методы исследований, книга. Высшее профессиональное образование
Скачать 11.53 Mb.
|
Условия миграции элементов. Вода — главный фактор миграции элементов. В геохимии ландшафтов все элементы классифицируются по их отношению к окислительно-восстановительным и ще-лочно-кислотным условиям среды. Детальная разработка такой классификации сделана А. И. Перельманом (1966, 1979 и др.), разделившим все элементы по интенсивности водной миграции в различных геохимических обстановках. Выделяются три типа окислительно-восстановительных условий: окислительные, восстановительные глеевые и восстановительные сероводородные. В последних двух случаях в среде нет свободного кислорода, и обе среды восстановительные, но их свойства в геохимическом отношении весьма различны: глеевая среда благоприятна для миграции многих металлов (железа, марганца и других); в сероводородной среде условия для миграции неблагоприятны в связи с образованием нерастворимых сульфидов. По щелочно-кислотным условиям все воды делятся на четыре основных класса (табл. 2). Сильнокислые воды содержат свободную серную кислоту, образующуюся при окислении пирита и других дисульфидов. В природных условиях они встречаются в зонах окисления сульфидных месторождений, в угольных шахтах, в вулканических районах. В таких водах легко мигрирует большинство металлов, в том числе Fe, Al, Cu, Zn и др. Кислые и слабокислые воды весьма характерны для тундровых и лесных ландшафтов. Их кислотность связана с разложением органического вещества и поступлением угольной кислоты и других органических кислот. В кислых и слабокислых водах легко мигрируют металлы в формах бикарбонатов и комплексных соединений с органическими кислотами. Слабокислые воды очень широко распространены в верхних горизонтах земной коры. Нейтральные и слабощелочные воды характерны для лесостепных, степных, полупустынных и пустынных ландшафтов. Степень щелочности зависит от отношения бикарбоната кальция к его карбонату или же бикарбоната к СО2. Условия миграции менее благоприятны для большинства металлов, которые здесь осаждаются в форме нерастворимых гидроокислов карбонатов и других солей. Анионогенные элементы (Si, Ge, As, V, U, Mo, Se и др.), напротив, мигрируют в них сравнительно легко. Органические кислоты при разложении органики полностью нейтрализуются СаСО3 и другими соединениями кальция, магния, натрия и калия, которыми богаты почвы и породы. Сильнощелочные воды содержат соду. Встречаются они в некоторых лесостепных ландшафтах, в содовых солончаках и др. В содовых водах легко мигрируют Si, Al, Mo и комплексные карбонатные соединения Си, Zn, Be, V, редких земель итгриевой группы, Se, Zr и др. Для каждого класса вод характерна своя ассоциация мигрирующих элементов и ассоциация малоподвижных элементов — «запрещенная» (А.И.Перельман, 1979, 1981; Ландшафтно-геохими-ческие основы..., 1989). Ионный состав вод, минерализация (хло-ридные, сульфатные, гидрокарбонатные, пресные, соленые и другие воды) также существенно влияют на условия миграции элементов, но меньше, чем различия в классах вод. Типоморфными элементами называются элементы широко распространенные, но не все. Роль элемента в ландшафте определяется в большинстве случаев не столько его содержанием, сколько интенсивностью его миграции и способностью к аккумуляции (так называемый принцип подвижности компонентов). Например, в почвах солончаков кремния значительно больше, чем натрия или хлора, но типоморфными, определяющими характерные особенности ландшафта, будут именно легкорастворимые соли натрия и хлора, а не кремний или алюминий (А.И.Перельман, 1975). По типоморфным водным (и воздушным) мигрантам, при одновременном учете щелочно-кислотных и окислительно-восстановительных условий, как отмечалось выше, все воды могут быть разделены на 21 класс (табл. 3). Пользуясь приведенной классификацией, мы можем сказать, что, например, для тундровых ландшафтов весьма характерен кислый глеевый класс водной миграции (XII), для ландшафтов тайги, хвойно-широколиственных и широколиственных лесов — кислый и кислый переходный к кальциевому (III, IV, V), для лесостепных и степных — кальциевый (VI) и т.д. В каждом ландшафте формируется свой набор ПТК разных классов водной миграции 68 химических элементов в зависимости от конкретных условий (геологического строения, рельефа, уровня залегания и состава грунтовых вод и т.д.). Геохимические барьеры. Границы между разными геохимическими обстановками называются геохимическими барьерами. По направленности миграционного потока различают барьеры радиальные и латеральные, которые, в свою очередь, по способу переноса веществ подразделяются на диффузные и инфилыпрационные (первые более характерны для аквальных комплексов). Различают макро-, мезо- и микробарьеры. Барьеры в почвах относятся к радиальным микробарьерам, ширина их (мощность) измеряется сантиметрами или даже миллиметрами. Ширина переходной полосы от природных комплексов нормального увлажнения к типичному болоту носит латеральный характер и может измеряться десятками и сотнями метров; это уже мезобарьеры. Типичный аквальный макробарьер, а также латеральный — устье крупной реки, впадающей в море (или океан), и прибрежная акватория. Здесь происходит смешение пресных и соленых вод и ширина барьера может составлять многие сотни и тысячи метров. По изменению типов миграции элементов А. И. Перельман (1966, 1977 и др.) выделяет следующие типы барьеров: 1) природные {механические, физико-химические, биохимические); 2) техногенные. В ландшафтных исследованиях, также как и в геохимии ландшафтов, наибольшее внимание уделяется физико-химическим барьерам. Среди физико-химических барьеров А. И. Перельман (1973) выделяет десять основных классов: А — кислородный, возникающий при резкой смене восстановительной среды на окислительную; В — сероводородный или С — глеевый при смене окислительной среды на восстановительную; Д — щелочной при резком повышении рН; Е — кислый при резком понижении рН; F — испарительный; G — сорбционный; Н — термодинамический; J — сульфатный; К — карбонатный. В почвенных разрезах барьеры часто четко прослеживаются по смене состава и окраски горизонтов, по скоплению новообразований. Так, в дерново-подзолистых почвах органическая подстилка является биохимическим барьером на переходе от растительного покрова к минерально-органическому гумусовому горизонту серого или даже темно-серого цвета. Гумусовый горизонт, в свою очередь, более или менее постепенно переходит в подзолистый горизонт (вымывания или выщелачивания), обычно белесого цвета и более легкого механического состава, чем гумусовый. При этом нередко особо выделяется переходный горизонт, который и является барьером — физико-химическим щелочным и одновременно биохимическим. Ниже следует переход к горизонту вмывания {иллювиальному). В суглинистых почвах он заметно более тяжелого механического состава и ярко окрашен в красновато-бурый цвет при- 70 внесенными в него окислами железа. Это — барьер физико-химический, сорбционный. В песчаных дерново-подзолистых почвах обычно дифференциация горизонтов менее четкая, а в горизонте вмывания окислы железа образуют тонкие извилистые полосы — псевдофибры или более или менее сцементированные слои ортзандов, порой довольно мощных и плотных. Нередки также ржаво-бурые пятна разных размеров и форм. В значительно переувлажненных почвах образуются глеевые барьеры тоже физико-химические сорбционные, изобилующие закис-ными соединениями железа, придающими почве желеобразную структуру и более или менее интенсивный сизый цвет. К этому же типу барьеров можно отнести горизонты дерново-подзолистых почв со скоплением рудяковых зерен (железистых конкреций) или в черноземных почвах горизонты с журавчиками, куколками и просто с наличием муки углекислого кальция и т.д. В зависимости от класса барьера и состава вод, подступающих к барьеру, формируются типы концентрации элементов на физико-химических барьерах (А. И. Перельман, 1973, 1975, 1977 и др.). Биологические барьеры (лесные подстилки, гумусовые горизонты почв, торф, сами растения и т.д.), способные сорбировать различные элементы и соединения, в том числе радионуклидного загрязнения. В качестве механического барьера можно считать, например, перегиб склона, вызывающий в нижней части склона осадконакопление. Известны случаи формирования сплошных двусторонних барьеров (Н. С. Касимов, 1972), где воды различного химического состава движутся к барьеру с разных сторон. М. А. Глазовская (1988) дает широкий спектр барьеров и приводит общую картину наиболее распространенных геохимических барьеров в почвах разных зон (рис. II)1. Рассмотрим, к примеру, типичный почвенный профиль подзолов железисто-гумусовых (рис. 11, V). Верхний горизонт профиля представлен подстилкой (О), которая является мощным биогеохимическим барьером, относящимся к высокоемким окислительным (1). Далее следует элювиальный горизонт (Е или А2), где в основном идет вынос различных элементов и коллоидов и только в небольшой степени седиментация. Это тоже барьер, но уже физико-химический, сорбционно-седиментационный кислый, малоемкий окислительный (7). Ниже расположены горизонты: иллю- 1 В индексировании почвенных горизонтов во многих публикациях имеются разночтения. Например, подстилка индексируется как О или как Aq, гумусовый горизонт А или Аьподзолистый А2или Е и т.д. Имеется также много других основных или дополняющих индексов. Этого не стоит пугаться, так как разобраться всегда возможно и по учебникам почвоведения, и по различным инструкциям, а порой и просто по здравому смыслу. 71 виально-гумусовый, или альфегумусовый (Bh) (9) и иллювиаль-но-железистый, или ферритный и ферралитный (Bf) (10). Оба они также относятся к сорбционно-седиментационным. Накопление гумуса и железа может протекать здесь с разной интенсивностью. Наконец, горизонт С — это обычно малоемкие сорбционные и седиментационные слабокислые и нейтральные барьеры (25). Для солончака (рис. 11, XVI) характерны солевые барьеры (21, 25), ниже сульфидные (23, 24) с постепенным нарастанием восстановительной обстановки. М. А. Глазовская отмечает, что накопление торфа в тундровых ландшафтах свидетельствует о крайне медленном разложении там 72 Рис. 11. Типы сочетаний геохимических барьеров в почвах. Почвы: / — тундрово-глеевые; // — торфяно-болотные; /// — глеево-подзолистые; IV—подбуры; V—подзолы железисто-гумусовые; VI—подзолистые; VII — подзолистые и дерново-подзолистые пахотные известкованные; VIII— дерново-карбонатные; IX— серые лесные, черноземы оподзоленные; X— черноземы и каштановые; XI— лугово-черноземные; XII — красноземы; XIII — бурые пустынно-степные, серо-бурые; XIV — сероземы; XV — солонцы; XVI— солончаки Почвенно-геохимические барьеры: биогеохимический кислый: 1 — высокоемкий окислительный; 2 — высокоемкий восстановительный; 3 — умеренно емкий окислительный; 4 — умеренно емкий восстановительный; сорбционно-седиментацион-ный кислый: 5 — умеренно и высокоемкий окислительный; 6 — умеренно и высокоемкий восстановительный; 7 — малоемкий окислительный; 8 — малоемкий восстановительный; 9 — альфегумусовый; 10 — ферритный и ферралитный; // — умеренно и высокоемкий резко восстановительный; биогеохимический нейтральный и слабощелочной: 12 — умеренно емкий окислительный; 13 — умеренно емкий восстановительный; 14 — высокоемкий окислительный; 15 — малоемкий резко окислительный; сорбционно-седиментационный окислительный: 16 — нейтральный и слабощелочной; 17 — высокощелочной солонцовый; карбонатный: 18— окислительный; 19— восстановительный; 20— окислительный гипсовый; солевой: 21 — интенсивно испарительный окислительный; 22 — испарительный окислительный; сульфидный: 23— окислительно-восстановительный; 24— восстановительный; сорбционные и седиментационные слабокислые и нейтральные барьеры в почвообразующих породах: 25 — малоемкие; 26 — высокоемкие органического вещества, в то время как в полупустыне и пустыне этот процесс протекает в сто раз быстрее. Отсюда вывод, что техногенное загрязнение ландшафтов нефтепродуктами, пестицидами и другими органическими веществами гораздо опаснее на севере, чем на юге. Приведенные на рис. 11 профили могут помочь разобраться в конкретной полевой обстановке, особенно при описании почвенных разрезов. В комплексных физико-географических исследованиях удобно также использовать табл. 4, составленную И. А. Авессаломовой (1987) по материалам А. И. Перельмана, М.А. Глазовской и др., где перечень основных типов и классов геохимических барьеров и накапливающихся на них элементов сопровождается указанием типичного их местонахождения в ландшафтах. Ряды биологического поглощения. Биогенная миграция элементов играет огромную роль в функционировании ландшафтов. К настоящему времени разработан уже целый ряд геохимических показателей, характеризующих, с одной стороны, биологическое поглощение растениями различных элементов из среды обитания, с Другой, — неодинаковую способность к поглощению элементов различными растениями, произрастающими в одной и той же среде. Впервые вычисление рядов биологического поглощения было осуществлено Б. Б. Полыновым, изучавшим процессы выветривания гранито-гнейсов в Ильменском заповеднике и роли лишайни- 73 растения к его содержанию в почве или в горной породе (в данном случае — в гранито-гнейсах). Ряд элементов по убывающей энергии их биологического поглощения получает следующий вид: ков, произрастающих на них. Оказалось, что химические элементы накапливаются в лишайниках неравномерно, о чем свидетельствует коэффициент биологического поглощения (Кб), представляющий собой отношение содержания химического элемента в золе 74 Сопоставление химического состава золы растений, почв и пород привело ученых к выводу о большой роли биогенеза в формировании минерального состава почв. Исследования Б. Б. Полынова показали, что уже на ранних стадиях почвообразования химический состав мелкозема, особенно в коллоидной фракции, несет на себе следы обогащения элементами разложившегося органического вещества лишайников. Проследить процесс биолитогенеза можно, последовательно сопоставляя химический состав живых растений (или свежего опада) с составом в разной степени разложившихся подстилок и верхних горизонтов почвенного профиля. М.А.Глазовская (1964) отмечает, что «биогенность» глин и почв (особенно верхних горизонтов почв) заставляет учитывать эту особенность при интерпретации рядов выноса и поглощения и различать ряды первичного поглощения (массивная порода — литофиль-ные растения) и ряды вторичного поглощения (мелкоземистые продукты выветривания или почва — растения). Во втором случае присутствуют элементы, которые уже вторично вовлекаются в биологический круговорот. Миграционная способность элементов. В миграции химических элементов в ландшафтах ведущая роль принадлежит воде. Все гидрохимические показатели можно объединить в три группы (И. А. Авес-саломова, 1987). К первой группе относятся показатели интенсивности водной миграции различных элементов. По ним можно строить миграционные ряды для элементарных ландшафтов или их различных ярусов. Показатели второй группы отражают изменение геохимических потоков в них и приходно-расходные (балансовые) соотношения химизма вод. Третья группа включает в себя показатели, дающие качественную и количественную характеристики природных вод в абсолютных величинах. Б. Б. Полынов (1956) объединяет элементы, мигрирующие в растворах, в пять групп в зависимости от их подвижности (табл. 5). где тх — содержание элемента х в водах, дренирующих породы; пх — содержание элемента х в горных породах, дренируемых этими водами; а — величина минерального остатка речной или грунтовой воды А. И. Перельман (1962) предложил характеризовать интенсивность водного перемещения элементов коэффициентом водной миграции (Кх), который представляет собой отношение содержания химического элемента в минеральном осадке воды к его содержанию в горных породах, дренируемых этими водами: Химический состав поверхностных вод может также сильно меняться по сезонам года, и коэффициенты водной миграции поэтому должны вычисляться по отношению к среднему химическому составу именно того яруса сопряженных фаций, который в данный момент дренируется водотоком. Например, весной химический состав поверхностно-склоновых паводковых вод уместно сравнивать с составом подстилки или опада, а в межень — с составом тех пород, которые дренируются грунтовыми водами, питающими поверхностный водоток. |