Пособие_по_выживанию_на_вирусологии. Вирусология и этапы ее развития 1 Отличия вирусов от прокариотов и эукариотов 6
Скачать 102.99 Kb.
|
Природа вирусовВирусы – наиболее многочисленные и генетически разнообразные организмы на Земле. Они распространены повсеместно (убиквитарны) и поражают все живые существа. Вирусы являются неклеточными формами жизни, способными размножаться в клетках прокариот (безъядерные организмы) и эукариот (ядерные организмы), используя их биосинтетический аппарат. Вирион (вирусная частица) – это покоящаяся стадия жизненного цикла вируса. Основная активная стадия жизни вируса проходит в зараженной клетке. Вне клетки вирусы не проявляют признаки живого – мертвые как камень [7, 11]. Первый вирус – вирус табачной мозаики был открыт Д.И. Ивановским 128 лет назад (1892 г.). В 1897 г. немецкие исследователи Ф. Леффер и П. Фрош открыли первый вирус животных – вирус ящура. В последующие 50 лет обнаружили более 40 видов вирусов, поражающих человека, животных, насекомых, растения и бактерии. Во второй половине ХХ века было открыто свыше 2000 видов вирусов [9, 11]. Таксономия вирусов Все вирусы по своим фундаментальным признакам группируются независимо от круга естественных хозяев. Главными из них являются тип и структура нуклеиновой кислоты, стратегия вирусного генома (способ репликации), симметрия нуклеокапсида (спиральная, кубическая, смешанная), наличие или отсутствие липопротеиновой оболочки. В таксономии вирусов используют пять таксонов: порядок, семейство, подсемейство, род и вид [11, 12]. В настоящее время известно более 8000 видов вирусов позвоночных, беспозвоночных, простейших, растений, грибов, водорослей, бактерий и архей, из которых 4853 классифицированы и распределены в 9 порядках, 131 семействе, 46 подсемействах, 803 родах и свыше 3000 не классифицированы [15]. Возможно, на нашей планете существуют миллионы видов вирусов. Для открытия новых вирусов широко используется метагеномный подход, который основан на секвенировании всей ДНК и РНК, содержащейся в пробе, и обработке данных биоинформационными методами. Нет необходимости в изоляции и культивировании возбудителя. Анализ метагеномных данных проводится путем поиска гомологичных последовательностей среди геномов известных вирусов, депонированных в базе геномных данных. Число известных вирусов, вероятно, составляет менее 1% от вирома (всех вирусов) [1, 13]. Подавляющее большинство вирусов находится в Мировом океане и размножается в планктоне – совокупности организмов, населяющих морскую воду. В одном литре морской воды содержится до 10 миллиардов вирусных частиц, а общее их количество в Мировом океане составляет астрономическое число – 1030, масса которых оценивается в 8 х 1012 кг (в 10 раз больше массы всего человечества). Число вирусных частиц на Земле – 1033, а число бактерий – 1031 [4, 9]. Вирусы размножаются внутри клеток дизъюнктивным способом, т.е. разобщенным во времени и пространстве синтезом их структурных компонентов (нуклеиновых кислот и белков), из которых формируются вирионы потомства. Синтез вирусных белков осуществляется на клеточных рибосомах из аминокислот клетки, а нуклеиновых кислот – из клеточных нуклеотидов. Источником энергии для биосинтетических процессов является аденозинтрифосфорная кислота (АТФ), вырабатываемая в митохондриях клеток [3, 12]. Происхождение вирусов Вирусы не оставили после себя никаких остатков, которые можно было бы соотнести с геологической хронологией, и их происхождение до сих пор остается предметом умозрительных рассуждений. В настоящее время дискутируются три основные гипотезы происхождения вирусов: вирусы являются потомками бактерий или других одноклеточных организмов; вирусы возникли из первичных генетических элементов, или доклеточного пула генов; вирусы являются дериватами клеточных генетических структур ( «сбежавшие гены»), которые приобрели капсидные белки и возможность реплицироваться автономно [11, 12, 14]. Первая гипотеза мало убедительна из-за отсутствия кандидата на роль протовируса и большое разнообразие геномов у вирусов. Вторая самая популярная и наиболее аргументированная. Вирусы, вероятно, возникли раньше клеток. Третья гипотеза достаточно убедительна в отношении ДНК-содержащих вирусов. Разнообразие генетического материала у вирусов свидетельствует об их полифилетическом (от нескольких предков) происхождении. Полагают, что оно было не единовременным событием, а многократным. Вероятно, РНК-содержащие вирусы произошли из самореплицирующихся молекул РНК (мира РНК) в доклеточный период. Более 4 млрд лет назад молекулы РНК выступали в качестве носителей информации и катализаторов химических реакций. Возможно, вирусы эукариот произошли из генов эукариот, в то время как бактериофаги – из генов бактерий. РНК-содержащие плюс-геномные вирусы могли произойти из клеточных информационных РНК, которые приобрели РНК-полимеразную активность, а ДНК-содержащие вирусы – из транспозонов (мобильных генетических элементов) эукариот, или бактериальных плазмид. У недавно открытого вируса амеб (мимивируса) имеются клеточные гены для компонентов трансляционного комплекса и факторов инициации транскрипции. Диаметр вирионов составляет 750 нм, что превышает размеры некоторых бактерий. Геном мимивируса состоит из линейной двунитевой молекулы ДНК длиной 1,2 млн пар нуклеотидов и кодирует около 1000 белков. У двух гигантских вирусов (пандоравирусов), открытых в 2013 г., длина генома составляет 1,9 и 2,5 млн пар нуклеотидов. Больший геном кодирует 2500 белков. Эти вирусы видимы под световым микроскопом [9, 17]. Открытие гигантских вирусов размыло границы между вирусами и бактериальными клетками в отношении их размера и длины геномной ДНК. Биосфера Биосфера – оболочка Земли, заселенная живыми организмами и преобразованная ими. Она начала формироваться 3,8 млрд лет назад, когда на нашей планете стали зарождаться первые живые организмы. Биосфера охватывает нижнюю часть атмосферы (20-25 км), верхнюю часть литосферы (2-5 км) и всю гидросферу. Современная биосфера возникла в результате длительной эволюции. В биосфере обитает 8,7 млн видов живых организмов (эукариот). Масса живого вещества сравнительно мала и оценивается величиной 2,4 х 1018 г (в пересчете на сухое вещество). Биомасса подземных микробов сравнима со всей биомассой суши, включая деревья. Целостное учение о биосфере создал биогеохимик В.И. Вернадский. Он впервые отвел живым организмам роль главнейшей преобразующей силы планеты Земля [2]. На основании нуклеотидной последовательности рибосомных РНК многих тысяч видов все живые организмы в биосфере подразделяют на три домена (надцарства): археи, бактерии и эукариоты [19]. Археи и бактерии относятся к прокариотам – организмам без ядра, митохондрий и других внутриклеточных структур. Их геном находится в цитоплазме и представлен кольцевой молекулой ДНК. У прокариот нет полового размножения, в их жизненном цикле отсутствует фаза образования половых клеток и их слияния с образованием зиготы – диплоидной клетки с двумя копиями генома. Археи сильно отличаются от бактерий на молекулярном уровне (нуклеотидной последовательности геномов, строению клеточной мембраны и рибосом), не образуют спор, часто встречаются в гидротермальных источниках и среди них нет возбудителей инфекционных заболеваний. Эукариоты – организмы, в клетках которых есть ядро, митохондрии и множество других сложных внутренних структур. К эукариотам относятся разнообразные одноклеточные организмы (амебы, инфузории, радиолярии и др.) и многоклеточные – грибы, растения и животные. Все они имеют общее происхождение. В жизненном цикле эукариот есть половое размножение. Половые клетки (яйцеклетки и сперматозоиды) образуются путем мейоза – особого способа деления клеток, в результате которого из одной исходной диплоидной клетки (с двумя наборами хромосом) образуются четыре дочерние гаплоидные клетки (с одним набором хромосом). Слияние двух половых клеток (яйцеклетки и сперматозоида) называют оплодотворением и образующаяся зигота размножается путем митоза, при котором в родительской и дочерней клетках сохраняется диплоидный набор хромосом [7, 8]. Большая часть видов (90%), когда-либо обитавших на Земле, вымерла. Вероятно, вымирание – судьба любого вида. Современные темпы вымирания весьма высокие и к середине XXI века может исчезнуть до 30% видов. Деятельность человека является главной причиной нынешнего вымирания видов. Структура геномов живых организмов Геном любого организма (от бактерий до млекопитающих) представляет собой двунитевую ДНК, состоящую из четырех нуклеотидов: аденина, гуанина, тимина и цитозина. В свою очередь нуклеотиды состоят из азотистого основания, сахара дезоксирибозы и фосфата. Основания в двунитевой ДНК образуют комплементарные пары: аденин всегда находится в паре с тимином, а гуанин всегда связан с цитозином. У вирусов геном может быть представлен или ДНК (ДНК-содержащие вирусы) или РНК (РНК-содержащие вирусы). В клеточных РНК (информационных, рибосомных, транспортных) и вирусных РНК вместо тимина используется урацил. Генетический код (система записи генетической информации в виде последовательности нуклеотидов) универсален для всех живых существ, то есть он един. Он состоит из 64 кодонов (триплетов нуклеотидов): 61 из них кодирует 20 аминокислот и 3 являются терминирующими. Большинство аминокислот кодируются не одним, а несколькими вариантами (от 2 до 6) кодонов (вырожденность генетического кода). Считывание генетической информации происходит в результате транскрипции – синтеза информационной РНК на матрице ДНК на основе комплементарности – и трансляции – синтеза на рибосомах белка, в котором порядок аминокислот соответствует порядку кодирующих триплетов информационной РНК [5]. Основные этапы эволюции жизни на Земле Земля образовалась из газопылевого облака 4,6 млрд лет назад. В течение 300 млн лет она остывала. Вероятно жизнь зародилась в океане в гидротермальных источниках ( «колыбель жизни»), называемых «черные курильщики». Первыми самовоспроизводящимися молекулами являлись короткие РНК с каталитической активностью (рибозимы), которые возникли 4 млрд лет назад. Каталитическая активность этих РНК была аналогична ферментам. Уникальными свойствами рибозимов является то, что они сочетают в себе информационные и каталитические функции. В настоящее время рибозимы (мир РНК) рассматриваются как самые важные строительные блоки в начале формирования жизни [8, 10]. Первые одноклеточные безъядерные организмы (прокариоты – археи и бактерии) возникли 3,5 млрд лет назад. Они приспособились к разным условиям обитания. Бактерии расселились по поверхности суши и океанов и совершенствовали механизмы использования энергии света, а археи осваивали подземные местообитания и питались неорганическими веществами, выходящими из глубин Земли. Археи похожи на бактерии, но отличаются от них по нуклеотидной последовательности генов, строению рибосом, клеточной стенки и мембраны. Эволюционные линии архей и бактерий разделились на заре клеточной жизни. Первые ископаемые, очень похожие на цианобактерии, были обнаружены в осадочных породах, возраст которых составлял 3,4 млрд лет. Кислородные фотосинтезирующие бактерии (цианобактерии, сине-зеленые водоросли) появились 2,5-2,7 млрд лет назад. С появлением кислорода стало возможным возникновение эукариот – ядерных организмов. Первые ядерные одноклеточные организмы возникли 2,0-2,4 млрд лет назад. Они произошли путем слияния архейного предка и альфа-протеобактерии. Последняя дала начало митохондриям, обеспечивающим организм энергией. Эукариоты способны к фагоцитозу – поглощению твердых частиц из внешней среды внутрь клетки. Приобретение фагоцитоза – ключевое событие в эволюции эукариот. Археи и бактерии не способны к фагоцитозу и поглощают из внешней среды только растворенные вещества. Появление эукариотической клетки было таким же крупным эволюционным событием, как переход от РНК-мира к первым клеткам (прокариотам). В дальнейшем из эукариотической клетки развились все высшие формы жизни – животные, растения, грибы и протисты (одноклеточные эукариоты). В последующем роль симбиоза в развитии жизни не снижалась. Важные функциональные блоки современной биосферы держатся на симбиозе или симбиотических комплексах: симбиотические бактерии и одноклеточные эукариоты переваривают клетчатку у растительноядных животных, азотофиксирующие бактерии в кооперации с растениями способны переводить азот из атмосферы в доступную для растений форму (аммоний). Самые первые наземные растения жили в симбиозе с грибами. Первые многоклеточные организмы появились 600-800 млн лет назад. Многоклеточная жизнь зародилась в океане, а на суше безраздельно господствовали прокариоты еще примерно 150-200 млн лет. Полагают, что одноклеточные эукариоты переходили к многоклеточности более 20 раз, однако современные животные – это результат лишь одного из этих событий, а остальные достались грибам и растениям. Самыми примитивными многоклеточными организмами, вероятно, были губки, у которых нет настоящих тканей, нервной системы и кишечника. Взаимодействия между клетками у губок осуществляются с помощью так называемых «коммуникационных белков». Позвоночные возникли 542 млн лет назад и произошло лавинообразное возрастание разнообразия и сложности животных ( «кембрийский взрыв»). Среди них появились представители практически всех современных типов животных. В этот период концентрация кислорода превысила половину от современной. Лишь 360 млн лет назад позвоночные вышли из океана на сушу и от них произошли все сухопутные позвоночные, обладающие четырьмя конечностями. В настоящее время насчитывают 62305 видов позвоночных. Первые млекопитающие появились 250 млн лет назад почти одновременно с первыми динозаврами, однако господство на суше они получили после вымирания древних (мезозойских) рептилий 65 млн лет назад. Млекопитающие пережили собственный эволюционный взрыв и стали наиболее распространенными на Земле. Сейчас насчитывают 5506 видов млекопитающих. Факторы эволюции Важнейшими факторами эволюции являются изменения в последовательности нуклеотидов в геномах любых организмов и естественный отбор. Элементарной единицей эволюции служит популяция организмов. Изменения в последовательности нуклеотидов возникают в результате мутаций, рекомбинаций, горизонтального переноса и дупликации генов [5]. Спонтанные мутации обусловлены случайными изменениями в последовательности нуклеотидов и возникают из-за ошибок ферментов во время репликации ДНК. Возможны замены, выпадения (делеции), вставки (инсерции) и перестановки пар нуклеотидов в молекулах ДНК. Скорость мутирования определяют по числу мутаций на нуклеотид за репликацию. Рекомбинация – обмен участками гомологичных хромосом в процессе мейоза – специального деления клеток с образованием половых клеток с гаплоидным набором хромосом. В основе гомологичной рекомбинации молекул ДНК лежит точное соответствие гомологов и функционирование ряда ферментов, которые разрезают, воссоединяют и восстанавливают молекулы ДНК. В результате рекомбинации происходит перераспределение генов и образование новых интегрированных генотипов, которые играют важную роль в эволюции. Горизонтальный (латеральный) перенос генов (ГПГ) представляет собой передачу генетического материала от одних одновременно существующих организмов другим. Он широко распространен у прокариот (архей и бактерий) и осуществляется путем трансдукции, трансформации и конъюгации. Трансдукция связана с переносом генов бактериольного генома из одной клетки в другую с помощью вирусов (фагов). Трансформация осуществляется путем поглощения бактерией фрагмента ДНК из окружающей среды и встраивания его в свой геном. При конъюгации бактерия-донор передает бактерии-реципиенту часть своего генома при помощи специальных белковых трубочек – конъюгационных пилей. ГПГ возможен между организмами всех трех доменов – архей, бактерий и эукариот. Очень редко в ГПГ вовлекаются гены, ответственные за репликацию, транскрипцию и трансляцию. Дупликация генов – один из главных путей эволюции для всех форм жизни и играет важную роль в эволюции эукариот. После дупликации одна из двух копий может мутировать и выполнять другую функцию. Все изменения в последовательности нуклеотидов от простых точечных мутаций до различных перестроек генов являются исходным материалом для эволюции. Роль вирусов в биосфере Вирусы – это самый успешный биологический вид и самая крупная популяция на Земле. Нет ни одного живого существа без вирусов. Подавляющее большинство уникальной генетической информации в биосфере является вирусной. Они создали хранилище генетического разнообразия планеты. В вирусных геномах больше генетической информации, чем в геномах всех живых организмов вместе взятых [6, 7, 9]. Представление о вирусах, как только о возбудителях болезней, далеко от действительности. Абсолютное большинство вирусов не приносит видимого вреда хозяевам (вирусы-симбионты). С их помощью происходит обмен генетической информацией между различными биологическими видами. Они выступают в качестве основного переносчика генов в биосфере. На развитие каждого биологического вида в течение эволюции вирусы оказывали решающее влияние. Они являются драйверами (двигателями) эволюции [3, 6, 16, 18]. В геноме человека, расшифрованном к 2001 г. и содержащем 3,2 млрд пар нуклеотидов, эндогенные ретровирусные последовательности составляют примерно 9% – 280 млн пар нуклеотидов. Это 450 тысяч фрагментов вирусных геномов, из которых интактными являются около 40 тысяч. Около половины генома человека состоит из мобильных генетических элементов – транспозонов и ретротранспозонов ( «прыгающие» гены), которые перемещаются с места на место в геноме человека, являются источником генетического разнообразия и играют важную роль в эволюции. |