Главная страница
Навигация по странице:

  • Вариант № 2 Установка обессоливания и обезвоживания нефтей на НПЗ

  • Схемы. Вариант 1 Установка стабилизации нефтей на промысле


    Скачать 4.17 Mb.
    НазваниеВариант 1 Установка стабилизации нефтей на промысле
    АнкорСхемы
    Дата22.01.2023
    Размер4.17 Mb.
    Формат файлаdocx
    Имя файлаSkhemy_po_variantam.docx
    ТипДокументы
    #899315
    страница1 из 20
      1   2   3   4   5   6   7   8   9   ...   20

    Вариант № 1

    Установка стабилизации нефтей на промысле



    Рис.1-1.Технологическая схема установки стабилизации нефтей: 1 — трубчатая печь; 2, 13 — колонны; 3, 4, 5, И, 20 — насосы; 6, 17 — теплообменники; 7 — подогреватель; 8, 14 — холодильники-конденса­торы; 9 — газоводоотделитель; 10, 16 — редукционные клапаны; 12 — кипятильник; 15 — газосепаратор; 18 — холодильник; 19 — аппарат воздушного охлаждения.

    Процесс физической стабилизации нефтей предна­значен для удаления газовых компонентов. Вслед­ствие высокого давления насыщенных паров газы выделяются из нефти при температуре окружающей среды, унося с собой ценные легкие компоненты бензиновых фракций. Ниже приведены температуры и соответствующие им давления насыщенных паров для легких угле­водородов:

    Температура, 

    0

    10

    20

    30

    40

    50

    Давление, МПа

    2,31

    2,92

    3,65

    4,50

    -

    -

    этан

    пропан

    0,46

    0,62

    0,82

    1,06

    1,34

    1,66

    н-бутан

    0,10

    0,14

    0,20

    0,27

    0,37

    0,48

    Такое испарение наблюдается в резервуарах, при сливе и наливе нефтей и нефтепродуктов. При этом потери могут достигать 5 % (масс.). Присутствие в нефтях газов, кроме этого, способствует образова­нию в трубопроводах паровых пробок, которые за­трудняют перекачивание.

    Установки стабилизации нефтей строятся и эксплуатируются на промыслах. Для стабилизации только нефтей применяют одноколонные установки, а двухколонные установки используют для стабили­зации нефти — в одной колонне и стабилизации газового бензина — в другой. Последние используют для нефтей с высоким содержанием растворенных газов —более 1,5 % (масс.).

    Технологическая схема двухколонной установки стабилизации нефти приведена на рис. 1-1. Сырая нефть из резервуаров промысловых ЭЛОУ забира­ется сырьевым насосом 5, прокачивается через тепло­обменник 6, паровой подогреватель 7 и при темпера­туре около 60°С подается под верхнюю тарелку первой стабилизационной колонны 2. Эта колонна оборудована тарелками желобчатого типа (число тарелок может быть от 16 до 26), верхняя из которых является отбойной, три нижних — смесительными. Избыточное давление в колонне от 0,2 до 0,4 МПа, что создает лучшие условия для конденсации паров бензина водой в водяном холодильнике-конденсаторе 8. Нефть, переливаясь с тарелки на тарелку, встре­чает более нагретые поднимающиеся пары и освобож­дается от легких фракций. Температура низа ко­лонны поддерживается в пределах 130—150°С за счет тепла стабильной нефти, циркулирующей через змеевики трубчатой печи 1 с помощью насоса 3. Стабильная нефть, уходящая с низа колонны, насо­сом 4 прокачивается через теплообменники 6, где отдает свое тепло сырой нефти. Далее нефть проходит аппарат воздушного охлаждения 19 и поступает в резервуары стабильной нефти, откуда она и транс­портируется на нефтеперерабатывающие заводы.

    Смесь газов и паров, выходящая с верха колонны 2, охлаждается в холодильнике-конденсаторе 8. Газы вместе с образовавшимся конденсатом посту­пают в газоводоотделитель 9. Несконденсированные газы — сухой газ (в основном метан и этан) с верха газоводоотделителя выводятся с установки. На газо­отводном трубопроводе ставится редукционный кла­пан 10, поддерживающий стабильное давление в аппа­рате 9 и колонне 2.

    Газоводоотделитель разделен вертикальной пере­городкой. Из одной половины аппарата снизу с по­мощью регулятора уровня, который соединен с кла­паном на дренажной линии, выводится вода. Из другой половины конденсат — смесь углеводородов забирается насосом 11 и прокачивается через тепло­обменник 17 стабильного бензина. Здесь смесь нагре­вается примерно до 70 °С и с такой температурой поступает в испарительную часть стабилизационной колонны 13. Колонна имеет 30—32 желобчатые тарелки; давление в колонне поддерживается в пре­делах 1,3—1,5 МПа.

    С верха колонны 13 уходит газ; тяжелая часть газа (пропан, бутаны) конденсируется в водяном холодильнике-конденсаторе 14 и отделяется в газосепараторе 15 от несконденсировавшейся части. Этот несконденсировавшийся газ выходит из газосепаратора сверху, проходит редукционный клапан 16 и объединяется с газом, выходящим из газоводоотделителя 9. С помощью клапана 16 давление в колонне 13 поддерживается в пределах 1,2—1,5 МПа. Сжи­женный газ, отводимый с низа газосепаратора 15, направляется насосом 20 в приемник (на схеме не показан). Часть газа возвращается на верхнюю тарелку колонны 13 в виде холодного орошения, с помощью которого температура верха колонны поддерживается в пределах 40—50 °С. Для доста­точно полного выделения растворенных газов темпе­ратура низа колонны должна быть выше: 120— 130 °С. Такая температура обеспечивается рецирку­ляцией стабильного бензина через кипятильник 12 с паровым пространством. В кипятильнике бензин нагревается до 160—180 °С водяным паром (давле­нием 0,3—0,5 МПа). Пары, образующиеся в кипя­тильнике, поступают в колонну 13, а жидкость — стабильный бензин — перетекает через перегородку внутри аппарата 12 и под давлением системы про­ходит теплообменник 17, холодильник 18 и далее направляется в резервуар стабильного бензина (на схеме не показан).

    В результате стабилизации легкой нефти из нее полностью удаляются метан, этан и на 95 % пропан, при этом давление насыщенных паров нефти при 40 °С снижается с 0,85 до 0,03 МПа, что гарантирует постоянство фракционного состава нефти при ее транспортировании и хранении.

    Вариант № 2

    Установка обессоливания и обезвоживания нефтей на НПЗ


    Рис. 1-2. Аппаратурно-технологическая схема электрообессоливающей установки (ЭЛОУ): 1, 7, 8, 13. 14 — насосы; 2 — теплообменники; 3, 9 — подогреватели; 4, 11 — электродегидраторы; 5 — инжекторный смеситель; 6 — клапаны автоматического сброса соленой поды; 10 — диафрагмовый смеситель; 12 — отстойник; 15 — смотровой фонарь. Устройство электродегидратора: 16 — подвесные изоляторы; 17 — шины подвода электрического тока; 18 — трансформатор; 19 — коллектор обес­соленной нефти; 20 — электроды; 21 — распределитель ввода сырья; 22 — коллектор соленой воды.

    Содержание солей в нефтях, поступающих на нефтеперерабатывающие заводы, обычно составляет 500 мг/л, а воды —в пределах 1 % (масс.). На переработку же допускаются нефти, в которых со­держание солей не превышает 20 мг/л и воды 0,1 % (масс.). Требования к ограничению содержания солей и воды в нефтях постоянно возрастают, так как только снижение содержания солей с 20 до 5 мг/л дает значительную экономию: примерно вдвое увели­чивается межремонтный пробег атмосферно-вакуум­ных установок, сокращается расход топлива, умень­шается коррозия аппаратуры, снижаются расходы катализаторов, улучшается качество газотурбинных и котельных топлив, коксов и битумов.

    Большая часть воды в поступающих на НПЗ нефтях находится в виде эмульсии, образованной капельками воды с преобладающим диаметром 2— 5 мкм. На поверхности капелек из нефтяной среды адсорбируются смолистые вещества, асфальтены, органические кислоты и их соли, растворимые в нефти, а также высокодисперсные частицы туго - плавких парафинов, ила и глины, хорошо смачивае­мых нефтью. С течением времени толщина адсорб­ционной пленки увеличивается, возрастает ее меха­ническая прочность, происходит старение эмульсии. Для предотвращения этого явления на многих про­мыслах в нефть вводят деэмульгаторы. Деэмульга­торы используют и при термохимическом, и при электрохимическом обезвоживании нефтей. Расход деэмульгаторов для каждой нефти определяется экспериментально — колеблется от 0,002 до 0,005 % (масс.) на 1 т нефти.

    Разрушая поверхностную адсорбционную пленку, деэмульгаторы способствуют слиянию (коалесценции) капелек воды в более крупные капли, которые при отстое эмульсии отделяются быстрее. Этот процесс ускоряется при повышенных температурах (обычно 80—120 °С), так как при этом размягчается адсорб­ционная пленка и повышается ее растворимость в нефти, увеличивается скорость движения капелек и снижается вязкость нефти, т. е. улучшаются условия для слияния и оседания капель. Следует отметить, что при температурах более 120°С вязкость нефти меняется мало, поэтому эффект действия деэмульга­торов увеличивается незначительно.

    Наиболее стойкие мелкодисперсные нефтяные эмульсии разрушаются с помощью электрического тока. При воздействии электрического поля ка­пельки воды, находящиеся в неполярной жидкости, поляризуются, вытягиваются в эллипсы с противо­положно заряженными концами и притягиваются друг к другу. При сближении капелек силы притя­жения возрастают до величины, позволяющей сдавить и разорвать разделяющую их пленку. На практике используют переменный электрический ток частотой 50 Гц и напряжением 25—35 кВ. Процессу электро­обезвоживания способствуют деэмульгаторы и повы­шенная температура. Во избежание испарения воды, а также в целях снижения газообразования электродегидраторы — аппараты, в которых проводится электрическое обезвоживание и обессоливание неф­тей — работают при повышенном давлении. На НПЗ эксплуатируются электродегидраторы трех типов-.

    цилиндрические вертикальные с круглыми гори­зонтальными электродами и подачей нефти в меж- электродное пространство; такие аппараты установ­лены на электрообессоливающих установках ЭЛОУ 10/2;

    шаровые с кольцевыми электродами и подачей нефти между ними; они нашли применение на уста­новках ЭЛОУ 10/6 (производительностью 2 млн. т нефти в год);

    горизонтальные с прямоугольными электродами и подачей нефти в низ аппарата под слой отстояв­шейся воды.

    Характеристики электродегидраторов приведены ниже:

    Показатели

    Вертикальный

    Шаровой ЭДШ-600

    Горизонтальный

    1ЭГ-160

    2ЭГ-160

    Диаметр, м

    3

    10,5

    3,4

    3,4

    Объем, м3

    30

    600

    160

    160

    Допустимая температура, 

    70-80

    100

    110

    160

    Расчетное давление, МПа

    0,34

    0,69

    0,98

    1,76

    Производительность, т/ч

    10-12

    230-250

    180-190

    200-250

    Напряжение между электродами, кВ

    27-33

    32-33

    22-44

    22-44

    Напряжение электрического поля, кВ/см

    2-3

    2-3

    1,0-1,5

    1,0-1,5

    Электрообессоливающие установки проектируют двухступенчатыми: в электродегидраторах I ступени удаляется 75—80 % (масс.) соленой воды и 95— 98 % (масс.) солей, а в электродегидраторах II ступени — 60—65 % (масс.) оставшейся эмульсион­ной воды и примерно 92 % (масс.) оставшихся солей. Число устанавливаемых электродегидраторов при двухступенчатом обессоливании зависит от объема и качества (т. е. содержания воды, солей и стойкости эмульсий) обрабатываемой нефти, от типа и произво­дительности аппарата. Для современных электро­обессоливающих установок проектируют только го­ризонтальные электродегидраторы, которые входят в состав комбинированных установок ЭЛОУ—АТ и ЭЛОУ—АВТ. Преимуществами горизонтальных аппаратов являются: большая площадь электродов, следовательно, и большая удельная производитель­ность (объем нефти на единицу сечения аппарата); меньшая вертикальная скорость движения нефти, а значит, и лучший отстой воды; возможность прове­дения процесса при более высоких температурах и давлениях. Подача сырой нефти в низ аппарата обеспечивает ее дополнительную промывку и про­хождение через два электрических поля: слабое — между зеркалом воды и нижним электродом и силь­ное — между электродами. Повышение напряжения между электродами сверх допустимого (22—44 кВт) нежелательно, так как это вызывает обратный эф­фект — диспергирование капелек воды и увеличение стойкости эмульсии.

    Аппараты и технологические потоки на двух­ступенчатой обессоливающей установке с горизон­тальными электродегидраторами показаны на схеме

    1. 2. Сырая нефть насосом 1 прокачивается через теплообменники 2, паровые подогреватели 3 (на комбинированной установке ЭЛОУ—АТ через тепло­обменники боковых погонов) и с температурой 110—120 °С поступает в электродегидратор I ступени 4. Перед насосом 1 в нефть вводится деэмульгатор, а после подогревателей 3 — раствор щелочи, кото­рый подается насосом 7. Кроме того, в нефть добавля­ется отстоявшаяся вода, которая отводится из электродегидратора II ступени и закачивается в инжек­торный смеситель 5 насосом 13. С помощью насоса 8 предусмотрена также подача свежей воды. В инжек­торном смесителе 5 нефть равномерно перемешивается со щелочью и водой. Раствор щелочи вводится для подавления сероводородной коррозии для нейтрали­зации кислот, попадающих в нефть при кислотной обработке скважин, а вода —для вымывания кри­сталлов солей.

    Нефть поступает в низ электродегидратора 4 через трубчатый распределитель 21 с перфорирован­ными горизонтальными отводами. Обессоленная нефть выводится из электродегидратора сверху через коллектор 19, конструкция которого аналогична конструкции распределителя. Благодаря такому рас­положению устройств ввода и вывода нефти обеспе­чивается равномерность потока по всему сечению аппарата. Отстоявшаяся вода отводится через дре­нажные коллекторы 22 в канализацию или в допол­нительный отстойник 12 (в случае нарушения в электродегидраторе процесса отстоя). Из отстойника насосом 14 жидкая смесь возвращается в процесс. Из электродегидратора I ступени сверху не пол­ностью обезвоженная нефть поступает под давлением в электродегидратор II ступени. В диафрагмовом смесителе 10 поток нефти промывается свежей хими­чески очищенной водой, подаваемой насосом 8. Вода для промывки предварительно нагревается в паровом подогревателе 9 до 80—90 °С; расход воды составляет 5—10 % (масс.) на нефть. Обессоленная и обезвоженная нефть с верха электродегидратора II ступени отводится с установки в резервуары обессо­ленной нефти, а на комбинированных установках она нагревается и подается в ректификационную колонну атмосферной установки.

    Уровень воды в электродегидраторах поддержи­вается автоматически. Часть воды, поступающей в канализацию из электродегидраторов I и II ступе­ней, проходит смотровые фонари 15 для контроля качества отстоя.

    В таблице приведены показатели работы двух­ступенчатых ЭЛОУ на различных нефтях.

    Технико-экономические показатели работы уста­новки ЭЛОУ 10/6 и блока горизонтальных электро­дегидраторов на комбинированной установке ЭЛОУ—АВТ-6 приведены ниже:


    Показатели

    Три ЭЛОУ 10/6

    Блок ЭЛОУ-АВТ6

    Производительности, тыс.т в год

    6000

    6000

    Число электродегидраторов

    6

    8

    Расход пара на нагрев сырья, тыс.МДж.

    900

    -

    Расход электроэнергии, тыс.мВт∙ч

    1,64

    0,79

      1   2   3   4   5   6   7   8   9   ...   20


    написать администратору сайта