   12   13   14   ...   17


    написать администратору сайта