Схемы. Вариант 1 Установка стабилизации нефтей на промысле
Скачать 4.17 Mb.
|
В ариант № 9 Установка двухступенчатой вакуумной перегонки мазута РИС, II-7. Технологическая схема двухступенчатой установки вакуумной перегонки мазута: 1, 2, 22, 24, 25, 28, 29 — теплообменники; 3, 10 — трубчатые печи; 4, 5, 8, 9, 15—17, 18, 33 — насосы; 6, 13 — вакуумные колонны; 7 — вакуумный приемник; 11, 23, 26, 30 — котлы-утилизаторы; 12, 19, 20, 27, 31, 32, 35 — холодильники; 14 — отпарная колонна; 21, 34 — подогреватели Назначение установки двухступенчатой вакуумной перегонки мазута — производство масляных дистиллятов менее широкого фракционного состава по сравнению с получаемыми на одноступенчатых установках. Согласно проекту, выполненному институтом Гипрогрознефть, из I ступени — из вакуумной фракционирующей колонны — отводятся соляр, гудрон и масляный дистиллят широкого фракционного состава (350—575 °С). Масляный дистиллят во II ступени разделяется на три целевых дистиллята: парафинистый (350—460 °С), автоловый (в основном фракция 460—490 °С) и цилиндровый (начало кипения около 490 °С) . Технологическая схема представлена на рис. II-7. Мазут, нагнетаемый насосом 33, до поступления в змеевики печи 3 нагревается вначале дистиллятами (теплообменники 29, 28 и 22 — первый поток мазута; 25 и 24 — второй поток), а затем гудроном в теплообменниках 1 и 2. В акуумная колонна 6 служит для разделения мазута на соляр, масляный дистиллят широкого фракционного состава, который собирается в вакуумном приемнике 7, и гудрон, выводимый из колонны насосом 5. Приемник 7 снабжен уравнительной линией ( ). Соляр, отводимый с полуглухой тарелки насосом 4, проходит последовательно теплообменник 29 и холодильник 32. После охлаждения часть его возвращается в верхнюю зону колонны 6, а избыток направляется в резервуар (на схеме не показан). Масляный дистиллят забирается насосом 8 и как теплоноситель прокачивается через аппараты: теплообменник 28, паровой котел-утилизатор'!?.? и подогреватель теплофикационной воды 21. По выходе из холодильника 20 этот рециркулят поступает в среднюю зону колонны 6. Балансовое количество масляного дистиллята широкого фракционного состава из приемника 7 насосом 9 направляется через змеевики печи 10 в вакуумную колонну 13. Продуктами этой колонны являются- парафинистый дистиллят, собирающийся на полуглухой тарелке, автоловый дистиллят, отводимый насосом 17 из отпарной выносной секции (колонны 14) и цилиндровый дистиллят, направляемый насосом 15 вначале в теплообменник 24, а затем в котел-утилизатор 26 и холодильник 27. Рециркулирующая часть автолового дистиллята, забираемая насосом 16, охлаждается в аппаратах 11 и 12 к подается тремя потоками в среднюю зону колонны 13. Балансовое количество автолового дистиллята насосом 17 направляется через теплообменник 22, котел-утилизатор 30 и холодильник 31 в резервуар. Отводимый из колонны 13 насосом 18 парафинистый дистиллят, пройдя последовательно теплообменник 25, водоподогреватель 34 и холодильник 35, частично возвращается как орошение в верхнюю часть этой же колонны, а избыток выводится с установки в резервуар. Гудрон до вывода его с установки через холодильник погружного типа 19 отдает свое тепло мазуту в теплообменниках 1 и 2. В отпарные секции вводится водяной пар. Предусмотрена его подача и в радиантные змеевики печей. Котлы-утилизаторы рассчитаны для производства водяного пара давлением 0,6 МПа, который далее перегревается горячими газами. Максимальная температура нагрева сырья в печи 3 — 435 °С и в печи 10 — 385 °С (без ввода в змеевики печи водяного пара). Выходы дистиллятов и гудрона зависят от качества сырья и четкости разделения. Ниже приведен режим работы колонн:
В отдельных случаях для дистиллятов не исключается применение аппаратов воздушного охлаждения. Встречаются и другие схемы двухступенчатой установки для разделения мазута под вакуумом. Так, ректификационные колонны могут быть связаны не по масляному дистилляту, как показано на схеме, а по полугудрону или вакуумная установка может быть дополнена эвапоратором низкого давления для извлечения из гудрона дополнительного количества дистиллята В ариант № 10 Установка вакуумной перегонки для разделения масляных фракций, гачей и петролатумов РИС. 11-8. Технологическая схема вакуумной установки вторичной перегонки: 1 — трубчатая печь; 2 — вакуумная колонна; 3, 11, 12, 13, 15 — насосы; 4, 5 — вакуумные приемники; 6 — барометрический конденсатор; 7 — двухступенчатая вакуумная пароэжекторная система-, 8 —сборник; 9, 10 — теплообменники; 14, 16, 17 — холодильники. Вторичная перегонка осуществляется для приведения в соответствие с требованиями стандарта показателей качества вырабатываемого продукта или для более успешного проведения последующих процессов переработки: обезмасливания гачей, гидроочистки парафина-сырца и др. [7, 81. Данная установка в цехах производства нефтяных масел и твердых углеводородов служит для проведения следующих операций: выделения из остаточного депарафинированного рафината головных фракций с целью повышения вязкости и температуры вспышки получаемого остаточного нефтяного масла; разделения масляного дистиллята широкого фракционного состава на два или три компонента разной вязкости; концентрации петролатумов за счет удаления из них головной фракции; разделения гача широкого фракционного состава на легкую (например, фракцию с пределами кипения 350—470 °С) и тяжелую части с целью исключения перед обезмасливанием высококипящих ароматических углеводородов и асфальтено-смолистых веществ. Технологическая схема установки приведена на рис. II-8. Сырье, нагнетаемое насосом 11, перед входом в вакуумную колонну 2 нагревается в теплообменниках 10 и 9 и в змеевике печи 1. Получаемые в колонне 2 верхняя и промежуточная фракции собираются соответственно в вакуумных приемниках 5 и 4. Верхняя фракция охлаждается в аппаратах 10 и 14 в насосом 13 направляется в сборник орошения Отсюда насосом 12 часть этой фракции подается на верхнюю тарелку колонны (орошение), а остальное ее количество откачивается с установки в резервуар. Промежуточная фракция из приемника 4 охлаждается в холодильнике 16 и насосом 15 выводится с установки. Нижняя (остаточная) фракция забирается с низа колонны 2 насосом 3, прокачивается через аппараты 9 и 17 и также отводится с установки. Вакуум на установке создается двухступенчатым пароструйным эжектором 7 с межступенчатым конденсатором. К двухступенчатому эжектору подведен рабочий водяной пар абсолютным давлением 0,8—1,0 МПа. Более современные вакуум-создающие системы с применением конденсатора поверхностного типа вместо барометрического прямого контакта рассмотрены в работах БашНИИ НП. Одна из установок данного типа была реконструирована с целью повышения отбора гача-ректификата (промежуточная фракция). При реконструировании в печи был сооружен вспомогательный змеевик для нагрева рециркулирующего остаточного продукта колонны; в потоки сырья и рециркулята (в змеевиках печи) введен водяной пар; увеличен диаметр трансферной линии. Режим работы на участке подогрева депарафинированного масла на одной из установок:
Вариант № 11 Установки деструктивной перегонки мазутов и гудронов Р ИС. II1-3. Технологическая схема установки деструктивной перегонки мазута: 1 — трубчатая печь; 2, 8 — насосы; 3 — испаритель; 4 — поршневой насос; 5,6— теплообменники; 7 — холодильник; 9 — ректификационная колонна; 10 — отпарная колонна. Процесс деструктивной перегонки мазутов разработан ГрозНИИ для увеличения ресурсов газойле- вых фракций — сырья для установок каталитического крекинга. Особенность процесса — сочетание перегонки сырья с термическим разложением его смолистого остатка в испарителе. Если бензиновые и керосиновые фракции образуются в основном в змеевике печи, то газойлевые фракции — в испарителе, работающем при сравнительно умеренной (420— 425 °С) температуре и невысоком избыточном давлении. Длительность пребывания крекируемой жидкости в испарителе составляет примерно 1,5 ч. Температура сырья на выходе из печи равна 460—475 °С. Установка непрерывного действия с однократным пропуском сырья состоит из высокотемпературной секции, которая включает нагревательную печь и испаритель, и секций фракционирования и охлаждения (рис. III-3). . Мазут, поступающий с нефтеперегонной установки, насосом 8 через теплообменники б и 5 подается в змеевик печи 2. Пройдя по конвекционным трубам змеевика, мазут поступает в радиантные трубы (двухрядный экран). Во второй ряд радиантных труб вводится перегретый водяной пар. По выходе из радиантного змеевика смесь подается в нижнюю часть испарителя 3; туда же, но ниже ввода сырья подается и перегретый водяной пар. В испарителе 3 смесь разделяется на паровую и жидкую фазы. Объем испарителя достаточен для длительного пребывания в нем жидкости, продуваемой перегретым водяным паром. С целью уменьшения вязкости тяжелого остатка, отводимого из испарителя поршневым насосом 4, предусмотрена возможность добавления разбавителя к сырью с помощью насоса 2. В качестве разбавителя используется часть получаемой на установке дизельной фракции, предварительно охлажденной. Выходящая из испарителя сверху смесь паров с небольшим количеством крекинг-газов является теплоносителем в теплообменнике 5; отсюда углеводородный конденсат, газы и пары поступают под нижнюю тарелку ректификационной колонны 9. Между 6 и 7-й тарелками этой колонны расположено внутреннее днище. Достигнув его, восходящий поток паров направляется в теплообменник 6. Образующаяся здесь жидкая флегма стекает на 5-ую тарелку колонны, а пары вводятся под 7-ую тарелку. Общее число тарелок в колонне — 15. Нижний продукт колонны представляет собой газойль с началом кипения около 340 °С. Фракция дизельного топлива до вывода ее из отпарной колонны 10 продувается на шести тарелках водяным паром. На схеме не показаны другие аппараты секции фракционирования, такие как конденсатор-холодильник для выходящих из колонны 9 сверху паров в смеси с газами и приемник орошения. Для процесса деструктивной перегонки термического крекинга мазута была приспособлена одна из установок типа «Винклер—Кох». Недостатком рассмотренной схемы, но не процесса является весьма слабое использование вторичного тепла, особенно тепла тяжелого остатка, откачиваемого из испари теля. При высокой температуре исходного мазута его можно направлять, минуя теплообменники, непосредственно в змеевик печи. В этом случае необходимо пересмотреть схемы, в частности, с целью рационального использования избыточного тепла и теплообменных аппаратов. Ниже приведен режим работы установки при деструктивной перегонке сернистого мазута (плотность при 20 °С 942 кг/м3; коксуемость 9,5 % масс., содержание серы 2 % масс, и фракций до 350 °С — 4,7 % масс.):
Вариант № 12 У становка термического крекинга для производства термогазойля РИС. II1-4. Технологическая схема установки термического крекинга для производства вакуумного термического газойля: 1, 16, 18 — поршневые насосы; 2,3 — трубчатые печи; 4 — реакционная камера; 8, 14 — гаэосепараторы; 6, 13 — холодильники-конденсаторы 7 — испаритель высокого давления; 8 — 10, 15, 19, 24 — насосы центробежные; 11, 17 — ректификационные колонны; 12 — испаритель низкого давления; 20 — теплообменник; 21—23 — холодильники. Основное назначение процесса термического крекинга — производство сырья для технического углерода. В качестве сырья используют смесь тяжелых каталитических газойлей и дистиллятных экстрактов, получаемых при селективной очистке масел. Помимо целевого продукта — термогазойля (фракция 200—480 °С) получают также газ, бензиновую фракцию и крекинг-остаток. Серийный термогазойль получают по схеме, не предусматривающей фракционирования в вакууме. Основными показателями качества термогазойля являются индекс корреляции, содержание серы, коксуемость, фракционный состав; вязкость и температура застывания. Установка состоит из следующих секций: реакторное отделение, включающее печи крекинга легкого и тяжелого сырья и выносную реакционную камеру; отделение теплообменной аппаратуры, которое состоит из сырьевых теплообменников типа «труба в трубе», погружных конденсаторов-холодильников, водяных холодильников термогазойля и крекинг- остатка. Технологическая схема установки представлена на рис. III-4. Сырье из резервуарного парка насосом 1 прокачивается через теплообменники 20 (на схеме показан один), где подогревается за счет тепла крекинг-остатка. Нагретое в теплообменниках сырье двумя потоками подается в нижнюю секцию ректификационной колонны 11. Колонна 11 разделена полуглухой тарелкой на две части: пары из нижней части переходят в верхнюю, а жидкость из верхней части накапливается в аккумуляторе (кармане) внутри колонны. Отсюда жидкость (легкая часть сырья) забирается насосом 9 и подается в змеевики печи 3. Ас низа колонны 11 тяжелая часть сырья забирается насосом 10 и подается в змеевики печи 2.Продукты крекинга по выходе из змеевиков печей 2 и 3 поступают в выносную реакционную камеру 4, откуда переходят в испаритель высокого давления 7. Здесь от смеси отделяется жидкий крекинг-остаток, который затем через редукционный клапан поступает в испарительную колонну низкого давления 12 (испаритель). Газы и пары по выходе из верхней части испарителя 7 направляются в низ колонны 11, с верха которой, уходят бензиновая фракция и газ. Пары конденсируются, и смесь охлаждается в холодильнике- конденсаторе 6. Далее газожидкостная смесь разделяется в газосепараторе 5 на газ и бензиновую фракцию. Газ поступает на ГФУ, а балансовое количество бензина — на стабилизацию. Насосом 8 бензин- орошение подается на верхнюю тарелку колонны 11. В колонне 12 в результате снижения давления из крекинг-остатка выделяются газойлевые фракции; несконденсированные пары из колонны 12 направляются в холодильник-конденсатор 13, и конденсат собирается в приемнике 14. Отсюда часть конденсата насосом 15 возвращается в колонну 12 в качестве орошения, а балансовое его количество выводится с установки. Крекинг-остаток подается насосом 16 в вакуумную колонну 17. Целевой продукт —термогазойль — выводится как промежуточный продукт с 17-й тарелки вакуумной колонны 17. Во избежание коксования крекинг-остатка и для улучшения транспортирования его разбавляют менее вязким продуктом. Крекинг-остаток можно использовать в производстве битумов, а также как связующее вещество при брикетировании углей. Выход термогазойля на сырье вакуумной колонны составляет около 72 % (масс.). Некоторые установки термического крекинга по получению термогазойля работают по схеме, отличной от описанной. Целевой продукт отбирается из колонны 12, выход термогазойля в этом случае составляет 24—27 % (масс.). При индексе корреляции 95—100. Режим работы основных аппаратов:
Вариант № 13 Установка замедленного коксования в необогреваемых камерах РИС. II1-5. Технологическая схема установки замедленного коксования в необогреваемых камерах: 1, 6, 12—15 — насосы; 2, 3 — трубчатые печи; 4 — приемник; 5, 5' — камеры замедленного коксования; 7 — четырехходовые краны; 8, 19, 21 — аппараты воздушного охлаждения; 9 — ректификационная колонна; 10, 11 — отпарные колонны; 16 — холодильник; 17 — водогазо-отделитель; 18, 20 — теплообменники. Процесс замедленного коксования в необогреваемых камерах предназначен для получения крупнокускового нефтяного кокса как основного целевого продукта, а также легкого и тяжелого газойлей, бензина и газа. Сырьем для коксования служат малосернистые атмосферные и вакуумные нефтяные остатки, сланцевая смола, тяжелые нефти из битуминозных песков, каменноугольный деготь и гильсонит. Эти виды сырья дают губчатый кокс. Для получения высококачественного игольчатого кокса используют более термически стойкое ароматизированное сырье, например смолу пиролиза, крекинг-остатки и каталитические газойли. Основными показателями качества сырья являются плотность, коксуемость по Конрадсону и содержание серы. Выход кокса определяется коксуемостью сырья и практически линейно изменяется в зависимости от этого показателя. При коксовании в необогреваемых камерах остаточного сырья выход кокса составляет 1,5—1,6 от коксуемости сырья. При коксовании дистиллятного сырья выход кокса не соответствует коксуемости сырья, поэтому составлять материальный баланс расчетным методом для такого сырья нельзя. Главным потребителем кокса является алюминиевая промышленность, где кокс служит восстановителем (анодная масса) при выплавке алюминия из алюминиевых руд. Кроме того, кокс используют в качестве сырья при изготовлении графитированных электродов для сталеплавильных печей, для получения карбидов (кальция, кремния) и сероуглерода. Основными показателями качества кокса являются истинная плотность, содержание серы, зольность и микроструктура. Для игольчатого кокса истинная плотность должна быть не ниже 2,09 г/см3, для кокса марки КНПС (пиролизного специального), используемого в качестве конструкционного материала, она находится в пределах 2,04—-2,08 г/см3 [151. Содержание серы в коксе почти всегда больше, чем в остаточном сырье коксования. Из остатков малосернистых нефтей получают малосернистый кокс, содержащий, как правило, до 1,5 % (масс.) серы; кокс из сернистых остатков содержит обычно 2,0—4,5% (масс.) серы, а из высокосернистых — более 4,0% (масс.). Содержание золы в коксе в значительной мере зависит от глубины обессоливания нефти перед ее перегонкой. В Советском Союзе проектируются и находятся в эксплуатации установки замедленного коксования мощностью 300, 600 и 1500 тыс. т сырья в год. На рис. Ш-5 приведена установка мощностью 600 тыс. т в год, которая включает реакторный блок, состоящий из четырех коксовых камер, две трубчатые нагревательные печи, блок фракционирования и систему регенерации тепла и охлаждения продуктов. Сырье — гудрон или крекинг-остаток (или их смесь)— Подается насосом 1 двумя параллельными потоками в трубы подовых и потолочных экранов печей 2 и 3, где оно нагревается до 350—380 °С. Затем сырье поступает в нижнюю часть колонны 9 на верхнюю каскадную тарелку. Сюда же под нижнюю тарелку поступают горячие газы и пары продуктов коксования, образующиеся в двух параллельно работающих камерах 5 (или 5'). В колонне сырье встречается с восходящим потоком газов и паров и в результате контакта тяжелые фракции паров конденсируются и смешиваются с сырьем. Таким образом, в нижней части колонны образуется смесь сырья с рециркулятом, обычно называемая вторичным сырьем. Если в сырье содержались легкие фракции, то они в результате контакта с высокотемпературными парами испаряются и уходят в верхнюю часть колонны 9. Вторичное сырье с низа колонны 9 забирается насосом 6 и возвращается в змеевики печи 2 и 3, в верхние трубы конвекционной секции и правые подовые и потолочные экраны. Эта часть труб относится к «реакционному» змеевику, здесь вторичное сырье нагревается до 490—510 °С. Во избежание закоксовывания труб этой секции в трубы потолочного экрана подают перегретый водяной пар, так называемый турбулизатор, в количестве ≈3 % (масс.) на вторичное сырье. За счет подачи турбули- затора увеличивается скорость прохождения потока через реакционный змеевик. Избыток перегретого водяного пара может подаваться в отпарные колонны 10 и 11. Парожидкостная смесь из печей 2 и 3 вводится параллельными потоками через четырехходовые краны 7 в две работающие камеры 5; две другие камеры (5') в это время подготавливают к рабочему периоду цикла. Горячее сырье подается в камеры вниз и постепенно заполняет их. Объем камер достаточно большой (внутренний диаметр 4,6—5,5 м, высота 27—28 м), и время пребывания сырья в них значительно. Здесь в камерах сырье подвергается крекингу. Пары продуктов разложения непрерывно выводятся из камер сверху и поступают в колонну 9, а тяжелый остаток остается. Жидкий остаток постепенно превращается в кокс. В колонне 9 продукты коксования разделяются. С верха колонны уходят пары бензина и воды, а также газ коксования. Эти продукты проходят аппарат воздушного охлаждения 8, затем водяной холодильник 16 для дополнительного охлаждения и поступают в водогазоотделитель 17, где разделяются на водный конденсат, нестабильный бензин и жирный газ. |