Схемы. Вариант 1 Установка стабилизации нефтей на промысле
Скачать 4.17 Mb.
|
Выход целевого продукта — изомеризата с октановым числом 88—92 (исследовательский метод) — составляет 93—97 % (масс.); побочным продуктом процесса является сухой газ, используемый как топливный. Установка изомеризации состоит из двух блоков — ректификации и изомеризации. В блоке ректификаций сырье предварительно разделяется на пентановые и гексановые, фракции, направляемые на изомеризацию, после которой проводится стабилизация полученного продукта и выделение из него товарных изопентана и изогексана. В блоке изомеризации получают изомеризаты. На рис. IV-5 приведена технологическая схема установки изомеризации фракции н. к. — 62 °С, содержащей 27,5 % (масс.) изопентана, 44 % (масс.) н-пентана и 26,2 % (масс.) изогексанов, на алюмо- платиновом катализаторе, промотированном фтором. Сырье (смесь исходной фракции и рециркулирующего пентанового изомеризата), а также насыщенный абсорбент из абсорбера 17 поступают на разделение в ректификационную колонну 8. Из колонны 8 сверху отделяется изопентановая фракция, подвергающаяся дальнейшей ректификации в бутановой колонне 5, а нижний продукт колонны 8 поступает в ректификационную пентановую колонну 9. Нижний продукт этой колонны направляется на разделение в изогексановую колонну 10. Отбираемая из; колонны 9 сверху пентановая фракция, содержащая около 91 % (масс.) н-пентана, смешивается с водородсодержащим газом, нагревается в теплообменнике 6 и далее через змеевики трубчатой печи 12 поступает в реактор изомеризации 11. Продукты реакции охлаждаются в теплообменнике 6, холодильниках 7 и 3, и поступают в сепаратор 2. Циркулирующий газ из сепаратора направляется в адсорбер 14, а изомеризат после стабилизации в колонне 16 в смеси с сырьем направляется на ректификацию в колонну 8. Для подавления кислотной функции катализатора свежий водород и циркулирующий газ предвально подвергают осушке на цеолитах типа NaA адсорбере 14. Концентрация водорода в циркулирующем газе составляет 80—85 % (об.), расход водорода на процесс составляет 0,1—0,3 % (масс.) сырье. Катализатор регенерируют каждые 3—4 мес. путем выжига кокса. Изопентан извлекается из газов стабилизации абсорбере 17, на верх которого в качестве орошения подается часть циркулирующей гексановой фракции Основным продуктом установки является изопентановая фракция чистотой 95 % (масс.). Октановое число исходного дистиллята после изомеризации пентановой фракции повышается с 79 до 90 (исследовательский метод), В общем случае октановое число легкой фракции можно повысить с помощью изомеризации на 15—20 единиц. Технологический режим установки:
Температура и давление в колоннах приведены ниже:
В ариант 19 Установка гидроочистки дистиллята дизельного топлива РИС. V-1. Технологическая схема установки гидроочистки:1,15, 19, 21 — насосы; 2 — трубчатая печь; 3 — реактор; 4—6,10 — теплообменники; 7, 12, 14 —аппараты воздушного охлаждения; 8 — водяной холодильник; 9, 13, 17, 20 — сепараторы; 11 — стабилизационная колонна; 16 — центробежный компрессор; 18, 22 — абсорберы. Установка, предназначенная для гидроочистки дистиллята дизельного топлива, технологическая схема которой приведена на рис. V-1, включает реакторный блок, состоящий из печи и одного реактора, системы стабилизации гидроочищенного продукта, удаления сероводорода из циркуляционного газа, а также промывки от сероводорода дистиллята. Сырье, подаваемое насосом 1, смешивается с водородосодержащим газом, нагнетаемым компрессором 16. После нагрева в теплообменниках 6 и 4 и в змеевике трубчатой печи 2 смесь при температуре 380-425°С поступает в реактор 3. Разность температур на входе в реактор и выходе из него не должна превышать 10°. Продукты реакции охлаждения в теплообменниках 4,5 и 6 до 160°С, нагревается одновременно газосырьевую смесь, а также сырье для стабилизационной колонны. Дальнейшее охлаждение газопродуктовой смеси осуществляется в аппарате воздушного охлаждения 7, а доохлаждение (примерно до 38 °С)- в водяном холодильнике 8. Нестабильный гидрогенизат отделяется от циркуляционного газа в сепараторе высокого давления 9. Из сепаратора гидрогенизат выводится снизу, проходит теплообменник 10, где нагревается примерно до 240 °С, а затем - в теплообменник 5 и поступает в стабилизационную колонну 11. На некоторых установках проводится высокотемпературная сепарация газопродуктовой смеси. В этом случает смесь разделяется при температуре 210-230°С в горячем сепараторе высокого давления ; уходящая из сепаратора жидкость поступает в стабилизационную колонну, а газы и пары- в аппарат воздушного охлаждения. Образовавшийся конденсат отделяется от газов в холодном сепараторе и направляется также в стабилизационную колонну. Циркуляционный водородосодержащий газ после очистки в абсорбере 18 от сероводорода водным раствором моноэтаноламина возвращается компрессором 16 в систему. В низ колонны 11 вводится водяной пар. Пары бензина, газ и водяной пар по выходе из колонны при температуре около 135 °С поступают в аппарат воздушного охлаждения 12, и газожидкостая смесь разделяется далее в сепараторе 13. Бензин из сепаратора 13 насосом 15 подается на верх колонны 11 в качестве орошения, а балансовое его количество выводится из установки. Углеводородные газы очищаются от сероводорода в абсорбере 22. Гидроочищенный продукт, уходящий с низа колонны 11, охлаждается последовательно в теплообменнике 10, аппарате воздушного охлаждения 14 и с температурой 50°С выводится с установки. На установке имеется система для регенерации катализатора (выжиг кокса) газовоздушной смесью при давлении 2-4 МПа и температуре 400-550°С. После регенерации при 550°С и 2 МПа газовоздушной смесью, а затем система продувается инертным газом. В ариант № 20 Установка гидрокрекинга в стационарном слое катализатора РИС. V-2. Технологическая схема установки одноступенчатого гидрокрекинга вакуумного газойли: 1,9,12,16,19,23, 25 — насосы; 2, 18 — трубчатые печи; 3— реактор; 4, 11 — теплообменники; 5,14 — водяные конденсаторы-холодильники; 6, 10, 17, 22 — сепараторы; 7 — блок очистки от сероводорода; 8 — компрессор; 9 — редукционный клапан; 13, 21 — аппараты воздушного охлаждения; 15,20—ректификационные колонны; 24 отпарная колонна. Процесс гидрокрекингу предназначен в основном для получения малосернистых топливных дистиллятов из различного сырья. Обычно гидрокрекингу подвергают вакуумные и атмосферные газойли, газойли термического и каталитического крекинга, деасфальтизаты и реже мазуты и гудроны с целью производства автомобильных бензинов, реактивных и дизельных топлив, сырья для нефтехимического синтеза, а иногда и сжиженных углеводородных газов (из бензиновых фракций). Водорода при гидрокрекинге расходуется значительно больше, чем при гидроочистке тех же видов сырья. Гидрокрекинг осуществляется в одну или две ступени на неподвижном (стационарном) слое катализатора при высоком парциальном давлении водорода. По технологическому оформлению модификации процесса различаются преимущественно применяемыми катализаторами. При производстве топливных дистиллятов из прямогонного сырья обычно используют одноступенчатый вариант с рециркуляцией остатка, совмещая в реакционной системе гидроочистку, гидрирование и гидрокрекинг. При двухступенчатом процессе гидроочистку и гидрирование сырья проводят в первой ступени, а гидрокрекинг — во второй. В этом случае достигается более высокая глубина превращения тяжелого сырья. Для гидрокрекинга наибольшее распространение получили алюмокобальтмолибденовые катализаторы, а также на первой ступени — оксиды или сульфиды никеля, кобальта, вольфрама и на второй ступени — цеолитсодержащие катализаторы с платиной. Процесс гидрокрекинга — экзотермический, и для выравнивания температуры сырьевой смеси по высоте реактора предусмотрен ввод холодного водородсодержащего газа в зоны между слоями катализатора. Движение сырьевой смеси в реакторах нисходящее. Технологические установки гидрокрекинга состоят включающего один или два реактора, и блока фракционирования, имеющего разное число дистилляционных колонн (стабилизации, фракционирования жидких продуктов, вакуумную колонну, фракционирующий абсорбер и др.). Кроме того, часто имеется блок очистки газов от сероводорода. Мощность установок может достигать 13000м3/сут. Технологическая схема одноступенчатого гидрокрекинга с получением преимущественно дизельного топлива из вакуумного газойля в стационарном слое катализатора приведена на рис. V-2. Сырье, подаваемое насосом 1, смешивается со свежим водородсодержащим газом и циркуляционным газом, которые нагнетаются компрессором 8. Газосырьевая смесь, пройдя теплообменник 4 и змеевики печи 2, нагревается до температуры реакции и вводится в реактор 3 сверху. Учитывая большое тепловыделение в процессе гидрокрекинга, в реактор в зоны между слоями катализатора вводят холодный водородсодержащий (циркуляционный) газ с целью выравнивания температур по высоте реактора. Выходящая из реактора смесь продуктов реакции и циркуляционного газа охлаждается в теплообменнике 4, холодильнике 5 и поступает в сепаратор высокого давления 6. Здесь водородсодержащий газ отделяется от жидкости, которая с низа сепаратора через редукционный клапан 9, поступает далее в сепаратор низкого давления 10. В сепараторе 10 выделяется часть углеводородных газов, а жидкий поток направляется в теплообменник 11, расположенный перед промежуточной ректификационной колонной 15. В колонне при небольшом избыточном давлении выделяются углеводородные газы и легкий бензин. Бензин частично возвращается в колонну 15 в виде острого орошения, а балансовое его количество через систему «защелачивания» откачивается с установки. Остаток колонны 15 разделяется в атмосферной колонне 20 на тяжелый бензин, дизельное топливо и фракцию >360 °С. Бензин атмосферной колонны смешивается с бензином промежуточной колонны и выводится с установки. Дизельное топливо после отпарной колонны 24 охлаждается, «защелачивается» и откачивается с установки. Фракция >360 °С используется в виде горячего потока внизу колонны 20, а остальная часть (остаток) выводится с установки. В случае производства масляных фракций блок фракционирования имеет также вакуумную колонну. Водородсодержащий газ подвергается очистке водным раствором моноэтаноламина и возвращается в систему. Необходимая концентрация водорода в циркуляционном газе обеспечивается подачей свежего водорода (например, с установки каталитического риформинга). Регенерация катализатора проводится смесью воздуха и инертного газа; срок службы катализатора 4—7 мес. Режим процесса гидрокрекинга:
В ариант № 21 Установка гидрокрекинга с псевдоожиженным слоем катализатора РИС. V-3. Технологическая схема установки гидрокрекинга с псевдоожиженным слоем катализатора: 1, 4, 9, 14, 13 — насосы; 2,3— реакторы; 5, 15 — печи; 6 — теплообменник; 7, 18 — холодильники; 8, 13, 19 — сепараторы: 10— редукционный клапан; 11 — абсорбер; 12, 16 — компрессоры; 17 — фракционирующая колонна; 20, 21 — отпарные колонны; 22 — вакуумная колонна Процесс гидрокрекинга с трехфазным псевдоожиженным слоем катализатора предназначен для переработки нефтяных остатков с высоким содержанием смол, сернистых и металлорганических соединений с целью получения малосернистых нефтепродуктов: бензина, реактивного, дизельного и котельного топлив. Сырьем могут служить мазут, гудрон, тяжелые вакуумные газойли, газойли коксования, крекинг- остатки, высоковязкие нефти из битуминозных пород и др. Выходы продуктов гидрокрекинга меняются в широких пределах в зависимости от качества перерабатываемого сырья и глубины процесса. Одно и то же количество катализатора дает при работе в режиме псевдоожижения глубину разложения в среднем на 20—30 % большую, чем в стационарном режиме, при близком качестве получаемых продуктов. При одинаковой глубине разложения сырья производительность псевдоожиженного слоя в три раза выше производительности стационарного. Гидрокрекинг дистиллятного сырья позволяет получать более качественные продукты, чем аналогичная переработка остаточного сырья . Практика нефтепереработки показывает экономическую целесообразность предварительного облагораживания сырья, поступающего на гидрокрекинг: деасфальтизации, термоконтактного крекинга, деструктивно-вакуумной перегонки и т. п. Промышленная установка гидрокрекинга (рис. V-3) включает нагревательно-реакционную секцию (печи, реакторы), системы очистки и циркуляции водородсодержащего газа (газосепаратор высокого давления, колонны осушки и очистки, водородный компрессор) и блок газо- и погоноразделения (сепаратор низкого давления, колонны ректификации гидрогенизата). Сырье установки смешивается с циркуляционным и свежим водородсодержащим газом, и газосырьевая смесь нагревается последовательно в теплообменнике 6 и змеевиках нагревательной печи 5. Нагретая смесь поступает в низ реакторов 2 и 3 через распределительные решетки, обеспечивающие равномерное распределение жидкости и газа в поперечном сечении реактора. Для создания псевдоожиженного слоя в низ реакторов вводят рецирку- лят. Парожидкостная смесь после реактора II ступени 3 охлаждается в теплообменнике 6 и конденсаторе-холодильнике 7 и подается в сепаратор высокого давления 8. Отделившийся от жидкой фазы водородсодержащий газ проходит очистку от сероводорода в абсорбере 11, осушку и смешивается с сырьем. Для восполнения водорода, израсходованного на реакции гидрирования, в систему постоянно вводится свежий водородсодержащий газ. Давление жидкого гидрогенизата, поступающего через редукционный клапан 10 в сепаратор низкого давления 13, снижается до атмосферного. После отделения в сепараторе 13 газообразных углеводородов и частично сероводорода катализат, подогретый в змеевиках нагревательной печи 15, направляется на ректификацию во фракционирующую колонну 17. Топливный газ отводится из сепаратора 19 сверху. С низа отпарных колонн 20 и 21 отбираются соответственно тяжелый бензин и средние дистиллятные фракции. Вакуумная колонна 22 позволяет получить тяжелый газойль и смолистый остаток. Технологический режим процесса гидрокрекинга с псевдоожиженным слоем катализатора:
В качестве катализаторов используют два типа катализаторов — микросферический и в виде гранул размером ≈0,8 мм. При переработке остаточного сырья — это алюмокобальтмолибденовый катализатор [удельная поверхность 400 м2/г, удельный объем пор 0,75 см3/г, 15 % (масс.) МоО3 и 3,5 % (масс.) СоО], а при переработке дистиллятного — алюмоникельвольфрамовый [удельная поверхность 175 м2/г, удельный объем пор 0,33 см3/г, 6 % (масс.) Ni и 19 % (масс.) W ]. Процесс гидрокрекинга в псевдоожиженном слое получил широкое распространение для получения «синтетической» нефти из высоковязких нефтей, выделенных из битуминозных песков. При переработке такой нефти на алюмокобальтмолибдено- вом катализаторе при температуре 450 °С, давлении водорода 10 МПа, объемной скорости подачи сырья (по жидкому сырью) 0,9 ч-1массовом отношении катализатор : сырье, равном 3 : 100, и глубине превращения 62,2 % (масс.) были получены следующие фракции:
В последнее время для устранения опасности каналообразования в реакторах с псевдоожиженным слоем катализатора с целью улучшения барботажа и достижения более эффективного контакта газосырьевой смеси с катализатором применяют секционирование. Для регулирования теплового режима в них используют и посекционный ввод холодного водорода. В ариант № 22 Установка гидродоочистки нефтяных масел РИС. V-4. Технологическая схема установки гидродоочистки нефтяных масел:1- трубчатая печь; 2 — реактор; 3, 4, 20 — теплообменники; 5, 21, 24 — холодильники; 6 — приемник; 7 — компрессор; 8 — редукционный клапан; 9, 14 — высоко- и низкотемпературные сепараторы высокого давления; 10 — каплеуловитель насадочиого типа; 11 — отпарная колонна; 12 — каплеотбойник; 13 — дроссельный клапан-, 15 — осушительная колонна; 16 — конденсатор-холодильник; 17, 19, 22 — насосы; 18 — сепаратор; 23 — фильтр. Каталитическая гидродоочистка применяется в основном для уменьшения интенсивности окраски депарафинированных рафинатов, а также для улучшения их стабильности против окисления. Одновременно в результате гидродоочистки снижаются коксуемость и кислотность масла, содержание серы; температура застывания масла может повышаться на 1 —2 °С, индекс вязкости — незначительно (на 1 —2 единицы), а вязкость масла если и уменьшается, то мало. Выход гидродоочищенного масла достигает 97— 99 % (масс.) от сырья. В качестве побочных продуктов в относительно небольших количествах образуются отгон, газы отдува и технический сероводород. Количество водорода, участвующего непосредственно в реакции, а также растворившегося в очищенном продукте и отводимом вместе с газами отдува, составляет 0,2—0,4 % (масс.) на сырье. Расход технического водорода (свежего газа), поступающего с установки каталитическогориформинга, выше: от 0,6 до 1,4 % (масс.) на сырье, поскольку в этом газе присутствуют балластные газы. Установка гидродоочистки включает несколько секций: нагревательную и реакторную, сепарацион- но-стабилизационную и секцию очистки водородсодержащего газа от сероводорода. Для установок гидродоочистки депарафинированных рафинатов характерен однократный пропуск сырья через реактор. Водородсодержащий газ после очистки от сероводорода снова присоединяется к исходному сырью и непрерывно вводимому в систему свежему водородсодержащему газу. Во избежание понижения вязкости масла и его температуры вспышки из масляного гидрогенизата стремятся тщательно удалить растворенные газы и отгон (легкие по сравнению с маслом жидкие фракции). В промышленности получили распространение установки гидродоочистки масел с высокотемпературной (210—240°С) сепарацией основной массы газов от масляного гидрогенизата, что позволяет исключить повторный нагрев гидрогенизата перед удалением отгона. Технологическая схема одной из таких установок представлена на рис. V-4. Сырье, нагнетаемое насосом 22, проходит теплообменник 20 и перед теплообменником 3 смешивается с предварительно нагретыми в теплообменнике 4 газами: свежим техническим водородом и водородсодержащим циркуляционным газом (который подается компрессором 7). Газосырьевая смесь поступает в змеевики печи 1 и затем в заполненный катализатором реактор 2, где и осуществляется процесс гидродоочистки. Движение смеси в реакторе нисходящее, слой катализатора — неподвижный, а поскольку суммарный тепловой эффект реакций невелик, то охлаждающий газ (квенчинг-газ) в среднюю зону реактора на подается. На данной установке применяется реактор с одним слоем катализатора. Основная масса сырья поступает в реактор в жидком со стоянии, несмотря на испаряющее действие сопровождающего газа. В высокотемпературном сепараторе высокого давления 9, куда направляется газопродуктовая смесь, предварительно несколько охлажденная в теплообменнике 3, происходит разделение смеси. Горячие газы, охладившись в теплообменнике 4 и водяном холодильнике 5, поступают в низкотемпературный сепаратор высокого давления 14, а нестабильное гидродоочищенное масло (содержащее растворенные газы и отгон) проходит дроссельный клапан 8 и направляется в отпарную колонну 11. Здесь за счет снижения давления и продувки водяным паром очищенного продукта удаляются газы и отгон. Выходящая из тарельчатой колонны 11 сверху смесь газов и паров поступает в водяной конденсатор-холодильник 16. Полученная здесь трехфазная смесь (две жидкости и газы) далее разделяется в сепараторе 18: водный конденсат, собирающийся слева от вертикальной перегородки, выводится из сепаратора снизу; отгон из правого отсека сепаратора забирается насосом 19 и отводится с установки. Колонна 11 работает при небольшом избыточном давлении. С целью осушки масло по выходе из колонны И подают в колонну 15 вакуумной осушки, откуда оно насосом 17 через сырьевой теплообменник 20, водяной холодильник 21, фильтр 23 и доохладитель 24 выводится с установки в резервуар гидродоочищенного масла. В фильтре 23 масло освобождается от катализаторной пыли и твердых частиц — продуктов коррозии. Конденсат, собирающийся в небольшом количестве в низкотемпературном сепараторе высокого давления 14, поступает по линии с дроссельным клапаном 13 в сепаратор 18. Водородсодержащий газ высокого давления, уходящий из сепаратора 14 через каплеуловитель насадочиого типа 10, очищается практически при том же давлении от сероводорода регенерируемым поглотителем в секции очистки газа. Часть очищенного газа (отдув) отводится если требуется, в топливную сеть. Основная же масса газа после каплеотбойника 12 сжимается компрессором 7 и, пройдя приемник 6 и теплообменник 4, вновь смешивается с сырьем. Известны установки, на которых теплообменник 4 отсутствует и водородсодержащий газ смешивается с сырьем перед теплообменником 20, а не перед теплообменником 3. Режим работы установки:
|