Главная страница

ответы физиология. В состав рефлекторной дуги входят


Скачать 151.05 Kb.
НазваниеВ состав рефлекторной дуги входят
Дата19.01.2018
Размер151.05 Kb.
Формат файлаdocx
Имя файлаответы физиология.docx
ТипДокументы
#34627
страница1 из 11
  1   2   3   4   5   6   7   8   9   10   11

2. Рефлекторный принцип регуляции

Основной формой деятельности ЦНС является рефлекс. Рефлекс – это ответная реакция организма на раздражение рецепторов, осуществляемая при участии ЦНС.

Рефлексы можно классифицировать по различным показателям. По биологическому значению рефлексы подразделяются на ориентировочные, оборонительные, пищевые и половые. По расположению рецепторов они делятся на зкстерорецептивные – вызываемые раздражением рецепторов, расположенных на внешней поверхности тела; интерорецептивные – вызываемые раздражением рецепторов внутренних органов и сосудов; проприорецептивные – возникающие при раздражении рецепторов, находящихся в мышцах, сухожилиях и связках. В зависимости от органов, которые участвуют в формировании ответной реакции, рефлексы могут быть двигательными (локомоторными), секреторными, сосудистыми и др. В зависимости от того, какие отделы мозга необходимы для осуществления данного рефлекса, различают: спинальные рефлексы, для которых достаточно нейронов спинного мозга; бульбарные (возникающие при участии продолговатого мозга); мезэнцефальные (участвуют нейроны среднего мозга); диэнцефальные (нейроны – промежуточного мозга); кортикальные (для которых необходимы нейроны коры головного мозга). Следует отметить, что в большинстве рефлекторных актов участвуют как высший отдел ЦНС – кора головного мозга, так и низшие отделы одновременно.

Рефлексы можно также разделить на безусловные (врожденные) и условные (приобретенные в процессе индивидуальной жизни).

Структурной основой рефлекса, его материальным субстратом является рефлекторная дуга – нейронная цепь, по которой проходит нервный импульс от рецептора к исполнительному органу (мышце, железе).

В состав рефлекторной дуги входят:

1. воспринимающий раздражение рецептор;

2. чувствительное (афферентное) волокно (аксон чувствительного нейрона), по которому возбуждение передается в ЦНС;

3. нервный центр, в который входят один или несколько вставочных нейронов;

4. эфферентное нервное волокно (аксон эфферентного нейрона), по которому возбуждение направляется к органу.

В рефлекторной реакции всегда участвуют афферентные нейроны, передающие импульсы от рецепторов (например, проприорецепторов) исполнительного органа в ЦНС. С помощью обратной афферентации происходит коррекция ответной реакции нервными центрами, регулирующими данную функцию. Поэтому понятие «рефлекторная дуга» заменяется в настоящее время представлением о рефлекторном кольце, поскольку в функциональном отношении дуга замкнута и на периферии, и в центре беспрерывно циркулирующими во время работы органа нервными сигналами.

Простейшая рефлекторная дуга (моносинаптическая) состоит из двух нейронов: чувствительного и двигательного. Примером такого рефлекса является коленный рефлекс. Большинство рефлексов включают один или несколько последовательно связанных вставочных нейронов и называются полисинаптическими. Наиболее элементарной полисинаптической дугой является трехнейронная рефлекторная дуга, состоящая из чувствительного, вставочного и эфферентного нейронов. В осуществлении пищевых, дыхательных, сосудодвигательных рефлексов участвуют нейроны, расположенные на разных уровнях – в спинном, продолговатом, среднем и промежуточном мозге, в коре головного мозга.

Рефлексы возникают под влиянием специфических для них раздражителей, действующих на их рецептивное поле. Рецептивным полем рефлекса называется участок тела, содержащий рецепторы, раздражение которых всегда вызывает данную рефлекторную реакцию. Так, рефлекс сужения зрачка возникает при освещении сетчатки глаза, разгибание голени наступает при нанесении легкого удара по сухожилию ниже колена и т. д.

3

Нервный центр — совокупность нервных клеток (нейронов), необходимая для регуляции деятельности других нервных центров или исполнительных органов. Простейший нервный центр состоит из нескольких нейронов, образующих узел (ганглий). У высших животных и человека нервный центр включает тысячи и даже миллионы нейронов. Большинство функций организма обеспечивается рядом нервных центров, расположенных на различных уровнях центральной нервной системы (напр., нервный центр зрительной системы находится в промежуточном, среднем мозге и в коре больших полушарий). Нервный центр — сложное сочетание нейронов, согласованно включающихся:

в регуляцию определенной функции;

в осуществление рефлекторного акта.

Клетки нервного центра связаны между собой синаптическими контактами и отличаются огромным разнообразием и сложностью внешней и внутренней тектоники. В зависимости от выполняемой функции различают:

чувствительные нервные центры;

нервные центры вегетативных функций;

двигательные нервные центры и др.

Понятие нервных центров

Нервный центр — центральный компонент рефлекторной дуги, где происходит переработка информации, вырабатывается программа действия, формируется эталон результата.

Анатомическое понятие «нервный центр» — это совокупность нейронов, располагающихся в строго определенных отделах центральной нервной системы и осуществляющих один рефлекс. Например: центр коленного рефлекса — в передних рогах 2-4 поясничных сегментов спинного мозга; центр глотания — на уровне продолговатого мозга: 5, 7, 9 пары черепно-мозговых нервов.

Физиологическое понятие «нервный центр» — это совокупность нейронов, расположенных на различных уровнях центральной нервной системы и регулирующих сложный рефлекторный процесс. Например: центр глотания входит в состав пищевого центра.

Свойства нервных центров

Одностороннее проведение возбуждения — возбуждение передается с афферентного на эфферентный нейрон. Причина: клапанное свойство синапса.

Задержка проведения возбуждения: скорость проведения возбуждения в нервном центре на много ниже таковой по остальным компонентам рефлекторной дуги. Чем сложнее нервный центр, тем дольше проходит по нему нервный импульс. Причина: синаптическая задержка. Время проведения возбуждения через нервный центр — центральное время рефлекса.

Суммация возбуждения — при действии одиночного подпорогового раздражителя ответной реакции нет. При действии нескольких подпороговых раздражителей ответная реакция есть. Рецептивное поле рефлекса — зона расположения рецепторов, возбуждение которых вызывает определенный рефлекторный акт.

Имеется 2 вида суммации: временная и пространственная.

Временная суммация — возникает ответная реакция при действии нескольких следующих друг за другом раздражителей. Механизм: суммируются возбуждающие постсинаптические потенциалы рецептивного поля одного рефлекса. Происходит суммация во времени потенциалов одних и тех же групп синапсов.

Пространственная суммация — возникновение ответной реакции при одновременном действии нескольких подпороговых раздражителей. Механизм: суммация возбуждающего постсинаптического потенциала от разных рецептивных полей. Суммируются потенциалы разных групп синапсов.

Центральное облегчение — объясняется особенностями строения нервного центра. Каждое афферентное волокно входя в нервный центр иннервирует определенное количество нервных клеток. Эти нейроны — нейронный пул. В каждом нервном центре много пулов. В каждом нейронном пуле — 2 зоны: центральная (здесь афферентное волокно над каждым нейроном образует достаточное для возбуждения количество синапсов), периферическая или краевая кайма (здесь количество синапсов недостаточно для возбуждения). При раздражении возбуждаются нейроны центральной зоны. Центральное облегчение: при одновременном раздражении 2-х афферентных нейронов ответная реакция может быть больше арифметической суммы раздражения каждого из них, т. к. импульсы от них отходят к одним и тем же нейронам периферической зоны.

Окклюзия — при одновременном раздражении 2-х афферентных нейронов ответная реакция может быть меньше арифметической суммы раздражения каждого из них. Механизм: импульсы сходятся к одним и тем же нейронам центральной зоны. Возникновение окклюзии или центрального облегчения зависит от силы и частоты раздражения. При действии оптимального раздражителя, (максимального раздражителя (по силе и частоте) вызывающего максимальную ответную реакцию) — появляется центральное облегчение. При действии пессимального раздражителя (с силой и частотой вызывающих снижение ответной реакции) — возникает явление окклюзии.

Посттетаническая потенция — усиление ответной реакции, наблюдается после серии нервных импульсов. Механизм: потенциация возбуждения в синапсах;

Рефлекторное последействие — продолжение ответной реакции после прекращения действия раздражителя:

кратковременное последействие — в течение нескольких долей секунды. Причина — следовая деполяризация нейронов;

длительное последействие — в течение нескольких секунд. Причина: после прекращения действия раздражителя возбуждение продолжает циркулировать внутри нервного центра по замкнутым нейронным цепям.

Трансформация возбуждения — несоответствие ответной реакции частоте наносимых раздражений. На афферентном нейроне происходит трансформация в сторону уменьшения из-за низкой лабильности синапса. На аксонах эфферентного нейрона, частота импульса больше частоты наносимых раздражений. Причина: внутри нервного центра образуются замкнутые нейронные цепи, в них циркулирует возбуждение и на выход из нервного центра импульсы подаются с большей частотой.

Высокая утомляемость нервных центров — связана с высокой утомляемостью синапсов.

Тонус нервного центра — умеренное возбуждение нейронов, которое регистрируется даже в состоянии относительного физиологического покоя. Причины: рефлекторное происхождение тонуса, гуморальное происхождение тонуса (действие метаболитов), влияние вышележащих отделов центральной нервной системы.

Высокий уровень обменных процессов и, как следствие, высокая потребность в кислороде. Чем больше развиты нейроны, тем больше необходимо им кислорода. Нейроны спинного мозга проживут без кислорода 25-30 мин, нейроны ствола головного мозга — 15-20 мин, нейроны коры головного мозга — 5-6 мин.

Физиологические свойства нервных волокон:

1) возбудимость – способность приходить в состояние возбуждения в ответ на раздражение;

2) проводимость – способность передавать нервные возбуждение в виде потенциала действия от места раздражения по всей длине;

3) рефрактерность (устойчивость) – свойство временно резко снижать возбудимость в процессе возбуждения.

Нервная ткань имеет самый короткий рефрактерный период. Значение рефрактерности – предохранять ткань от перевозбуждения, осуществляет ответную реакцию на биологически значимый раздражитель;

4) лабильность – способность реагировать на раздражение с определенной скоростью. Лабильность характеризуется максимальным числом импульсов возбуждения за определенный период времени (1 с) в точном соответствии с ритмом наносимых раздражений.

Нервные волокна не являются самостоятельными структурными элементами нервной ткани, они представляют собой комплексное образование, включающее следующие элементы:

1) отростки нервных клеток – осевые цилиндры;
2) глиальные клетки;
3) соединительнотканную (базальную) пластинку.
Главная функция нервных волокон – проведение нервных импульсов. Отростки нервных клеток проводят сами нервные импульсы, а глиальные клетки способствуют этому проведению. По особенностям строения и функциям нервные волокна подразделяются на два вида: безмиелиновые и миелиновые.

Передача возбуждения от одного нейрона другому. Сигналы. Медиаторы.

Механизм проведения возбуждения по нервным волокнам зависит от их типа. Существуют два типа нервных волокон: миелиновые и безмиелиновые.

Процессы метаболизма в безмиелиновых волокнах не обеспечивают быструю компенсацию расхода энергии. Распространение возбуждения будет идти с постепенным затуханием – с декрементом. Декрементное поведение возбуждения характерно для низкоорганизованной нервной системы. Возбуждение распространяется за счет малых круговых токов, которые возникают внутрь волокна или в окружающую его жидкость. Между возбужденными и невозбужденными участками возникает разность потенциалов, которая способствует возникновению круговых токов. Ток будет распространяться от «+» заряда к «—». В месте выхода кругового тока повышается проницаемость плазматической мембраны для ионов Na, в результате чего происходит деполяризация мембраны. Между вновь возбужденным участком и соседним невозбужденным вновь возникает разность потенциалов, что приводит к возникновению круговых токов. Возбуждение постепенно охватывает соседние участки осевого цилиндра и так распространяется до конца аксона.

В миелиновых волокнах благодаря совершенству метаболизма возбуждение проходит, не затухая, без декремента. За счет большого радиуса нервного волокна, обусловленного миелиновой оболочкой, электрический ток может входить и выходить из волокна только в области перехвата. При нанесения раздражения возникает деполяризация в области перехвата А, соседний перехват В в это время поляризован. Между перехватами возникает разность потенциалов, и появляются круговые токи. За счет круговых токов возбуждаются другие перехваты, при этом возбуждение распространяется сальтаторно, скачкообразно от одного перехвата к другому. Сальтаторный способ распространения возбуждения экономичен, и скорость распространения возбуждения гораздо выше (70—120 м/с), чем по безмиелиновым нервным волокнам (0,5–2 м/с).

Синапс

Нейроны в ЦНС и на периферии образуют прерывистые цепи, т. к. отростки нер. клеток лишь прилегают к телам других нер. клеток и их отросткам, но не проникают внутрь. Структуры, обеспечивающие переход в возбуждение с нервного волокна на нервную клетку или мышцу, или секреторную клетку называются СИНАПСАМИ.

В синапсе различают:

1) пресинаптическая мембрана

2) синаптическая щель размером 10-50 нм

3) постсинаптическая мембрана

Возбуждение передается в синапсе при помощи медиаторов. В большинстве синапсов постс-ая мембрана мало чувствительна к электрическим импульсам и высокочувствительна к химическим передатчикам. Медиаторы синтезируются в теле нервной клетки. Они и выполняют роль хим. передатчиков.

В ЦНС медиаторную функцию выполняет целая группа хим. вещ-в, среди которых наиболее распространены ацетилхолин и норадреналин.

Механизм хим. передачи следующий:

Когда 1-ый импульс достигает пресимпатического окончания в нем высвобождается из пузырьков медиатор, который входит в синаптическую щель, доходит до постсинаптической мембраны, где соединяется с рецептором. Это ведет к изменению проницаемости постсин-ой мембраны для ионов Na+ и K+. Благодаря чему она деполяризуется. В начале возникает местное не распространяющееся возбуждение, но когда оно достигает определенного уровня возникает возбуждающий постсин-ий потенциал (ВПСП). Он не подчиняется закону «все или ничего». Его величина не зависит от количества медиатора и от чувствительности рецептора (холинорецепторы и адренарецепторы).

При достижении критического уровня ВПСП начинает распространяться по мышце или по нервному волокну, вызывая ответную реакцию.

Установлено, что кроме возбуждающих имеются и тормозные нейроны. В них образуются и поступают в синапсы тормозные медиаторы, которые вызывают гиперполяризацию постсин-ой мембраны и подавляют процесс возбуждения. Наличие синапсов и хим. передачи объясняет ряд свойств присущих нервной системе. А именно: в рефлекторной дуге возбуждение протекает только в одном направлении от рецепторов к исполнительным органам.
5,

Законы возбуждения

1-й закон (закон силы). Ткань отвечает на действие раздражителя возбуждением только в том случае, если раздражение имеет определенную силу. Реобаза – минимальная сила электрического тока, способная вызвать возбуждение. Чем возбудимее ткань, тем меньше для нее пороговая сила возбуждения и, следовательно, более слабый раздражитель может вызвать возбуждение. Возбудимость мышцы меньше возбудимости нерва.

2-й закон (закон времени). Ткань отвечает на действие раздражителя пороговой силы и выше только в том случае, если раздражитель действует определенное время. Это время для различных тканей неодинаково. Наименьшее время действия раздражителя пороговой силы, необходимое для того, что бы вызвать возбуждение, называют полезным временем. Хронаксия – это наименьшее время, необходимое для развития ответной реакции ткани, при условии, когда на нее действует раздражитель (электрический ток), равный удвоенной реобазе: измеряется в миллисекундах.

3-й закон (закон крутизны нарастания силы раздражения). Условием раздражения является нарастание силы с достаточной быстротой, которая характеризуется его крутизной; чем выше скорость нарастания силы раздражителя, тем ниже величина пороговой силы раздражителя, раздражитель может не вызвать ответной реакции ткани. Это связано со свойством такни приспосабливаться к раздражителю. Такое изменение состояния ткани называется аккомодацией или приспособлением.

4-й закон (полярный закон действия раздражителя, или закон действия постоянного тока). При действии постоянного тока на ткань возбуждение возникает только на катоде или аноде, таким образом, в момент замыкания цепи постоянного тока возбуждение возникает всегда только под катодом, а в момент размыкания – только под анодом.

5-й закон («все или ничего»). Структурно-функциональные единицы ткани (клетки, нервные волокна и др.) отвечают на действие раздражителя только по принципу «все или ничего». Сущность закона состоит в том, что на раздражитель пороговой силы ткани отвечают максимальной силой возбуждения – это универсальный закон.

Возбудимость – способность живой ткани отвечать на действие раздражителя изменением физиологических свойств и возникновением процесса возбуждения.

Пессимум (наихудший) - ослабление деятельности ткани при чрезмерно сильной или частой стимуляции.

Оптимум (наилучший) – наиболее благоприятный ритм раздражений.

Мера лабильности – это максимальное число импульсов возбуждения, которое возникает за 1 с в ответ на такое же максимальное число раздражений.

Лабильность, или функциональная подвижность – скорость, с которой в ткани возникает и успевает закончиться полный период отдельного импульса возбуждения. Для измерения лабильности предложен показатель – мера лабильности.

Рефрактерность – временное снижение возбудимости такни, возникающее после ее возбуждения. Рефрактерность бывает абсолютная и относительная.

6, Вегетативная нервная система, ее строение, функции.

Кроме соматической НС, которая участвует в иннервации всей поперечно-полосатой мускулатуры, в организме сущ. вегетативная НС. Она состоит из 2-х отделов: симпатического и парасимпатического. Каждый внутренний орган имеет двойную иннервацию. Кроме внутренних органов вегетативная система иннервирует железы внутренней секреции, гладкую мускулатуру сосудов, внутренних органов (полых: ЖКТ, моч. пузырь) и секреторные клетки. Высшим центром вегетативной НС является гипоталамус. Состоит из 2-х отделов: симпатического и парасимпатического.

Симпатический отдел – это отдел быстрого реагирования. Центр симпатического отдела находится в грудном и частично поясничном отделе спинного мозга. Медиатором при передаче импульсов служит норадреналин. Симпатический отдел сужает кровеносные сосуды, способствует повышению артериального давления, учащению сердцебиения, учащению дыхания. Но симпатический отдел вызывает замедление перистальтики ЖКТ, угнетению его секреторной активности.

Парасимпатический отдел оказывает противоположное действие. Центры его находятся в продолговатом мозге и в крестцовом отделе спинного мозга (нижне-поясничный).

Вегетативные рефлексы

Подразделяются на центральные и периферические.

Центральные рефлексы осуществляются при участии нейронов ЦНС - сегментарных и надсегментарных нервных центров.

Периферические вегетативные рефлексы - при участии ганглионарных нейронов, расположенных вне ЦНС - в вегетативных ганглиях.

1. Внутриорганные рефлексы, например, внутрисердечные. Осуществляются в пределах метасимпатической нервной системы органа. Обеспечивают автономную работу органа после перерезки симпатических и парасимпатических нервов.

2. Межорганные рефлексы - осуществляются за счет рефлекторных дуг, которые замыкаются на уровне вегетативного ганглия без подключения сегментарных и надсегментарных центров. Это 1) освобождает ЦНС от переработки избыточной информации и 2) после выключения связи органа с ЦНС (например, травма спинного мозга) обеспечивают автономное функционирование и относительную надежность регуляции физиологических функций органа.

3. Аксон-рефлекс - рефлекторная реакция в пределах разветвления одного аксона без участия тела нейрона за счет ретроградного распространения возбуждения с одной ветви аксона на другую. Например, при механическом или болевом раздражении участка кожи может возникать покраснение этого участка. Ограничивает действие сигналов с периферии в центр.

В зависимости от локализации рецепторного звена и эффекторного органа рефлексы делят на висцеро-висцеральные, висцеро-соматические, сомато-висцеральные, висцеро-дермальные, дермо-висцеральные и висцеро-сенсорные.

1. Висцеро-висцеральные рефлексы возникают при возбуждении рецепторов, которые расположены во внутренних органах. Информация от них идет в ганглий, обрабатывается и по эфферентным путям возвращается в тот же орган, где возбудились рецепторы или в другой орган. Например, рефлекс Гольца возникает при механическом раздражении брюшины и сопровождается уменьшением ЧСС. Рефлекс Бейнбриджа - растяжение правого предсердия приводит к усилению выделения вазопрессина в супраоптическом ядре гипоталамуса и повышению диуреза почками.

2. Висцеро-соматические рефлексы сопровождаются интегрированной реакцией висцеральных и соматических органов вследствие сегментарной иннервации некоторых органов - сердца, кишечника и др. Например, раздражение передней брюшной стенки может приводить к сокращению мышц живота или сокращению мышц-сгибателей конечностей. При холецистите, аппендиците возникает напряжение мышц соответствующих областей и изменяется поза пациента.

3. Сомато-висцеральные - раздражение соматических рецепторов изменяет деятельность внутренних органов. Например, рефлекс Данини-Ашнера - надавливание на глазные яблоки вызывает понижение ЧСС, что используют врачи скорой помощи для снижения тахикардии. Раздражение проприорецепторов мышц и сухожилий при переходе из положения лежа в положение стоя вызывает увеличение ЧСС, АД и ЧД (ортостатический рефлекс).

4. Висцеро-дермальные - возникают при раздражении внутренних органов и проявляются в изменении потоотделения, электрического спротивления кожи, покраснения или бледности в соответствующих областях.

5. Дермо-висцеральные - при раздражении участков кожи возникают сосудистые реакции и изменения в деятельности внутренних органов. Например, поглаживание кожи живота по часовой стрелке усиливает перистальтику кишечника. На основе этих рефлексов разработаны принципы иглоукалывания и мануальной терапии.

6. Висцеро-сенсорные рефлексы возникают при изменении работы внутренних органов и выражаются в изменении чувствительности - тактильной - (гиперстезия) или болевой (гипералгезия). В основе этих рефлексов лежит наличие проекционных зон внутренних органов на поверхность тела - зоны Геда. Например, нарушения в деятельности сердца могут приводить к боли в области левой руки, мизинца. Холецистит может сопровождаться болями в области сердца, грудины.

7,

Рецепция это восприятие и преобразование (трансформация) механических, термических, электромагнитных, химических и других раздражителей в нервные сигналы.

Рецептор (Recepcio - воспринимать) – чувствительное нервное окончание способное воспринимать раздражитель, преобразовывать его в нервный импульс.

I. В зависимости от локализации различают следующие виды нервных окончаний - рецепторов:

1. экстерорецепторы воспринимают раздражение факторов внешней среды. Они расположены в наружных покровах тела, в коже и слизистых оболоч-ках, в органах чувств;

2. интерорецепторы получают раздражение главным образом при изменении химического состава внутренней среды (хеморецепторы), давление в тка-нях и органах (барорецепторы, механорецепторы);

3. проприорецепторы, или проприоцепторы, воспринимают раздражение в тканях собственно тела. Они имеются в мышцах, сухожилиях, связках, фасциях, суставных капсулах.

II. В соответствии с функцией выделяют терморецепторы, механорецепторы и ноци-рецепторы. Первые воспринимают изменения температуры, вторые - различные виды механических воздействий (прикосновение к коже, ее сдавление), третьи - болевые раздражения.

III. По характеру контакта со средой рецепторы делятся на

1. Дистантные, получающие информацию на расстоянии от источника раздра-жения (зрительные, слуховые и обонятельные).

2. Контактные — возбуждающиеся при непосредственном соприкосновении с раздражителем (вкусовые, тактильные).

IV. Все рецепторы делятся на первично-чувствующие и вторично чувствующие.

1. К первым относятся рецепторы обоняния, тактильные и проприорецепторы. Они различаются тем, что преобразование энергии раздражения в энергию нервного импульса происходит у них в первом нейроне сенсорной систе-мы.

2. К вторично чувствующим относятся рецепторы вкуса, зрения, слуха, вести-булярного аппарата. У них между раздражителем и первым нейроном находится специализированная рецепторная клетка, не генерирующая им-пульсы. Таким образом, первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку.

V. Классификация рецепторов по характеру ощущений, возникающих при ихраздра-жении. Согласно этой классификации, различают зрительные, слуховые, обоня-тельные, вкусовые, осязательные рецепторы, термо-, проприо- и вестибулорецеп-торы (рецепторы положения тела и его частей в пространстве) и рецепторы боли.

Сенсорной системой (анализатором, по И. П. Павлову) называют часть нервной системы, состоящую из воспринимающих элементов — сенсорных рецепторов, получающих стимулы из внешней или внутренней среды, нервных путей, передающих информацию от рецепторов в мозг, и тех частей мозга, которые перерабатывают эту информацию. Таким образом, сенсорная система вводит информацию в мозг и анализирует ее.

Сенсорная система выполняет следующие основные функции, или операции, с сигналами:

1) обнаружение;

2) различение;

3) передачу и преобразование;

4) кодирование;

5) детектирование признаков;

6) опознание образов.

Обнаружение и первичное различение сигналов обеспечивается рецепторами, а детектирование и опознание сигналов — нейронами коры больших полушарий.

Передачу, преобразование и кодирование сигналов осуществляют нейроны всех слоев сенсорных систем.

Обнаружение сигналов. Оно начинается в рецепторе.

Общие механизмы возбуждения рецепторов. При действии стимула на рецепторную клетку происходит преобразование энергии внешнего раздражения в рецепторныи сигнал, или трансдукция сенсорного сигнала.

Этот процесс включает в себя три основных этапа:

1) В взаимодействие стимула, т. е. молекулы пахучего или вкусового вещества (обоняние, вкус), кванта света (зрение) или механической силы (слух, осязание) с рецепторной белковой молекулой, которая находится в составе клеточной мембраны рецепторной клетки;

2) внутриклеточные процессы усиления и передачи сенсорного стимула в пределах рецепторной клетки;

3) деполяризация клеточной мембраны рецепторной клетки (возникновению так называемого рецепторного потенциала).

Различение сигналов — способность замечать различия в свойствах одновременно или последовательно действующих раздражителей. Различение начинается в рецепторах, но в этом процессе участвуют нейроны всей сенсорной системы. Оно характеризует то минимальное различие между стимулами, которое сенсорная система может заметить (дифференциальный, или разностный, порог).

Передача и преобразование сигналов. Процессы преобразования и передачи сигналов в сенсорной системе доносят до высших центров мозга наиболее важную (существенную) информацию о раздражителе в форме, удобной для его надежного и быстрого анализа.

Кодирование информации. Кодированием называют совершаемое по определенным правилам преобразование информации в условную форму — код. В сенсорной системе сигналы кодируются двоичным кодом, т. е. наличием или отсутствием электрического импульса в тот или иной момент времени.

Детектирование сигналов. Это избирательное выделение сенсорным нейроном того или иного признака раздражителя, имеющего поведенческое значение. Такой анализ осуществляют нейроны-детекторы, избирательно реагирующие лишь на определенные параметры стимула. Так, типичный нейрон зрительной области коры отвечает разрядом лишь на одну определенную ориентацию темной или светлой полоски, расположенной в определенной части поля зрения. При других наклонах той же полоски ответят другие нейроны. В высших отделах сенсорной системы сконцентрированы детекторы сложных признаков и целых образов. Примером могут служить детекторы лица, найденные недавно в нижневисочной области коры обезьян.

Опознание образов. Это конечная и наиболее сложная операция сенсорной системы. Она заключается в отнесении образа к тому или иному классу объектов, с которыми ранее встречался организм, т. е. в классификации образов. Синтезируя сигналы от нейронов-детекторов, высший отдел сенсорной системы формирует «образ» раздражителя и сравнивает его с множеством образов, хранящихся в памяти. Опознание завершается принятием решения о том, с каким объектом или ситуацией встретился организм. В результате этого происходит восприятие, т. е. мы осознаем, чье лицо видим перед собой, кого слышим, какой запах чувствуем. Опознание часто происходит независимо от изменчивости сигнала. Мы надежно опознаем, например, предметы при различной их освещенности, окраске, размере, ракурсе, ориентации и положении в поле зрения. Это означает, что сенсорная система формирует независимый от изменений ряда признаков сигнала (инвариантный) сенсорный образ.

Общие свойства анализаторов

Анализатор - часть нервной системы, состоящая из множества нейронов, осуществляющих восприятие, проведение и анализ специфической информации.

Составные части любого анализатора:

1. Периферический отдел - представлен воспринимающими участками нервной системы – рецепторами (органы чувств – сложные рецепторы).

2. Проводниковый отдел - представлен афферентными нейронами, проводящими путями и подкорковыми центрами.

3. Центральный отдел - представлен участками коры больших полушарий мозга, воспринимающими афферентные сигналы.

Общие свойства анализаторов

1. Многослойность - наличие нескольких слоев нервных клеток, первый из которых связан с рецепторными элементами, а последний - с нейронами ассоциативных зон коры больших полушарий.

2. Многоканальность - наличие в каждом из слоев множество (до миллиона) нервных элементов, связанных с множеством элементов следующего слоя, которые в свою очередь посылают нервные импульсы к элементам ещё более высокого уровня.

3. Наличие "сенсорных воронок" - неодинаковое число элементов в соседних слоях.

А) Суживающаяся воронка - слой фоторецепторов сетчатки глаза - 130 млн. клеток; следующий слой - ганглиозных клеток - 1,3 млн.

Б) Расширяющаяся воронка - число нейронов в проекционной области зрительной коры в 1000 раз больше, чем в подкорковом зрительном центре.

- в суживающейся воронке - уменьшение информации, передаваемой в мозг;

- расширяющаяся воронка - для более дробного и сложного анализа разных признаков.

4. Дифференцировка анализатора по вертикали и горизонтали:

а). По вертикали - образование отделов из нескольких слоев (периферический, проводниковый, центральный).

б). По горизонтали - в каждом слое - различные свойства рецепторов .
  1   2   3   4   5   6   7   8   9   10   11


написать администратору сайта