Главная страница
Навигация по странице:

  • Основными техническими характеристиками топлива являются

  • Характеристики отдельных видов топлив.

  • Теоретические основы работы энергетических установок 2.1. Теплопередача, виды теплообмена Теплопередача

  • 2.2. Основные термодинамические процессы и законы (начала) термодинамики

  • Э (2.1)нтальпия

  • Э (2.2)нтропия

  • Термодинамические циклы тепловых двигателей

  • 2.3.1. Термодинамический цикл Карно

  • 2.3.2. Термодинамический цикл Ранкина

  • 2.3.3. Энергетические показатели цикла Ранкина

  • Общая Энергетика - Учебное Пособие [2009]. В. П. Казанцев Общая энергетика


    Скачать 7.69 Mb.
    НазваниеВ. П. Казанцев Общая энергетика
    АнкорОбщая Энергетика - Учебное Пособие [2009].doc
    Дата22.04.2017
    Размер7.69 Mb.
    Формат файлаdoc
    Имя файлаОбщая Энергетика - Учебное Пособие [2009].doc
    ТипДокументы
    #5273
    страница5 из 17
    1   2   3   4   5   6   7   8   9   ...   17

    1.9. Традиционное топливо и его характеристики
    Традиционное топливо – это горючие вещества, выделяющие при сжигании значительное количество теплоты, которая используется непосредственно в технологических процессах или преобразуется в другие виды энергии. К ним относятся полезные ископаемые органического происхождения – уголь, горючие газы, горючие сланцы, нефть, торф, а также древесина и растительные отходы. Органическое топливо является в настоящее время основным источником энергии и обеспечивает 70–80 % потребителей теплоты и электроэнергии.

    В ядерной энергетике применяется понятие ядерного топлива – вещества, ядра которого делятся под действием нейтронов, выделяя при этом энергию в основном в виде кинетической энергии осколков деления ядер и нейтронов.

    Традиционное органическое топливо подразделяют на твердое топливо (дрова, торф, бурый и каменный уголь, антрациты и полуантрациты, сланцы), жидкое топливо (нефть, бензин, керосин, дизельное топливо, мазут, метанол), газообразное топливо (природный и нефтепромысловый газ, коксовый и полукоксовый газ, доменный газ, водород и др.). Для анализа тепловых характеристик традиционных топлив, определения состава газов и других расчетов необходимо знать химическую структуру каждого вида топлива. Органическая часть твердых и жидких топлив состоит из большого количества сложных химических соединений, в состав которых в основном входят пять химических элементов: углерод С, водород Н, кислород О, сера S и азот N. Кроме того, топливо содержит минеральные примеси А и влагу W, представляющие вместе внешний балласт топлива.

    Химический состав твердых, жидких и газообразных топлив определяют не по количеству соединений, а по суммарной массе химических элементов (в процентах на 1 кг или 1 м3 топлива), т.е. устанавливают элементарный состав топлива. Различают три основных элементарных состава топлива:

    1. рабочая масса топлива C+H+O+N+S+A+W=100 %;

    2. сухая масса топлива C+H+O+N+A=100 %;

    3. горючая масса топлива C+ H+O+N=100 %.

    Рабочей считается масса топлива в том виде, в каком она поступает на предприятие.

    Если топливо нагреть до 102–105 ºС, то влага испарится и получится сухая масса топлива. Название горючей массы является условным, так как входящие в его состав азот и кислород не являются горючими элементами и составляют внутренний балласт топлива. Азот и кислород способствуют процессу горения топлива.

    Горючими элементами топлива являются углерод, водород и сера. Углерод – основной горючий элемент топлива. Он имеет высокую теплоту сгорания (33600 кДж/кг) и составляет большую часть рабочей массы топлива (50–75 % для твердых топлив и 80–85 % для мазутов). Водород Н имеет высокую теплоту сгорания (примерно 130000 кДж/кг), однако его количество в твердых топливах невелико (Н = 2–6 %) и несколько больше в жидких (около 10 %). Это делает теплоту сгорания жидких топлив выше, чем твердых.

    Сера S имеет невысокую теплоту сгорания (9000 кДж/кг). Содержание ее в топливах невелико (S= 0,2–4 %), поэтому сера, как горючая составляющая, не ценится.

    Наличие окислов серы в продуктах сгорания при определенных концентрациях опасно для организмов и растений и требует определенных мер и средств для ее улавливания или рассеивания в атмосфере.

    Основными техническими характеристиками топлива являются: теплота сгорания; выход газообразных веществ при нагреве, зольность топлива, свойства зольного остатка, влажность и сернистость топлива.

    Теплота сгорания Q является основной характеристикой топлива. Различают высшую и низшую теплоту сгорания. Высшей теплотой сгорания называют количество тепла, которое выделяется при сгорании 1 кг твердого (жидкого) или 1 м3 газообразного топлива. Низшая теплота сгорания отличается от высшей на теплоту испарения влаги, в том числе влаги, образующейся при горении водорода. Чем больше влажность топлив, тем меньше будет величина низшей теплоты сгорания.

    Высшая величина теплоты сгорания твердого и жидкого топлива определяется экспериментально. Низшая теплота сгорания положена в основу классификации топлив.

    Выход летучих веществ. Если сухую массу топлива поместить в тигель и постепенно нагревать в инертной среде без доступа воздуха, то будет происходить уменьшение ее массы. При высоких температурах начинается разложение кислородосодержащих молекул топлива с образованием газообразных продуктов, получивших название летучих веществ. Выход летучих веществ из твердых топлив происходит в интервале температур от 110 до 1100 ºС.

    Выход летучих веществ определяет температуру воспламенения топлива и условия его хранения, сильно влияет на конструкцию топок, где сжигается это топливо.

    Чем больше выход летучих веществ, тем легче воспламеняется топливо (газообразные, летучие вещества имеют низкую температуру воспламенения).

    Зольность топлива. В процессе горения топлива его минеральная часть подвергается химическим преобразованиям. Масса несгораемого остатка – золы оказывается на 10–15 % меньше, чем масса исходной минеральной части топлива и существенно отличается от нее по составу. Свойства золы играют большую роль при сжигании топлива.

    Образовавшаяся после сгорания топлива зола – это смесь минералов, а их сплавы, возникающие в зоне высоких температур, называют шлаками. Суммарное количество золы и шлаков принято называть зольностью топлива. Температуры плавления отдельных минералов и их сплавов сильно различаются и находятся в пределах от 600 до 3000 ºС. Поэтому плавление представляет собой процесс постоянного размягчения от твердого до жидкого состояния по мере роста температуры.

    Влажность топлива.Влажность топлива (W) в процентах от его рабочей массы определяется опытным путем сушки при температуре 105 ºС до достижения постоянства массы.

    Большая влажность топлива вызывает трудности при сжигании. Снижается теплота сгорания, растет расход топлива, увеличиваются потери тепла с уходящими газами. Влажность топлива вызывает усиление коррозии металла отдельных конструкций топок, приводит к повышенному загрязнению поверхностей нагрева.

    Сернистость топлива. При сжигании сера создает серьезные экологические проблемы. Окислы серы и азота, образующиеся в зоне высоких температур, представляют большую опасность для жизнедеятельности. Для улавливания этих окислов строят сложные очистные сооружения, что приводит к удорожанию примерно вдвое энергетических установок.

    Характеристики отдельных видов топлив.

    Торф. Самый молодой вид топлива. Энергетические установки сжигают преимущественно фрезерный торф, получаемый путем срезания с поверхности тонкого слоя фрезами. Фрезерный торф имеет высокую влажность рабочей массы (W до 50 % и более) и в связи с этим низкую теплоту сгорания Q = 8500 кДж/кг. Как молодое топливо торф обладает большим выходом летучих веществ (V = 70 %), что позволяет успешно его сжигать в пылевидном состоянии. Из–за большой влажности и низкой теплотворности его не перевозят на дальние расстояния. Торф используют как местное сырье.

    Бурые угли по содержанию влаги в рабочей массе делятся на сильно влажные, повышенно влажные, влажные. Кроме большой влажности, бурые угли имеют высокую зольность и невысокую теплоту сгорания (Q = 6700…17000 кДж/кг), поэтому дальние перевозки также нецелесообразны. Большой выход летучих веществ обеспечивает высокоэкономичное сжигание этих углей в виде подсушенной пыли.

    Каменные угли объединяют большое количество углей различного химического возраста. Молодые каменные угли по выходу летучих веществ близки к бурым углям, но имеют меньшую влажность и зольность. Это увеличивает их теплоту сгорания (Q = 19000…27000 кДж/кг). Средняя по возрасту группа углей отличается повышенной зольностью. Их теплота сгорания ниже, чем у молодых углей. Более старые угли имеют малую влажность, невысокую зольность и, соответственно, высокую теплотворную способность (Q= 25000…27000 кДж/кг), однако низкий выход летучих веществ затрудняет их воспламенение в топках.

    Полуантрациты и антрациты это наиболее старые угли с низким выходом летучих веществ, низкой влажностью и зольностью. Также являются хорошим сырьем для металлургической промышленности.

    Мазут. К основным техническим характеристикам жидкого топлива относятся вязкость и температура вспышки. Вязкость мазута положена в основу его маркировки. Она измеряется при определенных стандартных температурах как отношение времени вытекания через стандартное отверстие мазута и такого же количества воды и определяется в градусах условной вязкости. С повышением температуры вязкость мазута уменьшается.

    Температура вспышки мазута составляет 135–240 ºС в зависимости от его вязкости. Теплота сгорания Q = 40000 кДж/кг.

    Газы. В качестве топлива используют преимущественно природный (естественный) горючий газ, а также различные виды искусственных (производственных) горючих газов. Газовое топливо, как правило, представляет собой смесь нескольких индивидуальных газов.

    Естественные горючие газы подразделяется на собственно газы природные и газы нефтяные попутные.

    Месторождения, содержащие только природное газовое топливо, в зависимости от состава последнего делятся на чисто газовые и газоконденсатные.

    Природные газы преимущественно содержат метан и его гомологи (этан, пропан, бутан и другие). В них также присутствуют углекислый газ, азот, сероводород и другие. Природные газы – это высокоэкономичное энергетическое топливо, имеющее высокую теплоту сгорания (Q = 35000 кДж/кг и выше).

    Газ чисто газовых месторождений состоит почти из одного метана. Этан и пропан содержатся в общем объеме в незначительных количествах, другие углеводороды и прочие газы практически отсутствуют. При таком составе (содержание гомологов менее 50 г/м3) газ называют бедным или тощим.

    Газ газоконденсатных месторождений помимо метана содержит значительное количество высших углеводородов, главным образом пропан и бутан. Газ с высоким содержанием гомологов называют богатым или жирным.

    Газы нефтяные попутные содержат в значительных количествах гомологи, в том числе высокомолекулярные предельные углеводороды, кроме того, в них присутствуют пары воды, углекислый газ, азот, сероводород, редкие газы – гелий, аргон. Попутный газ (нефтепромысловый) получают при разработке нефтяных месторождений. Количество газов (в м3), приходящихся на 1 т добытой нефти (так называемый газовый фактор), зависит от условий формирования и залегания нефтяных месторождений и может изменяться от 1…2 до 3000…6000 м3/т нефти.

    Искусственные газы содержат больше негорючих компонентов (балласта). Газы коксовых печей содержат до 57 % водорода, 22 % метана, около 7 % окиси углерода, остальное – балластные газы. Теплота сгорания коксового газа около 17000 кДж/кг. Доменный газ содержат около 30 % горючих компонентов, остальное – балласт. Поэтому теплота сгорания доменного газа низкая и немного превышает 4000 кДж/кг условного топлива.


    1. Теоретические основы работы

    энергетических установок
    2.1. Теплопередача, виды теплообмена
    Теплопередачасовокупность необратимых процессов переноса тепла, происходящих в неравномерно нагретых телах (средах) или между телами с различными температурами через промежуточную среду.

    Теплообмен – процесс распространения тепла от более нагретых тел к менее нагретым.

    Различают такие виды теплообмена, как теплопроводность; конвекция; тепловое излучение (радиационное или лучистое излучение).

    Теплообмен осуществляется с помощью теплообменных аппаратов (теплообменников) через рабочую среду, в качестве которой выступает вода или газ (пар).

    По принципу действия теплообменники разделяются на поверхностные и смесительные. В первых аппаратах теплообмен осуществляется рабочей средой через поверхность нагрева тел, во–вторых – путем непосредственного смешения горячей и холодной сред.

    Поверхностные теплообменники разделяются на рекуперативные и регенеративные.

    В рекуперативных теплообменниках тепловой поток через стенку всегда идет в одном направлении (паровой котел, кипятильник, электрокалорифер и др.). Кроме того, в зависимости от направления теплового потока они могут быть нагревателями или холодильниками. В зависимости от рода теплообменной среды они могут быть парожидкостными (водяные печи саун, водогрейные котлы), жидкостно–жидкостными (системы сетевой воды), газожидкостными (газовые водогрейные колонки) и газо–газовыми (пароперегреватель парового котла, промежуточный перегреватель пара).

    В регенеративных теплообменниках тепловой поток меняет направление в зависимости от того, какая среда соприкасается со стенкой (греющая или нагреваемая), поскольку с одной и той же поверхностью нагрева соприкасаются горячая и холодная среда одновременно (регенеративные подогреватели конденсата, питательной воды).

    Смесительные теплообменники применяют как для охлаждения, так и для нагревания газов и жидкостей. В качестве смешиваемых сред могут выступать вода и пар (барабан парового котла), вода и вода (системы горячего водоснабжения), вода и воздух (системы вентиляции, кондиционирования воздуха), газ и воздух (системы питания котельных агрегатов) и др. Одним из определяющих факторов в работе смесительных теплообменников является поверхность соприкосновения смешиваемых сред. Для увеличения поверхности соприкосновения сред жидкость обычно разбрызгивают, теплообменники загружаются пусковым материалом (коксом, хворостом и др.). Смесительные теплообменники допускают более полное использование тепла, чем поверхностные, но они применимы лишь, когда допустимо смешение сред.

    Теплопроводность – один из видов теплопередачи (теплообмена), при котором перенос тепла имеет атомно–молекулярный характер. Явление теплопередачи возникает всегда, когда между телами или участками тела есть разница температур. В отличие от конвекции, перенос тепла происходит без каких–либо макроскопических движений в теле. Количественно теплопроводность характеризуется коэффициентом теплопроводности (табл. 2.1).
    Таблица 2.1

    Вещество

    Коэффициент теплопроводности

    Вещество

    Коэффициент теплопроводности

    Серебро

    0,96

    Свинец

    0,0827

    Медь

    0,92

    Железо

    0,077

    Алюминий

    0,504

    Вода

    1,36∙10–3

    Никель

    0,14

    Воздух

    5,6∙10–5


    Механизм теплопроводности зависит от природы и физического состояния тела. В частности, в газах передача тепла происходит путем столкновения молекул друг с другом, в металлах тепло переносится в основном электронами, в жидкостях – ионами, в диэлектриках – колебаниями кристаллической решетки.

    Конвекция – перенос тепла внутри области, заполненной жидкой или газообразной средой, вследствие перемещения вещества этой среды.

    Различают естественную (свободную) и вынужденную конвекцию.

    При естественной конвекции перемещение вещества происходит исключительно вследствие различия температур в отдельных местах, заполненных жидкостью или газом. Интенсивность конвекции при этом тем больше, чем больше разность температур, чем больше теплопроводность и коэффициент объемного расширения вещества, чем меньше его вязкость. Естественная конвекция имеет место как в природных условиях, так и в технических устройствах.

    При вынужденной конвекции перемещение вещества происходит главным образом под воздействием внешнего возбудителя (насоса, вентилятора, дымососа, мешалки и др.). Интенсивность переноса тепла при этом зависит как от перечисленных выше факторов для естественной конвекции, так и от скорости вынужденного движения. Вынужденная конвекция используется, в частности, при нагреве питательной воды котельных агрегатов дымовыми отходящими газами в конвективной зоне котла (экономайзер котла). Конвективными подогревателями воздуха с вынужденной конвекцией являются, например, батареи центрального отопления, электрокалориферы и др.

    Тепловое излучение (температурное излучение) – электромагнитное излучение, обусловленное тепловой энергией излучающего тела (твердого, жидкого или газообразного). Происходит в результате колебаний электрически заряженных частиц (электронов, ионов) в веществе. При тепловом излучении имеет место устойчивое равновесное состояние, причем в спектре теплового излучения присутствуют электромагнитные волны разной длины волны (сплошной спектр), амплитуда которых зависит от температуры. При низких температурах имеет место инфракрасное (сравнительно низкочастотное невидимое) излучение, при высоких температурах – видимое и ультрафиолетовое излучение. Например, при нагревании тугоплавкого тела (угля, металла) до температуры около 500 °С появляется видимое темно–красное свечение этого тела. При температуре тела около 1500 °С свечение переходит в белое каление.
    Основные характеристики теплового излучения:

    1) излучательная способность тела – количество энергии, излучаемой в единицу времени с единицы поверхности тела в интервале определенных частот;

    2) поглощательная способность тела – отношение для данного интервала частот количества энергии, поглощаемой единицей поверхности тела, к количеству энергии, падающей на ту же поверхность за то же время.

    Основной закон теплового излучения сформулирован Кирхгофом: отношение излучательной способности тела к его поглощательной способности не зависит от природы тела, являясь универсальной функцией температуры и частоты. Для абсолютно черного тела, например, сажи, поглощательная способность максимальна и равна единице. Свечение, не подчиняющееся закону Кирхгофа, не является тепловым (например, люминесцентным).

    Отдача тепла лучеиспусканием имеет место, в частности, в топочных камерах котельных агрегатов. Нагревательные элементы (радиационные или лучевые, ширменные нагреватели), представляющие собой систему высокотемпературных металлических труб, размещают под потолком котла, и пропускают через них нагреваемое рабочее тело (питательную воду или пар).
    2.2. Основные термодинамические процессы

    и законы (начала) термодинамики
    Упрощенная технологическая схема паросиловой конденсационной энергетической установки для производства электроэнергии приведена на рис. 2.1.

    Пар большого давления и температуры подается из котельного агрегата КА (парогенератора) через пароперегреватель ПП в сопловые аппараты паровой турбины ПТ (см. линию связи 1 на рис. 2.1), имеющей несколько ступеней расширения пара. Расширяясь, пар вращает турбину, которая приводит во вращение электрогенератор ЭГ. При этом температура и давление пара в ПТ падают до некоторых конечных значений. После турбины (см. линию связи 2 на рис. 2.1) пар направляется в конденсатор К (теплообменник, по трубам которого циркулирует охлаждающая вода), где конденсируется, превращаясь в воду. Эта вода поступает в питательный насос ПН (см. линию связи 3 на рис. 2.1), который закачивает ее под определенным давлением (см. линию связи 4 на рис. 2.1) в нагревательные трубы котельного агрегата КА. В нем вода сначала нагревается дымовыми газами из топки КА до температуры кипения, а затем влажный насыщенный пар нагревается в кипятильных трубах КА до состояния сухого насыщенного пара. Далее этот пар поступает в пароперегреватель (см. линию связи 5 на рис. 2.1), где параметры пара (давление и температура) доводятся до состояния, соответствующего параметрам линии связи 1 на рис. 2.1. Так замыкается термодинамический цикл работы установки.



    Рис. 2.1. Схема паросиловой конденсационной установки
    В процессе теплообмена с котельным агрегатом и конденсатором рабочее тело меняет такие свои параметры, как давление, объем и температура в зависимости от характера теплопередачи. Как известно [2,4], изменение этих параметров может происходить изотермически (при постоянстве температуры), адиабатически (при постоянстве совершаемой работы), изохорически (при постоянстве объема) и изобатически (при постоянстве давления). Из этих термодинамических процессов в ходе преобразования полученного количества теплоты от котельного агрегата образуются замкнутые термодинамические циклы рабочего тела.

    Энергетические установки на органическом топливе всегда используют перегретый пар. В настоящее время температура пара конденсационных установок с промежуточным перегревом пара перед турбиной обычно достигает 540–560 оС при давлении пара перед турбиной до 23,5 МПа, а без промежуточного перегрева – до 535 оС при давлении до 8,8 МПа.

    Энергетические установки на ядерном топливе широко используют насыщенный пар, начальные параметры которого на входе в турбину зависят как от технологической схемы установки, так и от типа применяемой турбины (конденсационной или с регулируемыми отборами пара).

    Таким образом, энергия сгораемого топлива идет на нагрев питательной воды и пара в паровом котле. Энергия пара парового котла (теплогенератора) преобразуется в механическую энергию вращения паровой турбины с электрогенератором на валу. Кроме того, она расходуется на промежуточный перегрев пара, регенерацию (регенеративный подогрев питательной воды), теплофикацию самой электростанции и жилых массивов (сетевой подогрев) и др. Заметим, что рабочее тело (питательная вода и пар) получает тепловую энергию от нагревателя (котельного агрегата), имеющего больший запас внутренней энергии, а затем отдает тепловую энергию холодильнику–конденсатору, имеющему меньший запас энергии.

    Термодинамическое состояние тепловых двигателей характеризуется важными термодинамическими функциями состояния – энтальпией и энтропией.

    Э
    (2.1)
    нтальпия
    h – термодинамическая функция, характеризующая теплосодержание системы (количество теплоты или работу). Она определяется соотношением:

    h = ∆W+ PV,

    где ∆W – изменение внутренней энергии системы при ее переходе из одного термодинамического состояния в другое;

    P – давление пара;

    V – объем пара.

    Энтальпия отражает 1–й закон термодинамики – количество теплоты, подведенное к системе, идет на изменение ее внутренней энергии и на совершение системой работы. По сути, энтальпия, имеющая размерность энергии, является частной формой закона сохранения энергии. Теплота Q, равная h, полученная системой при переходе ее из одного состояния в другое, частично расходуется на совершение работы пара (A=PV), а частично идет на увеличение ее внутренней энергии на величину ∆W. Внутренняя энергия системы является функцией состояния системы, т.е. величина ∆W не зависит от пути перехода из одного состояния в другое, а зависит лишь от начального и конечного состояний. При постоянном давлении количество теплоты, поглощенной системой при переходе из одного состояния в другое, равно приращению энтальпии. Иными словами, согласно (2.1) работа пара при адиабатическом расширении (или сжатии) равно убыли ∆W его внутренней энергии. Как следствие, количество теплоты, полученное паром, полностью превращается в работу при изотермическом процессе, при котором внутренняя энергия остается неизменной (∆W=0).

    Э
    (2.2)
    нтропия
    s– термодинамическая функция, характеризующая изменение энергии в процессе перехода из одного равновесного состояния в другое. Энтропия отражает 2–й закон термодинамики, определяющий статистическую направленность изменения состояния системы – замкнутая система самопроизвольно переходит из менее вероятного в более вероятное состояние. Полагается, что тепло не может самопроизвольно переходить от более холодного к более горячему телу так, чтобы не произошло каких–либо изменений в других телах. В необратимых тепловых процессах передачи тепла от сжигаемого топлива рабочему телу (пару), что характерно для реальных тепловых двигателей, энтропия возрастает и определяется соотношением

    sQ/T,

    где T – абсолютная температура системы;

    Q – количество тепла, поглощенного системой.

    Заметим, что при совершении полезной работы, т.е. при преобразовании тепловой энергии рабочего тела в механическую энергию, энтропия всегда нарастает, что сопровождается отводом тепла в окружающую среду вместе с охлаждающей водой, охлаждающей средой электрогенератора и др. Следовательно, тепловые двигатели неизбежно приводят к постепенному повышению средней температуры окружающей среды, вероятности возникновения «парникового эффекта» и иным отрицательным для экологии последствиям.


      1. Термодинамические циклы

    тепловых двигателей
    Энергетические установки тепловых и атомных электростанций представляют собой тепловые двигатели (паросиловые установки), способные превращать полученное при теплообмене рабочим телом количество теплоты в механическую энергию. Механическая работа в тепловых двигателях производится в процессе расширения некоторого вещества, называемого рабочим телом. В качестве рабочего тела используется питательная вода и водяной пар. Механическая энергия вращения паровой турбины с помощью электрогенератора преобразуется в электрическую энергию.

    К тепловым двигателям относят не только паровые машины, но и двигатели внутреннего сгорания, дизельные двигатели и т.д. Характерной особенностью работы таких машин является циклический процесс теплопередачи и преобразования полученного количества теплоты в работу. Для этого рабочее тело должно совершать круговой процесс или термодинамический цикл, при котором периодически восстанавливается исходное состояние рабочего тела. Наибольшее распространение в производстве механической энергии получили тепловые двигатели, работающие по термодинамическим циклам Ранкина и Карно. Именно они определяют теоретические и реальные показатели эффективности, экономичности работы того или иного теплового двигателя и энергетической установки в целом. Различным типам тепловых двигателей присущи различные круговые термодинамические циклы рабочего тела.
    2.3.1. Термодинамический цикл Карно
    В 1824 году французский инженер С. Карно рассмотрел круговой процесс, состоящий из двух изотерм и двух адиабат (рис. 2.2.).



    Рис. 2.2. Термодинамический цикл Карно
    Ц
    (2.3)
    икл Карно совершает газ, находящийся в цилиндре под поршнем. На изотермическом участке (1–2) газ нагревают тепловым резервуаром с температурой T1, подводя к газу некоторое количество теплоты Q1. Газ изотермически расширяется, совершая работу A12. На адиабатическом участке (2–3) газ помещают в адиабатическую оболочку, и он продолжает расширяться без теплообмена, совершая работу A23 . При этом температура газа падает до значения T2. На изотермическом участке (3–4) газ приводят в тепловой контакт с холодным резервуаром, и происходит его сжатие. При этом газ отдает тепло Q2 , совершая отрицательную работу A34 . На последнем участке адиабатического сжатия (4–1) газ вновь помещают в адиабатическую оболочку. При сжатии газа его температура повышается до значения T1 и совершается отрицательная работа A41. Полная работа газа за цикл равна сумме работ на отдельных участках:

    A = A12 + A23 + A34 + A41 .

    На диаграмме (P,V) эта работа равна площади цикла. Заметим, что в замкнутом цикле A23 = –A41. Тогда
    A
    (2.4)
    = A12 + A34 .

    КПД цикла Карно представляет собой отношение теплоты, израсходованной на совершение работы, к подведенной теплоте:


    (2.5)
    .

    Карно предложил выражать КПД цикла через температуры нагревателя и холодильника:


    (2.6)
    .

    Цикл Карно – наиболее эффективный круговой процесс из всех возможных при неизменных температурах нагревателя и холодильника, поскольку отсутствует теплообмен рабочего тела и окружающей среды при конечной разности их температур, когда тепло может передаваться без совершения работы. Заметим, что идеальное устройство, работающее по циклу Карно, является обратимой тепловой машиной, т.к. обход цикла против часовой стрелки будет соответствовать холодильной машине.

    Один из самых распространенных тепловых двигателей – двигатель внутреннего сгорания (ДВС) – работает по тому или иному термодинамическому циклу, соответствующему реальному циклу Карно. Существуют два типа ДВС – бензиновый и дизельный. Круговые термодинамические процессы изображаются на диаграмме (P,V) газообразного рабочего тела (смеси паров бензина или дизельного топлива с воздухом) с помощью замкнутых кривых (рис. 2.3).

    Цикл карбюраторного бензинового двигателя состоит из двух изохор (1–2, 3–4) и двух адиабат (2–3, 4–1). При расширении газ совершает положительную работу, равную площади под кривой 2–3, при сжатии – отрицательную работу, равную площади под кривой 4–1. Полная работа за цикл определяется разницей этих площадей.


    Рис. 2.3. Термодинамические циклы карбюраторного

    бензинового ДВС (1) и дизельного двигателя (2)
    Дизельный двигатель работает по циклу, состоящему из двух адиабат (1–2, 3–4), одной изобары (2–3) и одной изохоры (4–1). Площадь внутри цикла отражает полную работу газа за цикл.

    Реальный КПД карбюраторного двигателя порядка 30 %, дизельного – порядка 40 %.
    2.3.2. Термодинамический цикл Ранкина
    В турбоустановках ТЭС преобразование теплоты в работу осуществляется на перегретом паре, а на АЭС, как правило, на насыщенном паре. Рассмотрим схему паросиловой установки конденсационной электростанции (КЭС), приведенной на рис 2.1.

    Преобразование энергии на КЭС производится на основе термодинамического цикла Ранкина (назван по имени У.Дж. Ранкина – одного из создателей технической термодинамики).

    Цикл Ранкина – идеальный термодинамический цикл (круговой процесс), в котором совершается превращение теплоты в работу (или работы в теплоту); принимается в качестве теоретической основы для приближенного расчета реальных циклов, осуществляемых в паросиловых установках.

    Рассмотрим цикл Ранкина (рис. 2.4) на трех термодинамических диаграммах (P,V), (T,s) и (h,s).



    Рис. 2.4. Термодинамические диаграммы (P,V), (T,s) и (h,s)

    цикла Ранкина
    Цикл Ранкина осуществляется следующим образом:

    1) в паровом котле происходит испарение рабочего тела (воды), а в пароперегревателе происходит перегрев нового рабочего тела (пара) при постоянном давлении P1 = const и расширяющемся объеме, что соответствует участку (4–5–1) диаграмм (изобаре); термодинамический процесс в самом котле (4–5) является изобарно–изотермическим;

    2) в паровой турбине пар адиабатически расширяется, что соответствует участку (1–2) диаграммы (адиабате), совершая работу; при этом давление пара падает до остаточного давления P2 ;

    3) в конденсаторе пар конденсируется при постоянном давлении, превращаясь в воду, что соответствует участку (2–3) диаграммы (изобаре);

    4) конденсат (питательная вода) подается насосом в экономайзер, что соответствует участку (3–4) диаграммы (изохоре), где испаряется.

    Так замыкается термодинамический цикл работы паросиловой установки.

    Работа 1 кг пара, совершаемая в цикле Ранкина, на диаграммах состояния (P,V), (T,s) и (h,s) характеризуется площадью 1–2–3–4–5 (см. рис. 2.4).

    Цикл Ранкина отличается от цикла Карно тем, что подвод тепла воде и водяному пару в котле и отвод тепла охлаждающей водой в конденсаторе турбины происходят при постоянном давлении, а работа пара в турбине и повышение давления воды в насосах – при постоянной энтропии.
    2.3.3. Энергетические показатели

    цикла Ранкина
    При идеальном протекании всех процессов, как показано на рис. 2.4, энергетические показатели цикла на 1 кг перегретого пара определяются следующими соотношениями.

    Из диаграммы (T,s) следует, что теплота подводится к рабочему телу в процессах (4–5–1), у которых энтропия возрастает (ds > 0) при постоянстве давления P1 = const.

    Подводимая к рабочему телу теплота, как это следует из диаграммы (h,s) на рис. 2.4,


    (2.7)

    Q1 = h1h4 , Дж .
    Теплота отводится от рабочего тела в процессе (2–3), когда энтропия падает (ds < 0) при постоянстве давления P2 = const. Отсюда


    (2.8)

    Q2 = h2h3 , Дж.

    Работа сжатия воды в насосе


    (2.9)

    , Дж.

    Разность между подведенной Q1 и отведенной Q2 теплотой представляет собой теплоту цикла, превращенного в работу:

    (2.10)

    Как следует из диаграммы (h,s) на рис. 2.4, разность энтальпии на участке (3–4) работы насоса (работа A34) ничтожно мала, и при расчете работы (теплоты) цикла ею можно пренебречь.

    Теоретический КПД турбины итермический КПД цикла Ранкина определяется отношением полезной работы к затраченной теплоте:

    (2.11)
    .

    Для цикла на насыщенном паре используются аналогичные соотношения, в которых точка 1 диаграммы (h,s) заменена точкой 5 с координатами s5, h5, а точка 2 заменена точкой пересечения равновесной прямой s5 = const с изобарой (2–3) P2 = const. Граница насыщенного и перегретого пара, соответствующая области кипения рабочего тела, обозначена на диаграммах рис. 2.4 буквой K.

    Реальный КПД цикла Ранкина с насыщенным паром составляет 0,29–0,36, а с перегретым паром – 0,34–0,46. Низкий КПД паросиловой установки, работающей по циклу Ранкина, обусловлен тем, что вода в отличие от газа и пара является менее совершенным носителем тепла. Отсюда цикл Ранкина слабо заполняет площадь внутри цикла Карно (см. рис. 2.2 и 2.4).

    Кроме того, фактический КПД турбины и термический КПД цикла Ранкина будут меньше теоретического, определенного по выражению(2.11), по ряду причин. Во–первых, в реальных турбинах работа, совершаемая паром, равна действительному теплоперепаду, который меньше адиабатного из–за необратимости процесса расширения. Во–вторых, имеют место потери в пароводяном тракте, что требует энергетических затрат на восполнение питательной воды. В–третьих, КПД насоса, котельного агрегата, паровой турбины, генератора и трубопроводов отличны от 100 %. Внутренний относительный КПД турбины 0,8–0,9, механический КПД турбины 0,98–0,99, КПД электрического генератора 0,98–0,99, КПД трубопроводов пара и воды 0,97–0,99, КПД котлоагрегата 0,9–0,94. Общий КПД современной КЭС – 35–42 %.

    Увеличение КПД КЭС достигается главным образом повышением начальных параметров (начальных давления и температуры) водяного пара, совершенствованием термодинамического цикла, а именно – применением промежуточного перегрева пара и регенеративного подогрева конденсата и питательной воды паром из отборов турбины.

    На КЭС по технико–экономическим основаниям применяют начальное давление пара докритическое 13–17 МПа или сверхкритическое 23–25МПа. Начальную температуру свежего пара, а также температуру после промежуточного перегрева принимают равной 540–570 °С. В России и за рубежом созданы опытно–промышленные установки с начальными параметрами пара 30–35 МПа при 600–650 °С. Промежуточный перегрев пара обычно одноступенчатый, на некоторых зарубежных КЭС сверхкритического давления – двухступенчатый. Число регенеративных отборов пара 7–9. Конечная температура подогрева питательной воды 260–300 °С. Конечное давление отработавшего пара в конденсаторе турбины 0,003–0,005 МПа (0,03 – 0,05 атм.).

    1   2   3   4   5   6   7   8   9   ...   17


    написать администратору сайта