Главная страница
Навигация по странице:

  • Геохимические барьеры.

  • Ряды биологического поглощения.

  • Миграционная способность элементов. В

  • методы исследований, книга. Высшее профессиональное образование


    Скачать 11.53 Mb.
    НазваниеВысшее профессиональное образование
    Анкорметоды исследований, книга.doc
    Дата03.12.2017
    Размер11.53 Mb.
    Формат файлаdoc
    Имя файламетоды исследований, книга.doc
    ТипДокументы
    #10635
    страница8 из 30
    1   ...   4   5   6   7   8   9   10   11   ...   30

    Условия миграции элементов. Вода — главный фактор миграции элементов. В геохимии ландшафтов все элементы классифициру­ются по их отношению к окислительно-восстановительным и ще-лочно-кислотным условиям среды. Детальная разработка такой клас­сификации сделана А. И. Перельманом (1966, 1979 и др.), разде­лившим все элементы по интенсивности водной миграции в раз­личных геохимических обстановках.

    Выделяются три типа окислительно-восстановительных усло­вий: окислительные, восстановительные глеевые и восстановитель­ные сероводородные. В последних двух случаях в среде нет свободно­го кислорода, и обе среды восстановительные, но их свойства в геохимическом отношении весьма различны: глеевая среда благо­приятна для миграции многих металлов (железа, марганца и дру­гих); в сероводородной среде условия для миграции неблагопри­ятны в связи с образованием нерастворимых сульфидов.

    По щелочно-кислотным условиям все воды делятся на четыре основных класса (табл. 2). Сильнокислые воды содержат свободную серную кислоту, образующуюся при окислении пирита и других дисульфидов. В природных условиях они встречаются в зонах окис­ления сульфидных месторождений, в угольных шахтах, в вулкани­ческих районах. В таких водах легко мигрирует большинство метал­лов, в том числе Fe, Al, Cu, Zn и др.

    Кислые и слабокислые воды весьма характерны для тундровых и лесных ландшафтов. Их кислотность связана с разложением орга­нического вещества и поступлением угольной кислоты и других органических кислот.





    В кислых и слабокислых водах легко мигрируют металлы в фор­мах бикарбонатов и комплексных соединений с органическими кислотами. Слабокислые воды очень широко распространены в верхних горизонтах земной коры.

    Нейтральные и слабощелочные воды характерны для лесостеп­ных, степных, полупустынных и пустынных ландшафтов. Степень щелочности зависит от отношения бикарбоната кальция к его кар­бонату или же бикарбоната к СО2. Условия миграции менее благо­приятны для большинства металлов, которые здесь осаждаются в форме нерастворимых гидроокислов карбонатов и других солей. Анионогенные элементы (Si, Ge, As, V, U, Mo, Se и др.), напро­тив, мигрируют в них сравнительно легко. Органические кислоты при разложении органики полностью нейтрализуются СаСО3 и другими соединениями кальция, магния, натрия и калия, кото­рыми богаты почвы и породы.

    Сильнощелочные воды содержат соду. Встречаются они в некото­рых лесостепных ландшафтах, в содовых солончаках и др. В содовых водах легко мигрируют Si, Al, Mo и комплексные карбонатные соеди­нения Си, Zn, Be, V, редких земель итгриевой группы, Se, Zr и др.

    Для каждого класса вод характерна своя ассоциация мигриру­ющих элементов и ассоциация малоподвижных элементов — «за­прещенная» (А.И.Перельман, 1979, 1981; Ландшафтно-геохими-ческие основы..., 1989). Ионный состав вод, минерализация (хло-ридные, сульфатные, гидрокарбонатные, пресные, соленые и дру­гие воды) также существенно влияют на условия миграции эле­ментов, но меньше, чем различия в классах вод.

    Типоморфными элементами называются элементы широко рас­пространенные, но не все. Роль элемента в ландшафте определяет­ся в большинстве случаев не столько его содержанием, сколько интенсивностью его миграции и способностью к аккумуляции (так называемый принцип подвижности компонентов). Например, в почвах солончаков кремния значительно больше, чем натрия или хлора, но типоморфными, определяющими характерные особенности ландшафта, будут именно легкорастворимые соли натрия и хлора, а не кремний или алюминий (А.И.Перельман, 1975).

    По типоморфным водным (и воздушным) мигрантам, при од­новременном учете щелочно-кислотных и окислительно-восста­новительных условий, как отмечалось выше, все воды могут быть разделены на 21 класс (табл. 3).

    Пользуясь приведенной классификацией, мы можем сказать, что, например, для тундровых ландшафтов весьма характерен кис­лый глеевый класс водной миграции (XII), для ландшафтов тай­ги, хвойно-широколиственных и широколиственных лесов — кис­лый и кислый переходный к кальциевому (III, IV, V), для лесо­степных и степных — кальциевый (VI) и т.д. В каждом ландшафте формируется свой набор ПТК разных классов водной миграции

    68

    химических элементов в зависимости от конкретных условий (гео­логического строения, рельефа, уровня залегания и состава грун­товых вод и т.д.).

    Геохимические барьеры. Границы между разными геохимиче­скими обстановками называются геохимическими барьерами. По направленности миграционного потока различают барьеры ради­альные и латеральные, которые, в свою очередь, по способу пере­носа веществ подразделяются на диффузные и инфилыпрационные (первые более характерны для аквальных комплексов).

    Различают макро-, мезо- и микробарьеры. Барьеры в почвах от­носятся к радиальным микробарьерам, ширина их (мощность) из­меряется сантиметрами или даже миллиметрами. Ширина пере­ходной полосы от природных комплексов нормального увлажне­ния к типичному болоту носит латеральный характер и может из­меряться десятками и сотнями метров; это уже мезобарьеры. Ти­пичный аквальный макробарьер, а также латеральный — устье крупной реки, впадающей в море (или океан), и прибрежная ак­ватория. Здесь происходит смешение пресных и соленых вод и ширина барьера может составлять многие сотни и тысячи метров.

    По изменению типов миграции элементов А. И. Перельман (1966, 1977 и др.) выделяет следующие типы барьеров: 1) природные {ме­ханические, физико-химические, биохимические); 2) техногенные. В ланд­шафтных исследованиях, также как и в геохимии ландшафтов, наибольшее внимание уделяется физико-химическим барьерам.

    Среди физико-химических барьеров А. И. Перельман (1973) вы­деляет десять основных классов: А — кислородный, возникающий при резкой смене восстановительной среды на окислительную; В — сероводородный или С — глеевый при смене окислительной среды на восстановительную; Д — щелочной при резком повышении рН; Е — кислый при резком понижении рН; F — испарительный; G — сорбционный; Н — термодинамический; J — сульфатный; К — карбо­натный.

    В почвенных разрезах барьеры часто четко прослеживаются по смене состава и окраски горизонтов, по скоплению новообразова­ний. Так, в дерново-подзолистых почвах органическая подстилка является биохимическим барьером на переходе от растительного покрова к минерально-органическому гумусовому горизонту се­рого или даже темно-серого цвета. Гумусовый горизонт, в свою очередь, более или менее постепенно переходит в подзолистый горизонт (вымывания или выщелачивания), обычно белесого цвета и более легкого механического состава, чем гумусовый. При этом нередко особо выделяется переходный горизонт, который и явля­ется барьером — физико-химическим щелочным и одновременно биохимическим. Ниже следует переход к горизонту вмывания {ил­лювиальному). В суглинистых почвах он заметно более тяжелого ме­ханического состава и ярко окрашен в красновато-бурый цвет при-

    70

    внесенными в него окислами железа. Это — барьер физико-хими­ческий, сорбционный.

    В песчаных дерново-подзолистых почвах обычно дифференциа­ция горизонтов менее четкая, а в горизонте вмывания окислы железа образуют тонкие извилистые полосы — псевдофибры или более или менее сцементированные слои ортзандов, порой до­вольно мощных и плотных. Нередки также ржаво-бурые пятна раз­ных размеров и форм.

    В значительно переувлажненных почвах образуются глеевые барь­еры тоже физико-химические сорбционные, изобилующие закис-ными соединениями железа, придающими почве желеобразную структуру и более или менее интенсивный сизый цвет. К этому же типу барьеров можно отнести горизонты дерново-подзолистых почв со скоплением рудяковых зерен (железистых конкреций) или в черноземных почвах горизонты с журавчиками, куколками и про­сто с наличием муки углекислого кальция и т.д.

    В зависимости от класса барьера и состава вод, подступающих к барьеру, формируются типы концентрации элементов на физико-химических барьерах (А. И. Перельман, 1973, 1975, 1977 и др.). Биологические барьеры (лесные подстилки, гумусовые горизонты почв, торф, сами растения и т.д.), способные сорбировать раз­личные элементы и соединения, в том числе радионуклидного загрязнения. В качестве механического барьера можно считать, на­пример, перегиб склона, вызывающий в нижней части склона осадконакопление. Известны случаи формирования сплошных дву­сторонних барьеров (Н. С. Касимов, 1972), где воды различного хи­мического состава движутся к барьеру с разных сторон.

    М. А. Глазовская (1988) дает широкий спектр барьеров и при­водит общую картину наиболее распространенных геохимических барьеров в почвах разных зон (рис. II)1.

    Рассмотрим, к примеру, типичный почвенный профиль подзо­лов железисто-гумусовых (рис. 11, V). Верхний горизонт профиля представлен подстилкой (О), которая является мощным биогео­химическим барьером, относящимся к высокоемким окислитель­ным (1). Далее следует элювиальный горизонт или А2), где в основном идет вынос различных элементов и коллоидов и только в небольшой степени седиментация. Это тоже барьер, но уже фи­зико-химический, сорбционно-седиментационный кислый, мало­емкий окислительный (7). Ниже расположены горизонты: иллю-

    1 В индексировании почвенных горизонтов во многих публикациях имеются разночтения. Например, подстилка индексируется как О или как Aq, гумусовый горизонт А или Аьподзолистый А2или Е и т.д. Имеется также много других основных или дополняющих индексов. Этого не стоит пугаться, так как разобрать­ся всегда возможно и по учебникам почвоведения, и по различным инструкциям, а порой и просто по здравому смыслу.

    71



    виально-гумусовый, или альфегумусовый (Bh) (9) и иллювиаль-но-железистый, или ферритный и ферралитный (Bf) (10). Оба они также относятся к сорбционно-седиментационным. Накопление гумуса и железа может протекать здесь с разной интенсивностью. Наконец, горизонт С — это обычно малоемкие сорбционные и седиментационные слабокислые и нейтральные барьеры (25).

    Для солончака (рис. 11, XVI) характерны солевые барьеры (21, 25), ниже сульфидные (23, 24) с постепенным нарастанием вос­становительной обстановки.

    М. А. Глазовская отмечает, что накопление торфа в тундровых ландшафтах свидетельствует о крайне медленном разложении там

    72

    Рис. 11. Типы сочетаний геохимических барьеров в почвах.

    Почвы: / — тундрово-глеевые; // — торфяно-болотные; /// — глеево-подзолистые; IV—подбуры; V—подзолы железисто-гумусовые; VI—подзолистые; VIIпод­золистые и дерново-подзолистые пахотные известкованные; VIII— дерново-кар­бонатные; IX— серые лесные, черноземы оподзоленные; X— черноземы и каш­тановые; XI— лугово-черноземные; XIIкрасноземы; XIIIбурые пустынно-степные, серо-бурые; XIVсероземы; XVсолонцы; XVI— солончаки

    Почвенно-геохимические барьеры: биогеохимический кислый: 1 — высокоемкий окислительный; 2 — высокоемкий восстановительный; 3 — умеренно емкий окис­лительный; 4 — умеренно емкий восстановительный; сорбционно-седиментацион-ный кислый: 5 — умеренно и высокоемкий окислительный; 6 — умеренно и высо­коемкий восстановительный; 7 — малоемкий окислительный; 8 — малоемкий восстановительный; 9 — альфегумусовый; 10 — ферритный и ферралитный; // — умеренно и высокоемкий резко восстановительный; биогеохимический нейтральный и слабощелочной: 12 — умеренно емкий окислительный; 13 — умеренно емкий восстановительный; 14 — высокоемкий окислительный; 15 малоемкий резко окислительный; сорбционно-седиментационный окислительный: 16 — нейтральный и слабощелочной; 17 — высокощелочной солонцовый; карбонатный: 18— окис­лительный; 19— восстановительный; 20— окислительный гипсовый; солевой: 21 — интенсивно испарительный окислительный; 22 — испарительный окислительный; сульфидный: 23— окислительно-восстановительный; 24— восстановительный; сорб­ционные и седиментационные слабокислые и нейтральные барьеры в почвообразующих породах: 25 — малоемкие; 26 — высокоемкие

    органического вещества, в то время как в полупустыне и пустыне этот процесс протекает в сто раз быстрее. Отсюда вывод, что тех­ногенное загрязнение ландшафтов нефтепродуктами, пестицида­ми и другими органическими веществами гораздо опаснее на севе­ре, чем на юге.

    Приведенные на рис. 11 профили могут помочь разобраться в конкретной полевой обстановке, особенно при описании почвен­ных разрезов.

    В комплексных физико-географических исследованиях удобно также использовать табл. 4, составленную И. А. Авессаломовой (1987) по материалам А. И. Перельмана, М.А. Глазовской и др., где пере­чень основных типов и классов геохимических барьеров и накап­ливающихся на них элементов сопровождается указанием типич­ного их местонахождения в ландшафтах.

    Ряды биологического поглощения. Биогенная миграция элементов играет огромную роль в функционировании ландшафтов. К насто­ящему времени разработан уже целый ряд геохимических показа­телей, характеризующих, с одной стороны, биологическое погло­щение растениями различных элементов из среды обитания, с Другой, — неодинаковую способность к поглощению элементов различными растениями, произрастающими в одной и той же среде.

    Впервые вычисление рядов биологического поглощения было осуществлено Б. Б. Полыновым, изучавшим процессы выветрива­ния гранито-гнейсов в Ильменском заповеднике и роли лишайни-

    73









    растения к его содержанию в почве или в горной породе (в данном случае — в гранито-гнейсах). Ряд элементов по убывающей энер­гии их биологического поглощения получает следующий вид:

    ков, произрастающих на них. Оказалось, что химические элемен­ты накапливаются в лишайниках неравномерно, о чем свидетель­ствует коэффициент биологического поглощения (Кб), представ­ляющий собой отношение содержания химического элемента в золе

    74

    Сопоставление химического состава золы растений, почв и по­род привело ученых к выводу о большой роли биогенеза в форми­ровании минерального состава почв. Исследования Б. Б. Полынова показали, что уже на ранних стадиях почвообразования химиче­ский состав мелкозема, особенно в коллоидной фракции, несет на себе следы обогащения элементами разложившегося органическо­го вещества лишайников. Проследить процесс биолитогенеза мож­но, последовательно сопоставляя химический состав живых расте­ний (или свежего опада) с составом в разной степени разложив­шихся подстилок и верхних горизонтов почвенного профиля.

    М.А.Глазовская (1964) отмечает, что «биогенность» глин и почв (особенно верхних горизонтов почв) заставляет учитывать эту осо­бенность при интерпретации рядов выноса и поглощения и разли­чать ряды первичного поглощения (массивная порода — литофиль-ные растения) и ряды вторичного поглощения (мелкоземистые продукты выветривания или почва — растения). Во втором случае присутствуют элементы, которые уже вторично вовлекаются в био­логический круговорот.

    Миграционная способность элементов. В миграции химических элементов в ландшафтах ведущая роль принадлежит воде. Все гидро­химические показатели можно объединить в три группы (И. А. Авес-саломова, 1987). К первой группе относятся показатели интенсив­ности водной миграции различных элементов. По ним можно стро­ить миграционные ряды для элементарных ландшафтов или их раз­личных ярусов. Показатели второй группы отражают изменение геохимических потоков в них и приходно-расходные (балансовые) соотношения химизма вод. Третья группа включает в себя показа­тели, дающие качественную и количественную характеристики природных вод в абсолютных величинах.

    Б. Б. Полынов (1956) объединяет элементы, мигрирующие в растворах, в пять групп в зависимости от их подвижности (табл. 5).




    где тхсодержание элемента х в водах, дренирующих породы; пхсодержание элемента х в горных породах, дренируемых этими вода­ми; а — величина минерального остатка речной или грунтовой воды


    А. И. Перельман (1962) предложил характеризовать интенсив­ность водного перемещения элементов коэффициентом водной ми­грации (Кх), который представляет собой отношение содержания химического элемента в минеральном осадке воды к его содержа­нию в горных породах, дренируемых этими водами:








    Химический состав поверхностных вод может также сильно меняться по сезонам года, и коэффициенты водной миграции по­этому должны вычисляться по отношению к среднему химическо­му составу именно того яруса сопряженных фаций, который в дан­ный момент дренируется водотоком. Например, весной химиче­ский состав поверхностно-склоновых паводковых вод уместно срав­нивать с составом подстилки или опада, а в межень — с составом тех пород, которые дренируются грунтовыми водами, питающи­ми поверхностный водоток.
    1   ...   4   5   6   7   8   9   10   11   ...   30


    написать администратору сайта