В пособии рассмотрены основные требования к эксплуатационным материалам, производимым за рубежом и широко поставляемым в Россию
Скачать 2.64 Mb.
|
Окончание табл. 5.5
Возможно определение концентрации этиленгликоля и по плотности раствора. Найдённое значение плотности при температурах, отличных от 20 С, пересчитывают по формуле: , где – плотность раствора при температуре t; – температурная поправка для этиленгликоля равная 0,525 кг/м3 град. Приведённые к температуре 20 С (истинные) значения концентрации этиленгликоля и плотности раствора позволяют определить температуру замерзания раствора по зависимостям, приведённым на рис. 5.3. Рис. 5.3. Зависимость плотности и температуры замерзания этиленгликолевых антифризов от содержания в них воды Св В процессе эксплуатации автомобилей возникает необходимость в корректировке процентного соотношения этиленгликоля и воды в антифризе. Количество добавляемых этиленгликоля и воды определяют по формулам: при добавлении этиленгликоля: ; при добавлении воды: , где: М – количество добавляемого компонента, л; Н – объём исходного раствора, л; а и в – содержание воды в исходном растворе и в требуемой смеси, % по объёму; с и d – содержание этиленгликоля в исходном растворе и в требуемой смеси, % по объёму. Срок службы антифризов в системе охлаждения автомобилей составляет 2 года или 60 тыс. км пробега. Модернизированный антифриз «Тосол А40-М», выпускаемый с 1985 года обеспечивает работу двигателя до 3 лет. Вообще срок службы определяется сохранностью присадок. В южных районах средние рабочие температуры в двигателе выше, антифриз стареет интенсивнее. Выработка антифрикционной присадки приводит к изменению цвета антифриза Тосол А40 с голубого на зелёный, затем – на жёлтый. Увеличение срока службы антифризов при условии нормальной плотности и исправности системы охлаждения достигают введением специальных добавок, например «Отера» (ТУ 6-15-07-112-85). Добавки восстанавливают стандартную концентрацию присадок. В высокогорных условиях и при напряжённых тепловых режимах форсированных двигателей применяют специальные охлаждающие жидкости с высокими температурами кипения, представляющие собой смеси высокомолекулярных спиртов и эфиров [2]. Основные показатели качества таких жидкостей приведены в табл. 5.6. Таблица 5.6 Охлаждающие жидкости с высокими температурами кипения
Окончание табл. 5.6
5.1.5. Водоглицериновые смеси На некоторых химических предприятиях в виде побочного продукта на определённом этапе производства конечной продукции образуется глицерин. Образуется в значительных количествах. Глицерин (С3Н5(ОН)3) – простейший трёхатомный спирт, бесцветная вязкая жидкость сладкого вкуса, без запаха. Температура плавления 17,9 С, кипения 290 С, плотность при 20 С – 1260 кг/м3. Неогнеопасен, нетоксичен. К недостаткам глицериновых жидкостей можно отнести большую, чем у этиленгликолевых стоимость и повышенную вязкость. Но, как отмечалось выше, в местах массового производства, без транспортных и прочих расходов стоимость гораздо ниже. Вязкость можно уменьшить, изменяя концентрацию глицерина в жидкости. При этом можно получить вполне пригодную для эксплуатации при небольших отрицательных температурах жидкость (табл. 5.7). Таблица 5.7 Свойства глицериновых растворов
Окончание табл. 5.7
В настоящее время в ограниченных количествах выпускается антифриз ВГ-40, представляющий собой смесь воды и глицерина с добавлением присадок. Основные свойства водоглицериновой охлаждающей жидкости и аналогичные показатели водоэтиленгликолевой жидкости приведены в табл. 5.8. Таблица 5.8 Физико-химические свойства водоглицеринового антифриза ВГ-40 в сравнении с ТОСОЛом А-40
По основным свойствам антифриз ВГ-40 незначительно уступает Тосолу марки А-40. Следует иметь в виду несколько большую коррозионную активность водоглицеринового антифриза к припою и серому чугуну. 5.1.6. Водоспиртовые смеси В качестве охлаждающих жидкостей могут быть использованы и водоспиртовые смеси. Например, состав из 40% спиртов и 60% воды замерзает [2]: – метиловый спирт – минус 40 С; – этиловый спирт – минус 31С. Температура плавления этилового спирта минус 114,2 С, метилового ещё ниже. Это позволяет получить смеси с практически любой, необходимой температурой кристализации. Но у смесей спирта и воды очень высока испаряемость спиртового компонента, так как спирты имеют низкие температуры кипения: – метиловый спирт 64,5 С; – этиловый спирт 78,4 С. Следовательно, при длительной работе двигателя с негерметичной системой охлаждения из охлаждающей жидкости будут интенсивно испаряться спирты, что вызовет повышение температуры кристализации. Метиловый спирт – это сильнейший яд. Попадание в организм 30 мл метанола смертельно. 5.2. Тормозные жидкости В тормозных системах автомобилей в качестве рабочего тела используют тормозные жидкости или сжатый воздух. Важнейший показатель – быстродействие – обусловил широкое применение в системах небольшой протяжённости и вместимости различных тормозных жидкостей. Запас жидкости находится в бачке главного тормозного цилиндра. При нажатии на педаль тормоза жидкость по трубопроводам весьма малого сечения поступает к рабочим тормозным цилиндрам и воздействует на поршни, разводя тормозные колодки. Выделяющееся при торможении тепло способствует нагреву тормозного механизма, в том числе и рабочих тормозных цилиндров до высокой температуры (более 100 С). При попадании воздуха в систему, равно как и при образовании паровых пробок, эффективность действия тормозов резко снижается. Требуется неоднократное нажатие на тормозную педаль для сжатия воздуха или паров, в то время когда жидкости практически несжимаемы. Исходя из изложенных условий работы, можно определить требования к тормозным жидкостям: – оптимальная вязкость при низких температурах в зимний период эксплуатации; – минимальное изменение вязкости при колебаниях температуры; – хорошая прокачиваемость по трубопроводам и через отверстия порш-ней главного тормозного цилиндра; – достаточные смазывающие свойства; – нейтральность по отношению к конструкционным материалам; – защита от коррозии металлических деталей; – высокая температура кипения и низкая температура застывания; – низкая пожароопастность; – нетоксичность. 5.2.1. Тормозные автомобильные жидкости В тормозных системах с гидравлическим приводом применяют тормозные жидкости, которые можно разделить на две группы в зависимости от состава: Спиртокасторовые жидкости. Жидкости гликолевого основания. Спиртокасторовые жидкости представляют собой смесь касторового масла со спиртами: бутанолом (БСК), этанолом (ЭСК) и изопентанолом (АСК). Широкое распространение до недавнего времени имела жидкость, состоящая из 50% бутанола (бутилового спирта) и 50% касторового масла. В жидкость добавлен краситель характерного красного цвета, из-за чего многие водители называют жидкость БСК – «красная». Жидкость БСК обладает очень хорошими противоизносными свойствами. Ядовита. В области отрицательных температур обладает крутой вязкостно-температурной зависимостью. При повышенных температурах происходит интенсивное испарение бутанола. При длительном воздействии на жидкость температур ниже минус 20 С наблюдается интенсивное вымерзание касторового масла, что может привести к выходу из строя гидроприводов тормозов. В настоящее время жидкость БСК выпускается, имеется в продаже, но считается устаревшей и находит ограниченное применение. Жидкости гликолевого основания «Нева», «Томь», «Роса» более перспективны и в большей мере отвечают требованиям к тормозным жидкостям. Жидкости «Нева» и «Томь» изготавливают на основе этилкарбитола с добавлением антикоррозионных, противоизносных (перемещение поршеньков) и антиокислительных присадок. Жидкости имеют температуры кипения около 200 С, хорошие температурно-вязкостные свойства. Ядовиты. Наиболее перспективной тормозной жидкостью, удовлетворяющей современным требованиям, является жидкость «Роса». Это высокотемпе-ратурная гидротормозная жидкость на основе борсодержащих полиэфиров. В жидкость введены антиокислительная и антикоррозионная присадки. Гликолевые жидкости ядовиты. Они предназначены для применения в широком интервале температур окружающей среды: от минус 50 С до 50 С. Полностью взаимозаменяемы и совместимы. Показатели качества перечисленных жидкостей представлены в табл. 5.9. Таблица 5.9 Характеристики тормозных жидкостей
*в знаменателе показана температура кипения «увлажнённой» жидкости 5.2.2. Эксплуатационные свойства тормозных жидкостей К основным эксплуатационным свойствам тормозных жидкостей относятся: гигроскопичность, механические свойства, противоизносные свойства, коррозионная активность, стабильность, токсичность, пожаро-опасность и защитные свойства. Гигроскопичность – способность поглощать воду из окружающей среды. Это свойство должно предохранять тормозные системы от появления в них воды в свободном виде, химически связывать её. Это препятствует образованию ледяных или паровоздушных пробок в интервале рабочих температур. У большинства гидравлических тормозных систем в пробке бачка для тормозной жидкости имеется отверстие для сообщения с атмосферой. Из опыта эксплуатации известно, что в течение первого года использования в жидкости накапливается до 2% влаги, второго – 3,5 и третьего – 4,5%. Вследствие поглощения влаги температура кипения снижается почти на 100 С. Невысокая температура кипения может привести к образованию паровых пробок, особенно при напряжённой работе тормозной системы (интенсивное торможение, дисковые тормозные механизмы и др.). Кроме того, повышенное содержание воды в жидкостях приводит к коррозии металлических деталей. Особенно неблагоприятно это сказывается на внутренних рабочих поверхностях тормозных цилиндров и поршнях – приводит к заклиниванию последних, а также к утечкам жидкости. На рис. 5.4 показано изменение температуры кипения тормозной жидкости в зависимости от пробега (происходящего при этом «увлажнения» жидкости). Рис. 5.4. Изменение температуры кипения тормозной жидкости в зависимости от пробега Механические свойства тормозных жидкостей в основном характеризуются их вязкостью и вязкостно-температурными показателями. Вязкость оказывает большое влияние на эффективность и надёжность работы тормозных систем. Понижение вязкости ухудшает уплотнение в главном и рабочих цилиндрах. Повышение вязкости тормозной жидкости приводит к росту сопротивления её движению по трубопроводам, уменьшает чувствительность гидропривода. Кинематическая вязкость жидкости для гидропривода тормозов при температуре 50 С должна быть не менее 5,0 мм2/с, при температуре минус 50 С – не более 2000 мм2/с, а при 100 С не менее 1,5 сСт. Гликолевые жидкости имеют лучшие температурно-вязкостные свойства по сравнению со спиртокасторовыми. Противоизносные свойства тормозных жидкостей должны обеспечивать минимальные износ главного и рабочих цилиндров и истирание резиновых манжет и других уплотнителей. Лучшими противоизносными свойствами обладают спиртокасторовые жидкости. Неудовлетворительные противоизносные свойства тормозных жидкостей на основе гликолей компенсируют широким применением тех же присадок, которые добавляют к смазочным маслам. Износ трущихся деталей при введении присадок снижается в три-четыре раза. Коррозионная активность жидкостей зависит от их химического состава и внешних условий, важнейшим из которых является температура. Спиртокасторовые смеси весьма активны по отношению к меди и свинцу. При проникновении в зазор между рабочими поверхностями поршня и тормозного цилиндра воды, особенно с химически активными веществами, наблюдается интенсивная «щелевая» коррозия. Оценивается щелевая коррозия поршня из цилиндра по нагрузке извлечения поршня из цилиндра на модельной установке. Показателем коррозионной активности тормозных жидкостей к металлам является концентрация водородных ионов рН, численное значение показателя рН должно быть менее 7. В результате воздействия тормозных жидкостей на резиновые детали происходит взаимообразная диффузия молекул жидкости и компонентов резины. От преобладания того или иного процесса возникает набухание (увеличение) или усадка (уменьшение) манжет. Небольшое набухание манжет компенсирует их износ, повышенное – вызывает заклинивание и разрушение. Усадка манжет ведёт к подтеканиям жидкости. Наибольшее набухание немаслостойкой резины вызывает смесь касторового масла с бутиловым спиртом (БСК). Жидкости на основе гликолей взаимодействуют с резиной слабо. Стабильность тормозных жидкостей рассматривают как физическую, так и термоокислительную. Физическая стабильность определяет способность к расслаиванию, вспениванию и выпадению осадков. Расслаиванию подвержены спиртокасторовые жидкости. При температуре минус 20 С и ниже касторовое масло сгущается и застывает, образуя осадок. Вспениваемость тормозных жидкостей мала. Термостабильность определяет сохранение свойств при повышенных температурах. Для повышения устойчивости жидкостей к окислению (особенно содержащих касторовое масло) применяют антиокислительные присадки – ионол, параоксидифениламин, – нафтол и др. Токсичностью обладают все тормозные жидкости, особенно гликолевые. Отравление может произойти при попадании внутрь организма. Поэтому при обращении с тормозными жидкостями необходимо соблюдать специальные меры предосторожности и общие правила техники безопасности при работе с техническими жидкостями. Пожароопасность присуща спиртокасторовым жидкостям. Гликоли имеют высокие температуры воспламенения (400…600 С) и не представляют значительной опасности. Защитные свойства наиболее высоки у спиртокасторовых жидкостей и гораздо хуже у гликолевых, поэтому в последние добавляют присадки. 5.2.3. Применение тормозных жидкостей Срок службы тормозной жидкости определяется руководством по эксплуатации автомобилей (обычно 1,5–2 года). На автомобилях ВАЗ тормозные жидкости используют в соответствии с техническими требованиями к материалам ВАЗ (ТТМ ВАЗ 1.97.738-97). Этим требованиям отвечает только одна жидкость, выпускаемая в России – ВТЖ «Роса-ДОТ4». Период её замены – три года. Тормозные жидкости «Томь» и «Роса-ДОТ 3» не отвечают требованиям ТТМ, однако могут применяться в заднеприводных автомобилях с периодом замены два года. Тормозная жидкость «Нева» исключена из карт смазки автомобилей, но при отсутствии допущенных жидкостей её можно использовать с ежегодной заменой в автомобилях старых моделей с приводом на задние колёса [19]. |