Главная страница
Навигация по странице:

  • 3.1.5.3. Системы регенеративного подогрева питательной воды и промежуточного перегрева

  • 3.1.5.4. Системы подогрева сетевой воды

  • 3.2. Атомные электростанции 3.2.1. Принцип действия и т ипы атомных электростанций

  • Общая Энергетика - Учебное Пособие [2009]. В. П. Казанцев Общая энергетика


    Скачать 7.69 Mb.
    НазваниеВ. П. Казанцев Общая энергетика
    АнкорОбщая Энергетика - Учебное Пособие [2009].doc
    Дата22.04.2017
    Размер7.69 Mb.
    Формат файлаdoc
    Имя файлаОбщая Энергетика - Учебное Пособие [2009].doc
    ТипДокументы
    #5273
    страница9 из 17
    1   ...   5   6   7   8   9   10   11   12   ...   17

    3.1.5.2. Главные паропроводы

    и питательные трубопроводы ТЭС
    Основу полной тепловой схемы (ПТС) составляют главные трубопроводы ТЭС, к которым относятся главные паропроводы и главные питательные трубопроводы, обеспечивающие главные связи между основным оборудованием – котельными и турбинными агрегатами.

    Выше уже отмечалось, что следует различать блочные ПТС, в которых отсутствуют поперечные связи между энергоблоками, и неблочные ПТС, характеризующиеся наличием поперечных связей для основных потоков пара и воды.

    На рис. 3.13 показана схема главных паропроводов неблочной ТЭС. Такая схема называется секционной схемой с переключательной магистралью. Установленная запорная арматура позволяет вывести в ремонт котел или турбину, отключив их согласно правилам техники безопасности двумя запорными органами. К переключательной линии могут быть подключены резервный котел, а также редукционно–охладительные установки (РОУ) для подачи пара на собственные нужды ТЭС. Схема построена так, чтобы исключить выход из строя всей станции из–за отказа одного запорного органа, и позволяет выделить при необходимости блок котел–турбина или отключить переключательную магистраль для ремонта. К главным паропроводам подсоединена паровая растопочная линия, ведущая к растопочной РОУ. По этой линии при растопке котла до его подключения к переключательной магистрали отводится образующийся пар (продувка пароперегревателя).

    Неблочная схема с переключательной магистралью сохраняется на большинстве действующих ТЭЦ. Энергоблоки выполняются по схемам моноблоков и дубль–блоков. По нормам технологического проектирования рекомендуется применять моноблоки, т.е. блоки с однокорпусными котлами. Дубль–блок—это блок с двухкорпусным котлом, что разрешается для ТЭС, работающих на сланцах и торфе, в энергосистемах небольшой мощности.



    Рис. 3.13. Схема главных паропроводов ТЭС

    с поперечными связями

    К главным питательным трубопроводам относятся трубопроводы питательной воды от напорной стороны питательных насосов до экономайзера котла. По­сле питательного насоса вода по питательному трубопроводу поступает к регенеративным подогревателям высокого давления и узлам питания. Главные питательные задвижки имеют байпасы для регулирования расхода воды при малых нагрузках. Узел питания состоит из задвижки, обратного клапана, измерительной шайбы и регулирующего питательного клапана.
    3.1.5.3. Системы регенеративного подогрева

    питательной воды и промежуточного перегрева
    Тепловая схема ТЭС является схемой пароводяного тракта, в который входит основное оборудование – паровой котел и паровая турбина, а также система регенеративного подогрева питательной воды вместе с трубопроводами и насосами, осуществляющие прокачку воды через цепочку подогревателей и подающим воду для питания котла при необходимом давлении. На рис. 3.14 показана схема регенеративного подогрева с поверхностными подогревателями и тремя насосами, которые должны работать синхронно (например, от общего привода). Конденсатный насос 1 прокачивает основной конденсат из конденсатора 2 через первую группу подогревателей 3 и подает ее во всас второго насоса 4 с необходимым подпором, который обеспечивает работу второго насоса без кавитации.




    Рис. 3.14. Схема регенеративного подогрева

    с поверхностными подогревателями.
    Второй насос прокачивает воду через вторую группу подогревателей 5, в которой осуществляется дополнительный подогрев питательной воды, и подает во всас третьего насоса 6 с необходимым подпором. Третий насос развивает давление, необходимое для питания парового котла.

    Возможны три варианта установки насосов. Ставится только один насос 1, который развивает полное необходимое давление. Повышение энтальпии воды означает существенное снижение расхода энергии на перекачку против варианта трех насосов.

    Вариант установки одного насоса означает, что все подогреватели с водяной стороны оказываются под полным давлением, что усложняет и удорожает всю установку.

    Вариант установки двух насосов (1 и 4) означает, что первая группа подогревателей находится с водяной стороны под низким давлением первого насоса 1; такой насос называется конденсатным, а подогреватели – подогревателями низкого давления (ПНД). Вторая груп­па подогревателей оказывается с водяной стороны под высоким давлением насоса 4; этот насос назы­вается питательным, а подогреватели – подогревателями высокого давления (ПВД).

    В варианте с тремя насосами ПВД с водяной стороны находятся под промежуточным давлением, создаваемым первой ступенью питательного насоса (насос 4), что является преимуществом. Кроме того, в этом варианте повышение энтальпии воды в насосе 6 не вытесняет отбор на регенеративный подогреватель, что имеет место в варианте двух насосов.

    Считается, что варианты двух и трех насосов экономически равноценны.

    Приведенная схема с одними поверхностными подогревателями является бездеаэраторной и пригодна при применении нейтрального водного режима.

    Широко распространены установки, в которых в схему регенеративного подогрева включен деаэратор, представляющий собой смешивающий подогреватель. В этом случае питательный насос ставится после деаэратора (рис. 3.15).

    Система регенеративного подогрева имеет три ПВД с каскадным сливом дренажей в деаэратор и группу из четырех ПНД.


    Рис. 3.15. Схема регенеративного подогрева с деаэратором
    Первые два по ходу конденсата ПНД питаются паром из вакуумных отборов турбины, что в эксплуатации приводит к повышенным присосам воздуха, нарушающего процесс теплоотдачи от конденсирующегося пара. В результате в этих подогревателях имеют место повышенные недогревы пара и пониженная температура конденсата, что приводит к перегрузке третьего ПНД. Перегрузка третьего ПНД вызывает повышенную вибрацию трубного пучка, приводящую к выходу из строя трубок подогревателя. Поэтому целесообразно, чтобы первые два ПНД были смешивающего типа, в которых обеспечивается подогрев до температуры насыщения греющего пара.

    Таким образом, элементами водоподогревательной системы являются регенеративные подогреватели низкого и высокого давления, поверхностного и смешивающего типа, а также насосы – конденсатные и питательные. В систему регенеративного подогрева могут быть включены испарители и их конденсаторы, предназначенные для приготовления дистиллята, используемого для подпитки пароводяного тракта.

    Как известно из термодинамики, регенеративный подогрев рабочего тела повышает КПД тепловых двигателей. В современных турбоустановках имеется обычно 7–9 регенеративных подогревателей как поверхностного, так и смешивающего типа. Благодаря регенеративному подогреву питательной воды на тепловых электростанциях экономится до 14 % топлива.

    Экономичность ТЭС существенно повышается при введении промежуточного перегрева пара. На рис. 3.16 приведены рабочие процессы пара в турбине для паротурбинных установок, схемы которых показаны на рис. 3.2. Как видим, КЭС с промежуточным перегревом имеет большее значение энтальпии при равных значениях энтропии, а, значит, является более экономичной.

    В нашей стране паротурбинные КЭС на органическом топливе без промежуточного перегрева работают при начальных давлениях пара P0 до 8,8 МПа и температуре перегретого пара на входе в турбину T0 до 535 ºС. На КЭС с промежуточным перегревом пара P0 соответственно равны 12,7 и 23,5 МПа, а T0 = 540…560 ºC. В таких условиях при обычных значениях конечного давления Pк = 0,0035–0,0045 МПа влажность пара на выходе из проточной части турбины не превышает допустимых значений (13–14 %).
    Рис. 3.16. Рабочий процесс пара в h – s диаграмме для КЭС на перегретом паре без промежуточного перегрева (а) и с промежуточным перегревом (б): h1h7 – энтальпия пара в 1–7–м отборах соответственно; h0, hп.к – энтальпия пара на входе в турбину и входе в

    конденсатор; s – энтропия; х — степень сухости пара
    3.1.5.4. Системы подогрева сетевой воды
    Теплота на отопление,вентиляцию и бытовые нужды (горячее водоснабжение) обычно подается потребителю с горячей водой. Вода по сравнению с водяным паром имеет ряд преимуществ. Водяные системы теплоснабжения имеют большую аккумулирующую способность, вследствие чего кратковременные изменения количества теплоты, подводимого к сетевой воде, меньше отражаются на температурных режимах обогреваемых помещений. При обогреве помещения горячей водой легче поддерживать умеренную температуру отопительных батарей 90–95 °С).

    На рис. 3.17, априведена схема подогрева сетевой воды, применяемая в настоящее время на крупных ТЭЦ с отопительной нагрузкой. Сетевая установка имеет два подогревателя, к которым подводится пар от двух отборов турбины. В конденсаторе имеется отдельный встроенный теплофикационный пучок ТК. В зимний период через этот пучок пропускается сетевая вода или добавочная, направляемая затем в тепловую сеть для компенсации утечек. Когда через ТК проходит сетевая вода, она нагревается на несколько градусов и затем поступает в сетевые подогреватели. Когда через ТК проходит добавочная вода, сетевая вода из магистрали направляется непосредственно в сетевые подогреватели. После сетевых подогревателей установлен пиковый водогрейный котел (ПВК), однако ПВК включается лишь тогда, когда количество отбираемого из отборов пара недостаточно для покрытия всей тепловой нагрузки. При включенном ТК техническая вода к конденсатору не подводится, и теплофикационная установка работает без потерь в холодном источнике. Вакуум при этом, конечно, понижается.

    В летний период сетевая вода подогревается только в сетевом подогревателе нижней ступени. На многих установках имеется один теплофикационный отбор (рис. 3.17, б), пар от этого отбора с давлением 0,12–0,24 МПа (на некоторых турбинах давление изменяется в пределах 0,07–0,24 МПа) отводится к основному подогревателю сетевой установки. Дополнительный подогрев сетевой воды (в холодные дни отопительного



    Рис. 3.17. Схема подогрева сетевой воды: на установках с двумя

    теплофикационными отборами и теплофикационным пучком в конденсаторе турбины (а),с одним теплофикационным отбором (б); СП1; СП2 – сетевые подогреватели нижней и верхней ступеней; ОП – основной подогреватель; ПП – пиковый подогреватель; ТК – теплофикационный пучок конденсатора турбины; ОД – охладитель дренажа; ПВК – пиковый водогрейный котел; СН – сетевой насос, К – конденсатор турбины; РОУ – редукционно–охладительная установка; ТП – тепловой потребитель
    сезона) может проводиться в пиковом подогревателе, пар к которому подводится от РОУ или от промышленных отборов турбины (если это не приведет к необходимости уменьшить расход пара на технологические нужды).

    На схеме, изображенной на рис. 3.17, б,наряду с основным и пиковым подогревателями показан также охладитель дренажа (ОД). Этот теплообменник имеется на сетевых установках, к которым подводится пар от регулируемого отбора установки среднего давления с деаэратором, который работает при давлении 0,12 МПа. При низкой температуре наружного воздуха давление в основном подогревателе поднимается до 0,24 МПа, а температура дренажа – до 125 °С. Для обеспечения нормальной работы деаэратора в этих условиях дренаж необходимо охлаждать. Охлаждение дренажа сетевой водой не приводит к изменению тепловой экономичности ТЭЦ, так как из–за некоторого подогрева сетевой воды в охладителе дренажа расход пара на основной подогреватель уменьшается, а на деаэратор в равной мере увеличивается.

    На установках с деаэратором, работающим при давлении 0,6 МПа и выше, охладитель дренажа не нужен.

    Отопление жилых и общественных зданий следует включать, когда среднесуточная температура наружного воздуха снижается до +8 °С и держится на этом уровне в течение 3 суток. Когда среднесуточная температура принимает устойчивое значение +8 °С и выше, отопительный сезон заканчивается.

    Начало и конец отопительного сезона для промышленных зданий устанавливаются при температуре, для которой тепловые потери здания равны внутреннему тепловыделению.

    В городских сетях максимальная температура воды принимается в настоящее время (по результатам технико–экономических расчетов) равной 150 °С, а обратной сетевой воды – 70 °С. Для тепловых сетей небольшой протяженности максимальная температура воды равна 130 °С, а для пригородных ТЭЦ при большой длине магистралей тепловой сети повышается до 180 °С.

    По санитарным нормам в отопительные приборы должна направляться вода, температура которой не превышает 95 °С. Для того чтобы выдержать это требование при всех температурных режимах работы тепловой сети, на отводах воды от подающих магистралей к тепловым потребителям (абонентских вводах) или в центральных тепловых пунктах (ЦТП) устанавливаются смесительные устройства.

    Эти устройства подмешивают охлажденную воду из обратных линий к горячей воде, поступающей из подающей магистрали. По схемам присоединения установок отопления различают зависимые и независимые системы теплоснабжения. В зависимых системах теплоноситель из тепловой сети поступает непосредственно в отопительные установки потребителей, в независимых – в промежуточный теплообменник, установленный в тепловом пункте, где он нагревает вторичный теплоноситель, циркулирующий в местной установке потребителя. В независимых системах установки потребителей гидравлически изолированы от тепловой сети.

    Теплота на бытовые нужды (горячее водоснабжение) может подаваться с водой, поступающей к потребителю из тепловой сети, и с предварительно нагретой водопроводной водой. При горячем водоснабжении, осуществляемом сетевой водой, схему называют открытой, при горячем водоснабжении предварительно нагретой водопроводной водой – закрытой схемой.
    3.2. Атомные электростанции
    3.2.1. Принцип действия

    и типы атомных электростанций
    Атомная электростанция (АЭС) – электростанция, в которой для получения электрической и тепловой энергии используется атомная (ядер­ная) энергия. Тепловая энергия, выделяющаяся при де­лении ядер, отводится из ядерного реактора прокачкой через него жидкого или газообраз­ного теплоносителя. АЭС – это в сущности своей тепловые электростанции, которые используют тепловую энергию ядерных реакций. Генератором энергии на АЭС является атомный реактор.

    Первый на Европейско–Азиатском континенте ядерный реактор был сооружен и запущен в 1946 году в СССР. В конце 1940–х годов создается уранодобывающая промышленность, организовано производство ядерного горючего – урана–235 и плутония–239, налажен выпуск радиоактивных изотопов.

    В 1954 году начала работать первая в мире атомная станция в г. Обнинске. До этого энергия атомного ядра использовалась в военных це­лях. Пуск первой АЭС ознаменовал от­крытие нового направления в энергети­ке, получившего признание на 1–й Международной научно–технической конференции по мирному использованию атомной энер­гии (Женева, август 1955 года). В 1957 году на океанские просторы вышло первое в мире атомное судно – ледокол «Ленин».

    В настоящее время доля АЭС в суммарной выработке мировой электроэнергии более 14 %, причем в США 19,6 %, в Великобритании 18,9 %,в Германии 34 %, в Бельгии 65 %, во Франции свыше 76 %.

    В качестве исходного сырья на АЭС используется природный уран U235 или искусственное сырье — плутоний Рu239. Природный уран U235 содержится в рудах в концентрации около 0,7 %. Остальную часть составляет не­ делящийся в этих условиях U238. Если учесть, что в урановых рудах содержание делящегося урана менее 1 %, то становится очевидным, что процесс обогащения руд на концентрат урана U235 с его содержанием более 40 % технически очень сложен и требует больших материальных затрат.

    Переработка и обогащение ядерного топлива производится на специальных предприя­тиях по типовой схеме. Продукцией таких предприятий являются тепловыделяющие элементы (ТВЭЛы), которые выполняются в виде тонких труб, наполненных таб­летками обогащенного ядерного топлива. Трубы изготавливаются из специальных металлов и должны обеспечивать необходимые условия теплоотвода и замедления (гашения) энергии нейтронов при делении ядер урана или плутония.

    Ядерное топливо в форме ТВЭЛов вводится в активную зону реактора, где поддерживается цепная управляемая реакция деления урана или плутония. Кроме того, в реактор вводятся замедлители (гасители) нейтронов – регулирующие стержни и конструкционные материалы, которыми экранизируется стенка реактора и которые препятствуют выходу нейтронов из реактора. Через реактор пропускается вода или какой–то другой теплоноситель (жидкий металл, газ или др.). Вода как потенциальный теплоноситель поступает в реактор под высоким давлением, нагревается и пре­вращается в реакторе в пар высокого давления и температуры.

    В реакторе тяжелые ядра урана или плутония, поглощая свободные тепловые нейтроны (медленные, обладающие невысокой энергией), рас­падаются на более легкие ядра. При делении выделяется большое коли­чество тепловой энергии и дополнительные нейтроны в среднем в 2–2,5 раза больше количества поглощенных. Эти выделяемые нейтроны обладают большой энергией (быстрые нейтроны) и не могут участвовать в дальнейшем делении ядер без гашения их энергии до энергии тепловых нейтронов. Цепная реакция будет управляемой, когда количество погло­щаемых тепловых нейтронов будет равно количеству быстрых нейтро­нов. Дополнительные быстрые нейтроны поглощаются с помощью специальных поглощающих стержней, обладающих высокой поглощающей способностью. Посредством ввода и вывода этих стержней осуществля­ется пуск и останов реактора, регулирование режима его работы.

    Основным направлением атомной энергетики является производство электро­энергии на атомных электростанциях. Если АЭС отпускает потребителям только электроэнергию, то ее называют атомной конденсационной электростанцией (АКЭС). Возможно создание атомных станций, отпус­кающих потребителям не только электроэнергию, но и теплоту. Такие электростанции называют атомными теплоэлектроцентралями (АТЭЦ). Можно использовать ядерную энергию только для целей отопления и горячего водоснабжения на атомных станциях теплоснабже­ния (ACT). Такие станции уже имеются в ряде стран дальнего зарубежья.

    Для АЭС наибольшее значение имеет классификация по числу контуров. Име­ются одно–, двух– и трехконтурные АЭС.

    Если контуры теплоносителя и рабочего тела не разделены, то АЭС называют одноконтурной.

    Если контуры теплоносителя и рабочего тела разделены, то АЭС называют двухконтурной (контур теплоносителя называют первым, а контур рабочего тела – вто­рым).

    На трехконтурных АЭС создают дополнительный промежуточный контур для того, чтобы даже в аварийных ситуациях можно было избежать контакта радиоактив­ного натрия с водой или водяным паром. Трехконтурные АЭС наиболее дорогие из–за большого количества оборудования.

    В системе любой АЭС различают теплоноситель и рабочее тело.

    Рабочим телом, т.е. средой, совершающей работу по преобразованию тепловой энергии в механиче­скую, является водяной пар. Требования к чистоте пара, поступающего на турбину, на­столько высоки, что могут быть удовлетворены с экономически приемлемыми показа­телями только при конденсации всего пара и возврате конденсата в цикл. Поэтому кон­тур рабочего тела для АЭС всегда замкнут и добавочная вода поступает в него лишь в небольших количествах для восполнения утечек и некоторых других потерь конденса­та.

    Теплоноситель на АЭС призван отводить теплоту, выделяющуюся в реак­торе. Для предотвращения отложений на тепловыделяющих элементах необходима вы­сокая чистота теплоносителя. Поэтому для него также необходим замкнутый контур и в особенности потому, что теплоноситель реактора всегда радиоактивен.

    Кроме классификации АЭС по числу контуров можно выделить отдельные типы станций в зависимости от следующих факторов:

    1. типа реактора – на тепловых, промежуточных или быстрых нейтронах;

    2. параметров и типа паровых турбин – АЭС с турбинами на насыщенном или перегретом паре;

    3. параметров и типа теплоносителя – с газовым теплоносителем, теплоносите­лем «вода под давлением», жидкометаллическим и др.;

    4. типа замедлителя реактора (графитовый, тяжеловодный и др.);

    5) конструктивных особенностей реактора (канального или кор­пусного типа, с кипящим слоем, с естественной или принудительной циркуляцией и др.).

    Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 3.18.


    Рис. 3.18. Принципиальная схема АЭС: 1 – ядерный реактор;

    2 – циркуляционный насос; 3 – теплообменник;

    4 – гидротурбина; 5 – электрогенератор.
    Тепло выделяется в активной зоне реактора 1, вбирается водой (теплоносителем 1–го контура), которая прокачивается через реактор циркуляционным насосом 2. Нагретая вода из реактора поступает в теплообменник (парогенератор) 3, где передает тепло, полученное в реакторе, воде 2–го контура. Вода 2–го контура испаряется в парогенераторе, и образованный пар поступает в турбину 4, которая приводит во вращение генератор 5.

    В зависимости от вида и агрегатного со­стояния теплоносителя создается тот или иной термодинамический цикл АЭС. Выбор верх­ней температурной границы термодинамического цикла определяется максимально допусти­мой температурой оболочек тепловыделяющих элементов (ТВЭЛов), содержащих ядерное го­рючее, допустимой температурой собственно ядер­ного горючего, а также свойствами теплоноси­теля, принятого для данного типа реактора. На АЭС, тепловой реактор которой охлаждает­ся водой, обычно пользуются низкотемпера­турными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными дав­лением и температурой. Тепловая схема АЭС в этих двух случаях выполняется двухконтурной: в 1–м контуре циркулирует теплоноситель, 2–й контур – пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одно­контурная тепловая схема АЭС. В кипящих реак­торах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар или направляется непосредственно в турбину, или предварительно возвращается в активную зону для перегрева.

    В высокотемпературных графитогазовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае играет роль камеры сго­рания.

    Существенное различие тепловой экономичности ТЭС и АЭС заключается в том, что у ТЭС она зависит от реализации в цикле теплоты всего сожженного органического топлива, непрерывно поступающего в топку парового котла, а у АЭС – от реализации в цикле теплоты, выделившейся в процессе деления незначительной части ядерного горючего, загружаемого в активную зону. При работе реактора концентрация де­лящихся изотопов в ядерном топливе постепенно уменьшается, и топливо выгорает. Поэтому со временем их заме­няют свежими. Ядерное горючее, содержащееся в ТВЭЛах, пере­загружают с помощью механизмов и при­способлений с дистанционным управлением. Отработавшее топливо переносят в бас­сейн выдержки, а затем направляют на переработку.
    1   ...   5   6   7   8   9   10   11   12   ...   17


    написать администратору сайта