Главная страница
Навигация по странице:

  • Пористые материалы

  • С полужесткой структурой

  • Плитные резонансные неперфорированные звукопоглощающие конструкции.

  • Плитные резонансные перфорированные звукопоглощающие конструкции

  • 10. СИСТЕМЫ ЗВУКОУСИЛЕНИЯ И ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К АКУСТИЧЕСКОМУ ПРОЕКТИРОВАНИЮ ЗАЛА

  • Что такое время реверберации

  • Архитектурная физика. Лекции. Видимость в зрелищных помещениях


    Скачать 2.45 Mb.
    НазваниеВидимость в зрелищных помещениях
    АнкорАрхитектурная физика. Лекции .doc
    Дата18.12.2017
    Размер2.45 Mb.
    Формат файлаdoc
    Имя файлаАрхитектурная физика. Лекции .doc
    ТипДокументы
    #12076
    страница5 из 5
    1   2   3   4   5

    8.2. Звукопоглощающие материалы и конструкции

    Звукопоглотители классифицируются по назначению, форме, жесткости, возгораемости, структуре. С акустической точки зрения звукопоглотители могут быть подразделены на следующие группы: пористые материалы; пористые звукопоглотители с перфорированными экранами; резонансные и слоистые конструкции; штучные поглотители [19, 20].

    Пористые материалы. У них твердое вещество занимает часть общего объема, а остальной объем приходится на многочисленные малые поры, заполненные воздухом, открытые наружу и сообщающиеся между собой.

    Материалы с замкнутыми порами имеют малый коэффициент звукопоглощения и поэтому не являются звукопоглощающими.

    Звукопоглощающие пористые материалы и изделия подразделяют на группы:

    С гибкой структурой, применяемые в качестве основного элемента в звукопоглощающих конструкциях (маты из холста супертонкого базальтового, маты из холста супертонкого стекловолокна). Эти материалы поглощают звуковую энергию благодаря вязкостному трению воздуха в порах. При этом кинетическая энергия колеблющихся частиц воздуха преобразуется в тепловую.

    С полужесткой структурой обычно изготовляют в виде плит полной заводской готовности, которые крепят непосредственно к поверхности или на относе. Их изготавливают из древесного волокна, асбеста, минеральной и стекловаты, стеклянного и капронового волокна с использованием в качестве вяжущего материала битума, смолы, цемента. Основой зернистого пористого материала служит минеральная крошка, гравий, пемза, каолин; в качестве вяжущего используют цемент или жидкое стекло.

    Например: плиты минераловатные акустические стандартные ПА/С на синтетическом связующем, покрыты белой краской с набрызгом под мрамор; плиты ПА/О - акустические отделочные, покрыты краской на основе поливинилацетатной эмульсии с белым пигментом. Лицевая поверхность плит перфорирована круглыми отверстиями диаметром 4 мм с шагом 14 мм и глубиной 5 мм.

    Материалы с полужестким скелетом поглощают звуковую энергию помимо трения в порах, еще и за счет деформаций скелета, совершающего вынужденные колебания под воздействием звуковых волн.

    С жесткой структурой. Плиты акустические «Силакпор» из газосиликатного бетона, поверхность имеет неглубокую перфорацию лицевого слоя по различным рисункам («Лунная поверхность», «Нида»). Плиты минераловатные акустические «Акмигран». Винипор звукопоглощающий (с открытыми порами).

    Для пористых материалов характерно увеличение звукопоглощения с повышением частоты звуковых волн (см. прил. II табл. 1). Коэффициенты звукопоглощения для большинства пористых материалов на средних и высоких частотах составляют 0,4¸0,6. Их используют в основном для улучшения акустических качеств в кинотеатрах, театрах, концертных залах, студиях, аудиториях. Максимальная эффективная толщина пористого поглощающего материала зависит от специфического аэродинамического сопротивления и фактического уровня шума в помещении (рис. 51, 52).

     



    Рис. 51. Эффективная толщина пористых поглотителей:

    а - из-за малой толщины слоя звук отражается задней поверхностью;

    б - из-за большой толщины часть слоя "не работает";

    в - эффективная толщина слоя;

    Q - падающий на ограждение звук; r1- отраженный пористой поверхностью звуковой луч; r2 -отраженный от задней стены ограждения звуковой луч

    Звукопоглощающие облицовки чаще всего выполняют в виде подвесных потолков из плит Акмигран, акминит или жестких минераловатных плит (см. рис. 53, 54).

    Влияние расстояния между пористым поглотителем и стеной, на звукопоглощение видно из рис. 55.

    К пористым материалам относятся драпировки и ковры, применяемые для увеличения общего звукопоглощения в зрительных залах на средних и высоких частотах. Для увеличения звукопоглощения на низких частотах необходимо увеличить толщину пористого материала или предусмотреть воздушный промежуток между поглотителем и ограждающей конструкцией. Увеличение звукопоглощения можно достичь перфорированием круглыми пустотами, имеющими глубину до 2/3 толщины плиты.

    Пористые звукопоглотители на основе волокнистых материалов покрываются экранами, защищающими материал от механических повреждений. В качестве экрана используют перфорированные листы из металла, пластмассы, фанеры, асбестоцемента и др. Между экраном и пористо-волокнистым материалом размещают тонкую защитную пленку (см. рис. 56). Конструкции с перфорированным покрытием материала позволяют получать достаточно большое звукопоглощение в любой области частот и используют для помещений различного назначения.

     



    Рис. 52. Влияние толщины слоя пористого поглотителя:

    а - толщина слоя d=l1/4 (максимум скорости звуковых волн длиной l1 расположен в слое пористого материала);

    б - толщина слоя d < l2/4 (максимум скорости звуковых волн длиной l2 расположен вне слоя пористого материала, эффективность слоя уменьшается);

    в - требуемая толщина слоя изоляции d для α = 0,8 в зависимости от частоты f



    Рис. 53. Подвесные потолки из плит "Акмигран", акминит или плит МВД:

    а - с каркасом их П-образных стальных, профилей;

    б - с каркасом из тавровых стальных профилей;

    в - с каркасом из двутавровых алюминиевых профилей;

    г - со стальным каркасом в двух уровнях;

    1 - направляющий или второстепенный профиль каркаса;

    2 - лицевые элементы (звукопоглощающий материал);

    3 - проволочная подвеска; 4 - дюбель;

    5 - главный профиль каркаса; 6 - профиль шпонка;

    7 - соединительный элемент профилей каркаса; 8 - гребенка

    Частотная характеристика звукопоглощения регулируется подбором материала, его толщиной, толщиной экрана, размером и формой отверстий, шагом отверстий. Большое преимущество перфорированных конструкций заключается в простоте их изготовления и монтажа, а также в широких возможностях архитектурно-декоративного решения интерьеров помещений.

     



    Рис. 54. Общий вид подвесного потолка, выполненного из декоративно-акустических плит "Акмигран"



    Рис. 55. Влияние расстояния между пористым поглотителем и стеной:

    а - звукопоглощающий слой расположен на расстоянии от стены, равном l/4, максимум скоростей звуковых волн находится в толще слоя;

    б - звукопоглощающий слой нанесен непосредственно на стену, максимум скорости находится вне слоя, его эффективность уменьшается;

    в - коэффициент звукопоглощения αплиты из минерального волокна толщиной 40 мм;

    1 - расстояние между звукопоглощающим слоем и стеной 27 см;

    2 - звукопоглощающий слой прикреплен непосредственно к стене



    Рис. 56. Подвесные потолки с перфорированными алюминиевыми экранами:

    а - с панелями 600´600 мм; б - с рейками 300´600 мм; в - с рейками 100´150´4500 мм с нащельниками; 1 - пружина уплотнения; 2 - дюбель-винт; 3 - лицевой элемент; 4 - прокладочный слой; 5 - подвеска; 6 - пористый (волокнистый) звукопоглощающий материал; 7 - соединительная накладка, 8 - несущий профиль; 9 - пружина крепления; 10 - деталь регулировки уровня потолка по высоте; 11 - нащельник

    В строительной акустике часто применяется простейшая колебательная система, образуемая из элементов: масса - пружина - масса. Их колебания могут вызывать явление резонанса. Резонансная или собственная частота снижается при увеличении массы поверхности и снижении жесткости пружины. В состоянии резонанса необходим лишь незначительный импульс энергии, чтобы сохранить колебание системы. С другой стороны, перенос звука через такую систему при резонансе значительно увеличивается и потери звуковой энергии, то есть поглощение ее из помещения, становится высоким. Масса и пружина интерпретируются произвольно.

    Различают два типа резонаторов (или резонансных поглотителей): плитный и Гельмгольца (рис. 57).

     



    Рис. 57. Типы резонансных звукопоглотителей: а - плитный; б - система масса-пружина-масса; в - резонатор Гельмгольца; М - масса (стена или плита перекрытия); S1- пружина (воздушный промежуток);

    S2- пружина (объем воздуха); M1- масса корпуса (фанера, гипсокартон);

    M2- масса воздуха в объеме горловины резонатора l∙π×r2.

    Плитные резонансные неперфорированные звукопоглощающие конструкции. Это жесткие колебательные системы или мембранные звукопоглотители, у которых колеблющаяся масса (тонкая, но плотная плита, например, панель из ДСП, фанеры или гипсокартона) укреплена на некотором расстоянии от стены и совершает вынужденные колебания, сжимая находящийся позади нее объем воздуха (выполняющий функцию пружины), рис. 57 а.

    Звуковая энергия затрачивается на преодоление упругого сопротивления (реакции) воздуха за панелью и сил трения, возникающих при изгибных деформациях панели.

    Плитные резонаторы используются при звуковых колебаниях в полосе частот от низких до средних, при этом по сравнению с пористыми поглотителями они перекрывают лишь узкую полосу частот.

    Принципиальное устройство резонатора Гельмгольца показано на рис. 57 в. Как и в перфорированных плитных резонаторах, масса резонаторов Гельмгольца образуется горловиной резонатора, пружина - находящимся в камере объемом воздуха. При этом полоса резонансных частот может быть увеличена путем установки пористых материалов в горловине резонатора.

    Плитные резонансные перфорированные звукопоглощающие конструкции, представляют собой параллельное соединение большого числа резонаторов, что увеличивает звукопоглощение конструкции. Они изготавливаются из перфорированных облицовок (перфорированы листы из металла, гипса, асбестоцемента) с подклеенной к ним пористой тканью. Такая конструкция имеет поглощение в узкой полосе, обусловленное резонансными свойствами. Для получения более равномерной частотной характеристики коэффициента звукопоглощения на внутреннюю сторону перфорированной панели укладывают слой пористого материала. Рост коэффициента перфорации (площади отверстий) увеличивает коэффициент звукопоглощения в области высоких частот.

    Для борьбы с шумом в зале используют также подвесные или штучные звукопоглотители из пористого звукопоглощающего материала, заключенного в перфорированный футляр конической или кубической формы (рис. 58), выполняемый из пластмассы, фанеры или металла (рис. 59).

     



    Рис. 58. Общий вид штучных звукопоглотителей

    Звукопоглотитель подвешиваются как можно ближе к источникам шума и в зонах концентрации звуковой энергии. Эффективность штучных поглотителей оценивают не коэффициентом звукопоглощения, а эквивалентной площадью звукопоглощения A, м2 (см. рис. 60).

    В практике строительства общественных зданий широкое применение нашли архитектурно-акустические конструкции, состоящие из эффективного звукопоглотителя и декоративной решетки из металла или дерева. При небольшой ширине деревянных реек (до 4 см) и ширине просветов между ними (до 5 см) такая решетка действует лишь как декоративное покрытие, не оказывая практически никакого влияния на поглощение звука, осуществляемое находящимся за ней звукопоглотителем. Следует иметь в виду, что в помещениях большого объема, а также в помещениях, где имеется достаточно большое звукопоглощение, эффективность снижения времени реверберации или уровня шума за счет внесения добавочного звукопоглощения уменьшается. Поэтому мероприятия, связанные с применением звукопоглощающих материалов и конструкций, требуют тщательного технического и экономического обоснования.

     



    Рис. 59. Подвесной штучный поглотитель дифракционного типа:

    а - общий вид, б - разрез;

    1 - кожух из перфорированного металла (фольга, жесть, латунь 1,5-0,4 мм; диаметр перфорации 1 мм, шаг. перфорации 3 мм);

    2 - мат из минерального волокна в обертке из грубой ткани или мешковины);

    3 - крепежная пружина;

    4 - металлический колпачок, угол αвыбирается по архитектурным соображениям



    Рис. 60. Коэффициенты звукопоглощения подвесных звукопоглотителей:

    а - минеральное волокно в металлической сетке, r=50 кг/м3, d0=100мм, ds=230мм;

    в - то же, d0 = 80 мм, ds= 1000 мм,

    с - конус, 400 мм, расстояние между конусами 750 мм, карбомидо-формальдегидная пеномасса в ткани, нижняя часть конуса покрыта поливинилхлоридной перфорированной пленкой d0 = 500 мм

    9. ЗВУКОИЗОЛЯЦИЯ ЗАЛА

    При проектировании зала нужно обратить серьезное внимание на его звукоизоляцию. Мероприятия для звукоизоляции и снижения шума следует разрабатывать в соответствии с положениями СНиП по защите от шума.

    Располагать здание, в котором имеется зал, на шумной магистрали крайне нежелательно. Если такое расположение неизбежно, то здание должно отступать от красной линии, и участок между ней и зданием следует озеленить деревьями, что несколько изолирует здание от уличного шума. Внутренняя планировка здания должна быть такова, чтобы зал находился возможно дальше от шумных проездов и других сильных источников шума, а между залом и улицами размещались вспомогательные помещения (фойе, вестибюли и т.п.), защищающие зал от непосредственного проникания уличного шума.

    Если зал имеет окна, то они не должны быть обращены в сторону шумных проездов и их следует устраивать с двойными плотными переплетами .

    Для повышения звукоизоляции между залом и фойе входа в зал должны иметь плотно закрывающиеся двери, прикрываемые портьерами с обеих сторон; лучшая звукоизоляция достигается устройством тамбуров с двумя дверями. Устройство тамбуров или коридоров, отделяющих зал от фойе, особенно рекомендуется, если предполагается использование фойе (например, для оркестра) одновременно с залом.

    Допускаемый уровень проникающих в зал шумов и требуемая звукоизоляция ограждающих конструкций зала должны приниматься в соответствии с Нормами проектирования СНиП П-12-77. Если окружающие зал помещения нуждаются по своему характеру в защите от шумов, то должна быть обеспечена изоляция этих помещений от проникающего из зала звука.

    При разработке внутренней планировки здания надо, строго следить за тем, чтобы помещения с шумным оборудованием (вентиляционные камеры с вентиляторами, насосные, холодильные установки, шахты лифтов и их машинные помещения, трансформаторные, котельные и т.п.) не примыкали к залу и другим помещениям, требующим защиты от шума.

    При проектировании установок вентиляции или кондиционирования воздуха для изоляции зала от их шума должны быть разработаны следующие основные мероприятия:

    • монтаж вентиляторов, насосов и компрессоров совместно с их двигателями на амортизаторах для изоляции колебаний, передающихся строительными конструкциями здания;

    • устройство вставок из прорезиненной ткани в местах присоединения воздуховодов к вентиляторам и вставок из резинового шланга в местах присоединения трубопроводов к насосам;

    • устройство глушителей для заглушения аэродинамических шумов, распространяющихся по воздуховодам;

    • ограничение скорости воздуха для снижения шумообразования в воздуховодах и решетках;

    • надлежащая звукоизоляция ограждающих конструкций помещений, в которых расположены вентиляторы и насосы.

    При проектировании этих мероприятий следует пользоваться указанными нормами СНиП П-12-77.

    Для изоляции зала от шума кинопроекторов проекционные окна должны иметь стекла толщиной не менее 6 мм, герметически закрывающие оконный проем при помощи резинового уплотнения по контуру. Смотровые окна должны иметь два таких стекла. В оконном проеме торцы стены между этими стеклами рекомендуется отделывать звукопоглощающим материалом. Проекторы следует устанавливать на резиновых амортизаторах, ослабляющих звуковые колебания, передающиеся полу. Потолок кинопроекционной для снижения шума рекомендуется отделывать звукопоглощающими плитами одного из типов, приведенных в прил. II, табл. 1.

    10. СИСТЕМЫ ЗВУКОУСИЛЕНИЯ И ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К АКУСТИЧЕСКОМУ ПРОЕКТИРОВАНИЮ ЗАЛА

    Деление залов на залы с естественной акустикой и залы, оборудованные электроакустическими системами, условно, так как все современные залы должны иметь системы звукоусиления.

    Залы, оборудованные электроакустическими системами делятся на две группы: 1. залы, в которых зрители воспринимают звук непосредственно со сцены и при помощи системы звуковоспроизведения. Это залы со звукоусилением (лекционные, концертные, залы многоцелевого назначения); 2. залы, в которых зрители воспринимают звук только при помощи звуковоспроизводящей системы (кинотеатры).

    Целесообразность использования систем звукоусиления в залах первой группы (для залов второй группы это очевидно) определяется прежде всего их большими размерами. В залах многоцелевого назначения большого объема помимо усиления звука специальные электроакустические системы могут выполнять еще и функции регулирования времени реверберации. Такие системы называются амбиофоническими.

    Качество передачи звука при работе в зале системы звукоусиления определяется классом используемой аппаратуры, правильностью и взаимоувязкой электроакустического и акустического проектов. Чтобы обеспечить качество звукопередачи и повысит надежность работы системы звукоусиления при акустическом проектировании зала необходимо выполнить ряд дополнительных требований.

    Для устойчивой работы системы звукоусиления время реверберации зала должно быть небольшим. Рекомендуемые в разд. 6 (см. рис. 43) значения времени реверберации соответствуют оптимальным для залов, оборудованных системами звукоусиления. Если зал имеет жесткие кресла, то рекомендуется при выборе оптимального значения времени реверберации ориентироваться на нижнюю границу полосы, указанной на рис. 43.

    При разработке архитектурно-акустического решения околосценического пространства (устройство порталов, козырьков, боковых звукоотражателей и других поверхностей) необходимо учитывать размещение в нем основной централизованной группы громкоговорителей. Они должны размещаться таким образом, чтобы прямой звук от них не попадал в возможные места расположения микрофонов, а разность хода между прямым звуком громкоговорителей и естественных источников со сцены не превышала величин, указанных в п. 5.2.

    Средний коэффициент звукопоглощения поверхностей зала, примыкающих к местам расположения микрофонов, должен быть не ниже (целесообразно несколько выше), чем в целом по залу. В залах с выделенным сценическим объемом это условие выполняется, если имеются кулисы, занавеси и декорации. В случае, когда сцена составляет с залом единый объем, необходимо предусмотреть звукопоглощающую отделку примыкающих к стене поверхностей стен и потолка. Поверхности эти следует расчленять, а звукопоглотитель на них размещать в соответствии с п. 8.1.

    В проектах залов следует избегать решений, в которых непосредственно за зоной установки микрофонов находится плоская или вогнутая отражающая стена или поверхность. Часть пола и мебель, на которых крепятся микрофоны, желательно подглушить, используя для этой цели на полу ковровые дорожки или ковер, стол президиума, покрытый скатертью или сукном, трибуну с мягкой обивкой внутренних поверхностей.

    Что такое время реверберации?

    Любой звуковой сигнал создает в замкнутом помещении звуковое поле. Это происходит в результате многократных отражений звуковых волн распространяющихся внутри помещения от граничных поверхностей (потолка, пола и стен).

    Упрощенно, время реверберации это время, за которое энергия звукового поля уменьшается в один миллион раз, после выключения источника звука в помещении. Или, переходя на научный язык, время, за которое уровень звукового давления в помещении уменьшается на 60 дБ (децибел) по сравнению со своей исходной величиной.

    Если в помещении воспроизвести одиночный звуковой сигнал (включить, а затем выключить источник звука), то звуковое поле от этого сигнала «останется» в помещении, даже после того как источник звука будет выключен. Со временем, такое звуковое поле будет постепенно «затухать», в основном, за счет поглощения звуковой энергии материалами, использованными для отделки граничных поверхностей. Скорость угасания звуковой энергии будет определяться звукопоглощающими характеристиками отделочных материалов и объемом помещения.

    Для помещений обладающих недостатками в акустике (вследствие высоких значений времен реверберации), измерение фактического значения времени реверберации дает возможность рассчитать количество и тип отделочных звукопоглощающих материалов, с помощью которых возможно снизить время реверберации до желаемых (заданных) значений.

    Значение времени реверберации, определяется, прежде всего, звукопоглощающими свойствами отделочных материалов, и может составлять для разных помещений от долей секунды до нескольких секунд. Время реверберации является важным параметром, характеризующим акустические свойства помещения. Например, помещения, имеющие высокие значения для времени реверберации обладают повышенной «гулкостью» и менее комфортны. Рекомендуемые значения времени реверберации для помещений различного назначения приведены в СНиП 23-03-2003 (Строительные нормы и правила Российской Федерации, «Защита от шума»).
    1   2   3   4   5


    написать администратору сайта