Схемы. Вариант 1 Установка стабилизации нефтей на промысле
Скачать 4.17 Mb.
|
Вариант № 29 Установка двухступенчатой деасфальтизации гудронов жидким пропаном РИС. VII-2. Технологическая схема установки двухступенчатой деасфальтизации гудронов жидким пропаном: 1,2, 12, 13, 27, 30, 35 — насосы; 3, 6, 14, 25, 26, 36 — холодильники; 4, 15 — подогреватели; 5, 16 — приемники; 7, 17 — аппараты воздушного охлаждения; 8 — редукционный клапан; 9 — паровой встроенный подогреватель; 10, 18 — колонны; 11 — регулятор расхода; 19 —трубчатая печь; 20—23 — испарители; 24 — сепаратор; 28 — компрессор; 29, 31, 34 — отпарные колонны1, 32 — каплеотделнтель1, 33 —конденсатор смешения. Двухступенчатая деасфальтизации гудронов жидким пропаном предназначена для получения из остаточного сырья двух деасфальтизатов разной вязкости. Получаемые в первой и второй ступенях деасфальтизаты I и II далее перерабатывают раздельно или в смеси в остаточные масла. В результате перехода от одноступенчатой деасфальтизации к двухступенчатой выход деасфальтизата при переработке гудронов увеличивается на 13—30 %, (относительных). Прирост зависит главным образом от качества сырья и предъявляемых к продуктам требований. На двухступенчатой установке битумный раствор из первой колонны деасфальтизации поступает через подогреватель во вторую колонну, в которую подается дополнительно жидкий пропан. Растворы деасфальтизата II и битума II выводятся соответственно из второй колонны сверху и снизу. Деасфальтизаты I ступени являются сырьем для производства остаточных масел обычно вязкостью 18—23 мм2/с (при 100 °С), а деасфальтизаты II ступени — значительно более вязких масел, например вязкостью 30—45 мм2/с (при 100 °С). В деасфальти- затах II содержится больше ароматических углеводородов; они также имеют более высокие плотность и коксуемость. Битум деасфальтизации — побочный продукт двухступенчатого процесса — имеет высокую температуру размягчения; его можно использовать в качестве компонента сырья для производства нефтяных битумов твердых марок. Главные секции установки следующие (рис, VII-2): деасфальтизация I ступени (колонна 10 со вспомогательным оборудованием); деасфальтизация II ступени (колонна 18 и вспомогательные аппараты); регенерация пропана при высоком давлении из раствора деасфальтизата I, из раствора деасфальтизата II, из битумного раствора II (три секции); регенерация пропана при низком давлении из обедненных растворов, выходящих из предыдущих секций регенерации. Сырьем I ступени является гудрон или концентрат, а исходной смесью для II ступени — битумный раствор, переходящий под давлением из первой колонны снизу во вторую. На некоторых установках деасфальтизацию сырья проводят в I ступени в двух параллельно действующих колоннах, из которых битумные растворы поступают в одну общую колонну II ступени. Сырье насосом 1 подается через паровой подогреватель 4 в колонну деасфальтизации I ступени 10. В нижнюю зону этой же колонны вводится через холодильник 3 жидкий пропан, забираемый насосом 2 из приемника 5. Пройдя верхний встроенный подогреватель 9 и верхнюю отстойную зону, раствор деасфальтизата I после снижения давления (при - мерно с 4,2 до 2,7 МПа) поступает в секцию регенерации пропана при высоком давлении. Требуемое рабочее давление в колонне 10 поддерживается с помощью редукционного клапана 8 колонна оборудована тарелками жалюзийного типа. Битумный раствор I выводится с низа колонны 10, подогревается водяным паром в аппарате 15 и вводится в колонну 18 деасфальтизации II ступени. В этой колонне процесс осуществляется при меньшем давлении и более низкой температуре, чем в колонне 10: за счет разности давлений, которая равна 0,4—0,7 МПа, битумный раствор I перемещается из колонны 10 в колонну 18. Пропан в колонну 18 подается насосом 12 через холодильник 14. Колонна 18 по конструкции подобна колонне 10. Кратность пропана к сырью для второй ступени выбирается более высокой, чем для первой. Из раствора деасфальтизата I основное количество пропана выделяется в последовательно соединенных испарителях 21 и 22, а из раствора деасфальтизата II — в испарителях 20 и 23. В испарителях 20 и 21, работающих при сравнительно умеренных температурах, в качестве теплоносителя обычно используется водяной пар давлением около 0,6 МПа, а в высокотемпературных испарителях 22 и 23 — водяной пар давлением 1,0 МПа. Деасфальтизаты I и II практически полностью освобождаются от пропана соответственно в отпарных колоннах 29 и 31 тарельчатого типа, где стекающие жидкости продуваются встречным потоком водяного пара. Далее оба деасфальтизата направляются насосами 27 и 30 соответственно через холодильники 25 и 26 в резервуары. Выходящие из испарителей 20 и 21 пары пропана высокого давления (2,7—2,8 МПа) конденсируются в аппарате воздушного охлаждения 7; конденсат поступает через кожухотрубный водяной холодильник 6 в приемник 5. Пары, выделенные в испарителях 22 и 23 (работающих при менее высоком давлении — около 1,8 МПа), конденсируются в аппарате воздушного охлаждения 17\ образовавшийся здесь конденсат стекает в приемник 16. Для восполнения потерь в этот приемник подается технический пропан со стороны. Из приемника 16 пропан подается в приемник 5 насосом 13. Битумный раствор II ступени, пройдя регулятор расхода 11, нагревается в трубчатой печи 19\ испарившийся пропан отделяется от жидкости в сепараторе 24. Уходящие отсюда пары далее поступают в конденсатор-холодильник 7. Обедненный битумный раствор по выходе из сепаратора 24 продувается водяным паром в отпарной колонне 34 (также тарельчатого типа). Смеси пропановых и водяных паров, уходящие при небольшом избыточном давлении из отпарных колонн 29, 31 и 34, поступают в общий конденсатор- холодильник смешения 33 с перегородками. Здесь при контакте с холодной водой водяные пары конденсируются, а пары пропана низкого давления, пройдя каплеотделитель 32, сжимаются компрессором 28 до давления 1,7—1,8 МПа. Под этим давлением пары пропана конденсируются в конденсаторе- холодильнике 17. Освобожденный от растворителя битум деасфальтизации по выходе из отпарной колонны направляется насосом 35 через холодильник36в резервуар. Во избежание заноса капель битума деасфальтизации в конденсатор-холодильник 7 выходящие из сепаратора 24 пары пропана обычно пропускаются через горизонтальный цилиндрический каплеотбойник. Для удаления сероводорода часть паров пропана проходит через колонну, заполненную водным раствором щелочи (каплеотбойник и колонна щелочной очистки на схеме не показаны). Ниже приведены температуры (первые частные — верха, вторые — низа) и рабочие давления в колоннах и испарителях установки:
Вариант № 30 Установка деасфальтизации бензином (процесс добен) РИС. VII-3. Технологическая схема установки деасфальтизации гудрона бензином (процесс добен): 1, 4, 7, 9, 13, 16, 20 — насосы; 2 — подогреватель гудрона; 3, 17 — приемники; 5, 8 — трубчатая печь; $£ — экстрактор; 10 — сепаратор высокого давления; 11 — редукционный клапан; 12 — отпарная колонна; 14 — конденсатор-холодильник; 15, 19 — сепараторы-водоотделители низкого давления; 18 — аппарат воздушного охлаждения; 21 — секция регенерации растворителя из асфальтитового раствора; 22 — шестеренчатый насос горячего асфальтита; 23 — барабанный охладитель асфальтита. Основное назначение процесса — удаление ас- фальтенов из гудрона перед его дальнейшей углубленной переработкой, в частности гидрогенизацион- ной. Нефтяной асфальтит может быть подвергнут газификации в схемах безостаточной переработки нефтяного сырья; его используют в производстве нефтяных битумов и большого ассортимента различных нефтехимических продуктов, а также взамен природного асфальтита в производстве различных сплавов и в качестве теплогидроизоляционного материала. При температурах 140—150 °С и давлении 2,2—2,5 МПа при обработке остаточного сырья легкой бензиновой фракцией (технической пентано- вой фракцией) в колонном экстракционном аппарате — экстракторе — образуются два слоя: раствор деасфальтизата (около 70 % масс, бензиновой фракции и 30 % масс, деасфальтизата), который отводится с верха экстрактора, и раствор асфальтита (около 37 % масс, растворителя и 63 % масс, асфальтита), который откачивается из экстрактора снизу. Экстрактор снабжен тарелками из просечно-вытяжного листа. Кратность растворителя к сырью (по объему) составляет примерно 3,5 : 1 при выходе асфальтита в количестве 12—15 % (масс.) на гудрон. В результате процесса из гудрона почти нацело удаляются асфальтены, на 60—75 % тяжелые агрессивные металлы и основное количество золообразующих компонентов. Коксуемость освобожденного от асфальтенов продукта в 1,5—2 раза меньше коксуемости исходного сырья, абсолютная вязкость его уменьшается в 3—4 раза. Содержание серы в деасфальтизате несколько меньше, чем в гудроне, поскольку глубокого обессеривания не наблюдается. Технологическая схема установки представлена на рис. VI1-3. Гудрон, нагнетаемый насосом 1, подогревается в теплообменнике 2 и поступает в сырьевой приемник 3. Отсюда гудрон насосом 4 направляется в непрерывно действующую экстракционную колонну 6. В нижнюю часть этого же аппарата насосом 9 подается легкая бензиновая фракция, предварительно нагретая под давлением в змеевиках трубчатой печи 5. Сырье и растворитель вводятся в экстрактор 6 через встроенные распределители. Образующийся при встречном движении раствор деасфальтизата до выхода из экстрактора нагревается во встроенном подогревателе, расположенном над распределителем сырья; с повышением температуры этого раствора улучшается качество получаемого деасфальтизата, но снижается его выход. Для регенерации растворителя из раствора деасфальтизата используются: радиантные змеевики в печи 8, сепаратор высокого давления 10 и отпарная колонна 12. Под нижнюю тарелку этой колонны подается водяной пар. Основная масса растворителя выделяется в сепараторе 10. Уходящие отсюда пары поступают в аппарат воздушного охлаждения 18; образующийся в нем конденсат легкой бензиновой фракции собирается в приемнике повышенного давления 17. Выходящая из колонны 12 сверху смесь водяных и бензиновых паров конденсируется в водяном конденсаторе-холодильнике 14; смесь двух жидкостей расслаивается в сепараторе-водоотделителе 15. Водный конденсат выводится из левой половины этого аппарата, в правой половине собирается легкий бензин, который насосом 16 направляется в приемник 17. Секция 21 предназначена для регенерации растворителя из асфальтитового раствора, предварительно нагреваемого в конвекционном змеевике печи 8. Связь секции 21 с приемником 17 осуществляется через сепаратор-водоотделитель 19. Из приемника 17 растворитель насосом 9 через змеевики печи 5 возвращается в экстрактор 6. Жидкий асфальтит подается в барабанный охладитель 23 шестеренчатым насосом 22. Получаемый в охладителе твердый асфальтит выводится с установки. Технологический режим установки:
Часть трубопроводов на установке необходимо обогревать, поскольку асфальтит — высоковязкий продукт. Предусматриваются меры, препятствующие образованию пены. Во избежание заметного разложения асфальтита его смесь с бензиновой фракцией нагревается только в конвекционной камере печи, да и то в прямотоке с газами сгорания. Вариант № 31 Установка очистки нефтяных масляных фракций фенолом Р ИС. VIII-1. Технологическая схема установки очистки масляного сырья фенолом: 1, 6, 9,11, 13, 18, 22, 29, 31, 33, 37 — насосы; 2, 17, 23, 24 — теплообменники; 3, 12 — подогреватели; 4 — конденсатор-холодильник; 5 — абсорбер; 7, 8, 26 — холодильники; 10 — экстракционная колонна; 14, 15, 28, 34 — приемники; 16, 30 — трубчатые печи; 19, 35 — аппараты воздушного охлаждения; 20 — рафинатная испарительная колонна; 21 — рафинатная отпарная колонна; 25 — кипятильник; 27 — сушильная колонна; 32 — экстрактная испарительная колонна; 36 — экстрактная отпарная колонна; 38 — каплеотбойник. Назначение установки очистки нефтяных масляных фракций — получение рафината путем удаления из сырья нежелательных компонентов при помощи фенола. Выход рафината зависит от качества исходного сырья и глубины очистки. В качестве сырья используется масляный дистиллят или деасфальтизат. Наряду с получением целевого продукта в процессе образуется экстракт. Основные секции установки следующие: абсорбции сырьем фенола из паров азеотропной смеси фенол — вода, экстракции, регенерации фенола из рафинатного раствора и регенерации фенола из экстрактного раствора Технологическая схема установки приведена на рис. VIII-1. Дистиллятное или остаточное сырье насосом 1 подается через теплообменник 2, где оно нагревается примерно до- 90 °С, и паровой подогреватель 3 на верхнюю тарелку абсорбера 5 (в абсорбере 16 тарелок). При входе в абсорбер температура сырья равна 110—115°С. Подача сырья регулируется в зависимости от уровня жидкости в нижней части абсорбера регулятором уровня, клапан которого установлен на нагнетательной линии насоса 1. Под нижнюю тарелку абсорбера вводятся пары азеотропной смеси. Нисходящий поток сырья, встречаясь с поднимающимися парами, абсорбирует из них фенол. Пары воды по выходе из абсорбера поступают в конденсатор-холодильник 4, образовавшийся конденсат используется для производства перегретого водяного пара в системе «водного контура» (на схеме не показано). Сырье с абсорбированным в нем фенолом забирается с низа абсорбера насосом 6 и через холодильник 7 направляется в среднюю часть экстракционной колонны 10 насадочного или тарельчатого типа. Температура верха колонны, поддерживаемая примерно на 8—12 °С ниже критической температуры растворения, обычно не превышает 115 °С для остаточного сырья и 50 °С для маловязкого дистиллятного сырья. Создаваемый температурный градиент между верхом и низом колонны составляет 10— 30 °С. Обычно кратность фенола к сырью колеблется в пределах 1,2—2,2 при очистке масляных дистиллятов и 2,5—4,0 при очистке деасфальтизатов. На верх колонны 10 насосом 13 из приемника 28 подается фенол, предварительно нагретый в паровом подогревателе 12 до температуры на 4—8 °С выше температуры уходящего рафинатного раствора. Для увеличения отбора рафината (путем снижения растворяющей способности фенола) в нижнюю часть колонны 10 насосом (на схеме не показан) вводится из приемника 15 фенольная вода, соответствующая в данном случае составу азеотропной смеси. Количество фенольной воды в зависимости от сырья составляет 2—10 % (масс.) на фенол. Для равномерного распределения потоков по сечению колонны все жидкости в нее вводятся через горизонтальные трубчатые распределители. Температура в верхней части колонны регулируется в основном за счет изменения температуры нагрева фенола. Регулируя количество экстрактного раствора-рециркулята, которое не должно превышать 30 % (масс.) общей загрузки колонны, подаваемого насосом 9 через холодильник 8, поддерживают требуемую температуру низа экстракционной колонны. В колонне 10 образуются два слоя: рафинатный и экстрактный. Уровень раздела фаз поддерживается в колонне при помощи межфазового регулятора, установленного немного выше ввода сырья в колонну. Рафинатный раствор, содержащий до 20 % (масс.) фенола, на выходе из колонны 10 сверху собирается в промежуточном приемнике 14. Экстрактный раствор, состоящий из экстракта, фенола и практически всей вводимой в колонну воды, отводится с низа колонны 10 насосом 11 в секцию регенерации растворителя. Из приемника 14 рафинатный раствор насосом 18 подается в секцию регенерации растворителя через теплообменник 17 (греющая среда — уходящий горячий рафинат) в змеевик трубчатой печи 16. С температурой 270—290 °С парожидкостная смесь поступает в испарительную рафинатную колонну 20. Здесь отделяется основное количество фенола в виде паров. Для предотвращения уноса рафината с парами фенола колонна оборудована ректификационными тарелками (6—7 штук), орошаемыми фенолом. Пары фенола, уходящие с верха колонны 20, конденсируются в теплообменнике 23. Конденсат после холодильника 26 собирается в приемнике сухого фенола 28. Рафинат с небольшим (2—3 % масс.) содержанием фенола перетекает в рафинатную отпарную колонну 21, где остатки фенола отгоняются острым водяным паром. Пары воды и фенола с верха колонны 21 поступают в аппарат воздушного охлаждения 35; конденсат собирается в приемнике 34 и насосом 33 подкачивается к экстрактному раствору перед теплообменником 24. Рафинат, содержащий не более 0,005 % (масс.) фенола, насосом 22 направляется через теплообменник 17 и концевой холодильник (на схеме не показан) в резервуар. Отводимый из колонны 10 экстрактный раствор подается насосом 11 через теплообменник 24 (нагрев горячим фенолом, уходящим из кипятильника 25) и теплообменник 23 в сушильную колонну 27. При поступлении в эту колонну температура экстрактного раствора равна 150—160 °С. Колонна 27 разделена полуглухой тарелкой на две части: верхнюю, снабженную 12 тарелками, и нижнюю — кубовую. В колонне 27 обезвоживается экстрактный раствор и присоединяемый к нему водно-фенольный конденсат. Из этой колонны сверху уходят пары азеотропной смеси (около 91 % масс, воды, остальное — фенол), а снизу — безводный раствор, состоящий из экстракта и основной массы фенола. Часть паров азеотропной смеси, уходящей с верха колонны, направляется в абсорбер 5, а остальное количество поступает в аппарат воздушного охлаждения 19. Образовавшийся здесь конденсат — фенольная вода — поступает в приемник 15. Экстрактный раствор, собирающийся на полуглухой тарелке в колонне 27, перетекает в кипятильник 25. Здесь он нагревается конденсирующимися парами фенола, выходящими из колонны 32. В испарительную экстракционную колонну 32 поступает обезвоженный экстрактный раствор, забираемый из сушильной колонны 27 насосом 29 и направляемый им в змеевики печи 30 для нагрева до 250—280 °С. Часть раствора рециркулирует между низом колонны 32 и вторым змеевиком печи 30. Осуществляя насосом 31 циркуляцию раствора через змеевик в печи 30, повышают температуру низа экстрактной колонны примерно до 330 °С. Тем самым достигается низкое содержание фенола в остаточном продукте колонны. Конструктивно колонна 32 оформлена аналогично колонне 27. Колонна 32 работает при избыточном давлении 0,2—0,3 МПа. Температура верха колонны равна температуре кипения фенола при рабочем давлении; в зависимости от последнего она колеблется в пределах 230—240 °С. В качестве орошения на верхнюю тарелку колонны 32 подается фенол. С низа колонны 32 экстрактный раствор, содержащий 2—5 % (масс.) фенола, самотеком поступает в отпарную колонну 36, где он продувается водяным паром. Выходящие из колонны 32 пары фенола являются теплоносителем для кипятильника 25; после него регенерированный фенол поступает через теплообменник 24 и холодильник 26 в приемник сухого фенола 28. Пары фенола и воды, выходящие из колонны 36, конденсируются в аппарате 35; конденсат вместе с экстрактным раствором подается в сушильную колонну 27. По выходе из колонны 36 экстракт направляется насосом 37 через теплообменник 2 и концевой холодильник (на схеме не показан) в резервуар. Вариант № 32 |