Главная страница

теормех шпоры. Вопрос 1 Векторный способ задания движения


Скачать 1.21 Mb.
НазваниеВопрос 1 Векторный способ задания движения
Анкортеормех шпоры
Дата08.12.2022
Размер1.21 Mb.
Формат файлаdoc
Имя файлаTermekh_shpory_1.doc
ТипДокументы
#835510
страница2 из 3
1   2   3
1   2   3


Вопрос 20:

Скорости и ускорения точек твердого тела при его свободном движении.

Разложение общего вида движения на поступательное, связанное с точкой О и вращательное относительно О.

Переносное движение - поступательное движение вместе с полюсом. (Ve)

Относительное движение - вращательное движение относительно полюса. (Vr)
Поступательное:

X1o=f1(t); Y1o=f2(t); Z1o=f3(t).

Вращательное:

Ψ=f4(t); φ=f5(t); θ=f6(t).

Таким образом, число степеней свободы при свободном движении твердого тела равно 6.

ρA=ρо+rvA=dρ/dt+dr/dt=vo+ω×r.

aA=dvA/dt=dvo/dt+dω/dt×r+ω×dr/dt=ao+ε×r+ω²r=ao+aAвр+aAос.



1) Полюс - т. А: vB = vA + ωS*AB

2) Полюс - т. В: vA = vB + ωB*BA = vB - ωB*AB

1) + 2) : (vB + vA) = (vA + vB) + ω*AB- ωB*AB

(ωA - ωB)*AB = 0


Вопрос 21:

Сложное движение точки. Основные понятия.

Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).

Относительное движение – движение точки по отношению к подвижной системе координат.

Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этимидвижениями позволяет решать различные задачи.

Положение точки М в подвижной системе координат O'XYZ характеризует радиус-вектор с началом в точке О'. Траектория точки М в подвижной системе отсчета называется относительной траекторией и представляет собой годограф радиус-вектора Скорость движения точки М по отношению к осям подвижной системы координат называется относительной скоростью и обозначается Vr. Вектор Vr определяет скорость изменения с течением времени радиус-вектора в подвижной системе O'XYZ и поэтому выражается его относительной, или локальной, производной по времени,

Ускорение точки М в этом движении называется относительным ускорением и обозначается аr. Вектор аr характеризует скорость изменения вектора относительной скорости Vr в подвижной системе O'XYZ и поэтому выражается относительной, или локальной, производной по времени от Vr:

Движение подвижной системы O'XYZ по отношению к неподвижной Oxyz является для точки М переносным движением, а скорость и ускорение той неизменно связанной с подвижной

системой отсчета точки А, с которой в данный момент времени совпадает точка М, называют переносными скоростью и ускорением точки М и обозначают Ve и ае.

Переносные скорость и ускорение точки М определяются по формулам: , где вектора Vo' и ao' - скорость и ускорение точки О' подвижной системы координат.


Вопрос 22:

Полная и локальная производные вектора. Формула Бура.

Рассмотрим изменение вектора b(t) по отношению к двум системам координат — подвижной O'XYZ и неподвижной Oxyz.

Абсолютной, или полной, производной вектора b по аргументу t назьшается вектор определяющий изменение вектоpa b(t) в неподвижной системе Oxyz.

Относительная, или локальная, производная определяет измененине вектора b(t) в подвижной системе O'XYZ.

Формула Бура (получается из зависимости между полной и локальной производными):

Рассомтрим частные случаи.

1) угловая скорость = 0, то

2) вектор b не меняется в подвижной системе отсчета =0), то

3) , т.е. вектор b все время параллелен вектору угловой скорости ( ), то = . В частности, если , то , т.е. вектор угловой скорости изменяется одинаково для подвижной и неподвижной систем координат.

Выведение формулы Бура:

Найдем зависимость между полной и локальными производными. Если воспользоваться проекциями вектора b(t) на оси подвижной системы O'XYZ, то можно записать: , где I, J, К — орты, не изменяемые в этой системе отсчета. Поэтому локальная производная , а полная производная с учетом изменения также ортов I, J , К имеет вид: . В правой части уравнения первые три слагаемых выражают локальную производную, а производные от ортов I, J, K определяются формулами Пуассона ( ), т.е. . С учетом получаем: .

Вопрос 23:

Скорости и ускорения точки при сложном движении.

ρ = r0 + r

dp/dt = d(r0+r)/dt = dr0/dt + dr/dt

dp/dt = v0 + dr/dt + ω*r = v0 + vr + ω*r

v = v0 + ω*r + vr = ve + vr

a = dv/dt = d(v0 + ω*r +vr)/dt = a0 + (dω/dt)*r + ω*(dr/dt) + dvr/dt

dr/dt = d()r/dt + ω*r = vr + ω*r

dvr/dt = d()vr/dt + ω*vr = ar + ω*vr

a = a0 + ε*r + ω*vr + ω*vr + ω*(r*ω) + ar + ω*vr = a0 + a(вр) + ω*vr + ω*vr + а(ос) + ar + ω*vr

a = a0 + ε*r + ω*(r*ω) + ar + + 2*ω*vr, где 2*ω*vr - добавочное (поворотное) ускорение, a0 + ε*r + ω*(r*ω) - (ае) переносное ускорение.

Опр-е ускорения точки в сложном движении

VM=VO+[ ωr]+ Vr

WM=dVM/dt=(dVO/dt)+[ εr]+[ ω(dr/dt)]+dVr/dt

dr/dt=[ ωr]+ Vr

WM=Wo+[ εr]+ [ω[ωr]]+[ ωVr]+ [ ωVr]+Wr

dVr/dt=[ ωVr]+ Wr

Wk=2[ωVr]

WM=WL+Wr+WK – кинематическая теорема Кариолиса

Абсолютное ускорение точки –это есть сумма переносного ускорения, относительного ускорения и ускорения Кариолиса

Переносное ускорение хар-етизмен-е переносной скорости в переносном движении.

Относительное ускорение хар-етизм-е относительнойскоростив в относительном движении. Ускорение Кариолисахар-етизм-е относительной скорости в переносном движении

Ускорение Кариолиса.

Согласно правилу векторного произведения, вектор ускорения Кариолиса┴пл-ти, в кот-й лежат вектора ω и Vr и направлена в ту сторону,что с конца этого вектора кратчайшее совмещение первого вектора ко второму ω к Vr кажется видным против хода часовой стрелки.


Вопрос 24:

Ускорение Кориолиса. Правило Жуковского.

Кинематическая теорема Кориолиса: абсолютное ускорение точки является векторной суммой трех ускорений - относительного, переносного и ускорения Кориолиса.

Ускорение Кориолиса равно удвоенному векторному произведению угловой скорости переносного движения на относительную скорость точки: , следовательно по модулю ускорение Кориолиса: (sin90=1).

Кориолисово ускорение обращаетсяв нуль, когда:

1) переносное движение - поступательное, т.е. омега переносное равно нулю;

2) в те моменты времени, когда в относительном движении точка останавливается, например.при изменении направления относительного движения.

Частные случаи:

А) ω0 – смена знака

Б) vr0 – относительный покой (смена знака движения).

В) sin(ω,vr)0, ω||vr.

Правило Жуковского: Кориолисово ускорение можно получить, спроецировав вектор радиальной скорости на плоскость, перпендикулярную вектору омега переносное, увеличив полученную проекцию радиальной скорости в 2*(омега переносное) раз и повернув ее на 90 градусов в направлении переносного вращения.

Вопрос 25:

Сложное вращение твердого тела вокруг пресекающихся осей.

В случае вращательных относительного и переносного движений твердого тела, когда оси их вращений пересекаются в точке О (рис. 7.2), абсолютное движение будет движением твердого тела вокруг неподвижной точки О (сферическим движением) с угловой скоростью, определяемой согласно



Нетрудно убедиться, что скорости всех точек, лежащих на линии, по которой направлен вектор угловой скорости, равны нулю. В самом деле, например, скорость находящейся на этой линии точки А тела (по свойству произведения коллинеарных векторов "омега" и r). Таким образом, прямая, на которой расположен вектор угловой скорости, является мгновенной осью вращения тела.

Скорость любой точки М тела в данном случае можно определить так: или , где

Модули составляющих, а также абсолютной скорости точки М равны модулям соответствующих векторных произведений и могут быть вычислены по формулам: , где - кратчайшие расстояния от точки М до соответствующих осей вращения.

Вопрос 26:

Сложное вращение твердого тела вокруг параллельных осей.

Если оси вращательных движений тела параллельны, то вектор результирующей угловой скорости ω тела в неподвижной системе координат будет коллинеаренωе и ωr. Положение мгновенной оси вращения тела как оси, проходящей в данный момент времени через точку Р – МЦС в плоскости П, перпендикулярной осям вращений, можно определить из анализа: vrP=ωr×OrP, veP=ωe×OeP, Or, Oe – точки пересечений П с соответствующими осями вращения. vP=veP+vrP=0veP= -vrPveP= vrPωrOrP=ωeOeP.

В зависимости от взаимного расположения и численного значения векторов ωr и ωe можно выделить 3 случая сложения вращательных движений:

А) При совпадении направлений векторов ωe и ωr абсолютное движение будет плоским. Абсолютная угловая скорость в этом случае будет иметь направление, совпадающее с направлениями её составляющих, а её модуль ω=ωre. Положение точки Р можно найти из пропорции ωe/OrP=ωrOeP=ω/OeOr. Скорость любой точки тела может быть найдена по формуле v=ω×PM.

Б) При противоположных направлениях векторов ωe и ωr, когда ωr≠ωe, абсолютное движение будет плоским. Абсолютная угловая скорость имеет направление, совпадающее с направлением большей по модулю составляющей угловой скорости, а её модуль ω=|ωre|. Пропорции для нахождения точки Р имеют тот же вид, что и в пункте А.



Вопрос 27:

Пара вращений.

При противоположных направлениях векторов ωe и ωrи равенстве их модулей (ωe = ωr), если условие ωe=-ωr выполняется на отрезке времени t2-t1, абсолютное движение будет поступательным. Такой случай сложения вращательных движений называется парой вращений.

Действительно, ω=ωe+ωr=

-ωr+ωr=0, и для любой точки тела справедливы соотношения: v=ωe×r1+ωr×r2=ωe×(r1-r2)=ωe×OeOr=ωr×OrOe;

Следовательно, скорости всех точек тела в данном случае одинаковы и равны скорости поступательного движения.


Вопрос 28:

Аксиомы статики.

  1. 2 силы, приложенные к абс. твердому телу будут эквивалентны 0 тогда и только тогда, когда они равны по модулю, действуют на одной прямой и направлены в противоположные стороны.

Следствие. Сумма всех внутренних сил всегда равна нулю.

  1. Действие данной системы сил на абсолютно твердое тело не изменится, если к ней добавить или отнять систему сил, эквивалентную 0 => точку приложения силы можно переносить вдоль линии её действия.



  1. Если к телу приложены 2 силы, исходящие из одной точки, то их можно заменить равнодействующей (любую силу можно разложить на составляющие бесконечное число раз).

  2. Силы взаимодействия двух тел равны по модулю и противоположны по направлению.

  3. Механическое состояние системы не изменится, если освободить ее от связей, приложив к точкам системы силы, равные реакциям связей.

Действие связей можно заменить действием сил – реакций связи.


Вопрос 29:

Основные виды связей и их реакции.

Связи – ограничения, накладываемые на свободное твердое тело (занимает произвольное положение в пространстве). Реакция связи направлена в сторону, противоположную той, куда связь не дает перемещаться телу.

  1. Гладкая поверхность – по общей нормали.



  1. Нить – вдоль к точке закрепления.



  1. Цилиндрический шарнир (подшипник)




  1. Сферический шарнир – по любому радиусу.



  1. Подпятник, подшипник – любое направление.



  1. Невесомый стержень с шарнирами на концах. Реакция прямолинейного невесомого стержня с шарнирами на концах направлена вдоль оси стержня. В отличае от нити такой стержень может передавать как силы растяжения, так и силы сжатия.



Дополнительно:

А) Скользящий;

Б) Внутренний.


Вопрос 30:

Система сходящихся сил. Условия равновесия.

Система сил называется сходящейся, если линии всех сил пересекаются в одной точке. Попарно поочередно сложим эти силы, перенесенные к точке пересечения. Тогда R=∑Fk – главный вектор, так как R12=F1+F2, R13=R12+F3 и т. д.

Rx=∑FixR=√(Rx²+Ry²+Rz²), cos(x,R)=Rx/R – аналитический способ задания.

Условия равновесия.

Система находится в равновесии когда главный вектор R=0.

А) Векторная форма: R=∑Fk=0;

Б) Аналитическая форма: Rx=Fkx=0, Ry=Fky=0, Rz=Fkz=0;

В) Графическая форма: замкнут многоугольник сил.

Система сходящихся сил эквивалентна одной равнодействующей силе, которую можно определить замыкающим вектором R* силового многоугольника, построенного на векторах-сипах системы сходящихся сил. Другими словами, равнодействующая системы сходящихся сил равна их геометрической сумме.



Многоугольник OABCD называется силовым многоугольником



Вопрос 31:

Алгебраический и векторный моменты силы относительно точки.

Алгебраическим моментом М=+-F*d( пара ). Он не меняется при перемещении сил вдоль линии их действия ( ни плечо, ни направления вращения не меняются).

Векторный момент – вектор М=М(F,F*), направлен перпендикулярно плоскости пары в ту сторону, откуда видно стремление пары повернуть тело против часовой стрелки, его модуль равен алгебраическому моменту пары.
Момент относительно точки.

Алгебраическим моментом силы Fотносительно точки О называется взятое со знаком «+» или «-» произведение |F| на ее плечо: M0(F)=+-Fh. «+» - против часовой стрелки. Характеризует вращательный эффект F.

Свойства:

А) Не меняется при переносе точки приложения вдоль линии действия силы ( т.к. |F|sinA=const).

Б) М=0 если т.О лежит на линии действия силы. Плоскость действия М -через F и О.

Векторный момент силы Fотносительно точки О – вектор M0(F)=r*F (r–радиус вектор из А в О). |M0(F)=|F|*|r|*sinA=Fh.|

ijk

MO(F)= xAyAzA=>

FxFyFz


  • MOx(F)=yFz-zFy

  • MOy(F)=zFx-xFz

MOz(F)=xFy-yFx

Теорема Вариньона - момент равнодействующий относительно какой-либо точки равен сумме моментов сил ее составляющих.

Вопрос 32:

Момент силы относительно оси.

Момент силы относительно оси – алгебраический момент проекции этой силы на ось, перпендикулярную оси z, взятого относительно точки A пересечения оси с этой плоскостью. Характеризует вращательный эффект относительно оси.

Mz(F)=2SΔABC=F∙h.

Если Mz(F)=0, то сила F либо параллельна оси z, либо линия её действия пересекает ось z.

Второе правило определения момента силы относительно оси: Момент силы относительно оси называется произведение проекции силы на плоскость перпендикулярную оси на плечо этой проекции относительно точки пересечения плоскости с осью.

Момент силы относительно оси Z: M0z(F) = ±hп * Fп
Частные случаи: момент силы относительно оси = 0.

а) Fп = 0



б) hп = 0 (сила пересекает ось)

Момент силы относительно оси = 0, если сила и ось находятся в одной плоскости.

Момент сил относительно декартовых осей координат (проекции момента силы на эти оси).
| i j k |

M0(F) = r * F = | x y z | = (y*Fz - z*Fy)*i + (z*Fx - x*Fz)*j + (x*Fy -

| FxFyFz |

y*Fx)*k = Mox(F)*i + Moy(F)*j + Moz(F)*k
Mox(F)=y*Fz - z*Fy

Moy(F)=z*Fx - x*Fz

Moz(F)=x*Fy - y*Fx


Вопрос 33:

Связь векторного момента силы относительно точки с моментом силы относительно оси, проходящей через эту точку.

Момент силы F относительно оси z равен проекции на эту ось вектора момента силы Fотносительно произвольной точки О на этой оси.

Доказательство:

Пусть О – произвольная точка на оси z. Момент силы F относительно точки О перпендикулярен плоскости ОАВ

MO(F)┴(OAB). Пусть угол междуMO(F) и осью z равен α. Тогда ПрzMO(F)=2SΔOAB= 2SΔOAB∙cosα =>Mz(F) = |MO(F)|cosα.

Ч.т.д.
2*S(OA'B') = 2*S(OAB)*cosα

| Moz(F) | = | Mo(F) |*cosα

MCOO = проекции на эту ось векторному МСОТ




Вопрос 34:

Аналитические выражения для моментов силы относительно осей координат.

Используя связь момента силы относительно оси с векторным моментом силы относительно точки на оси, можно получить формулы для вычисления моментов относительно осей координат, если даны проекции силы на оси координат и координаты точки приложения силы.

i j k

MO(F)= xAyAzA=>

FxFyFz


  • MOx(F)=yFz-zFy

  • MOy(F)=zFx-xFz

MOz(F)=xFy-yFx

По этим формулам получают необходимые знаки для MOx(F), MOy(F), MOz(F) если проекция силы Fна оси координат и координаты x,y,zточки приложения силы подставлять в них со знаками этих величин.

При решении задач момент силы относительно какой-либо оси часто получают, используя его определение, т.е. проецируя силу на плоскость, перпендикулярную оси, и вычисляя затем алгебраический момент этой проекции относительно точки пересечения оси с этой плосколстью.



Вопрос 35:

Пара сил. Теорема о сумме моментов сил, составляющих пару, относительно произвольной точки.

Пара сил - система двух сил равных по модулю и противоположных по направлению.



F1 = -F2

R* = F1 - F2 = 0

AC/F2 = BC/(R*) (стремится к бесконечности)

(F1,F2) не эквивалентны 0

Момент пары сил - произведение одной из сил на ее плечо.

M(F1,F2) = M12 = ±F1*d = ±F2*d

Векторный момент пары сил.



MA = AB * F2

MA = F2 * AB * sinα = F2d

MB = BA * F1 = F1 * d

M = MA = MB = S(ACBD)
Теорема о сумме моментов сил, составляющих пару, относительно произвольной точки: Сумма моментов сил, входящих в состав пары сил относительно любой точки не зависит от ее выбора и равна моменту этой пары сил.



F1 = -F2

Mo(F2) + Mo(F1) = r2*F2 + r1*F1 = r2*F2 - r1*F2 = (r2 - r1)*F2 = AB * F2 = M(F1,F2)

Теорема Пуассо: Произвольная система сил, действующих на твердое тело, можно привести к какому-либо центру О, заменив все действующие силы главным вектором системы сил R, приложенным к точке О, и главным моментом MO системы сил относительно точки О.

Доказательство:

Пусть О – центр приведения. Переносим силы F1, F2,…,Fn в точку О: FO=F1 +F2+…+Fn= ∑Fk. При этом получаем каждый раз соответствующую пару сил (F1,F1”)…(Fn,Fn”), Моменты этих пар равны моментам этих сил относительно точки О. M1=M(F1,F1”)=r1xF1=MO(F1). На основании правила приведения систем пар к простейшему виду MO=M1+…+M2=∑MO(Fk)= ∑rkxFk => (F1, F2,…,Fn) (R,MO) (не зависит от выбора точки О).


Вопрос 36:

Векторный и алгебраический моменты пары сил.

Алгебраический момент M=F∙d (пара). M=dF1=dF2=2SΔABC= Sٱ. Он не меняется при перемещении сил вдоль линии их действия (ни плечо, ни направление вращения не меняются).

Векторный момент – вектор M=M(F,F), направлен перпендикулярно плоскости пары в ту сторону, откуда видно стремление пары повернуть тело против часовой хода стрелки, его модуль равен алгебраическому моменту пары.

M(F1,F2)=BAxF1=ABxF2.

Моменты относительно точки.

Алгебраическим моментом силы F относительно точки О называется взятое со знаком «+» или «-» произведение |F| на её плечо: MO(F)=Fh=2SΔOABMO(F). «+» - против часовой стрелки. Характеризует вращательный эффект F.

Свойства:

А) Не меняется при переносе точки приложения вдоль линии действия силы. (т.к. |F|sinα= const).

Б) Ь=0 если т. О лежит на линии действия силы.

Плоскость действия M – через F и O.

Векторный момент силы F относительно точки О – вектор MO(F)=rxF (r – радиус- вектор из А в О). |MO(F)|=|F|∙|r|∙sinα=Fh.

ijk

MO(F)= xAyAzA=>

FxFyFz


  • MOx(F)=yFz-zFy

  • MOy(F)=zFx-xFz

MOz(F)=xFy-yFx


Вопрос 37:

Эквивалентность пар. Сложение пар. Условия равновесия пар сил.

Эквивалентность: А) 2 пары, имеющие равные моменты, эквивалентны. Пару сил можно перемещать, поворачивать в плоскости действия, перемещать в параллельную плоскость, менять одновременно силу и плечо.

Б) 2 пары, лежащие в одной плоскости, можно заменить на одну пару, лежащую в той же плоскости с моментом, равным сумме моментов этих пар.

M=M(R,R’)=BA×R=BA×(F1+F2)=BA×F1+BA×F2. При переносе сил вдоль линии действия момент пары не меняется BA×F1=M1, BA×F2=M2, M=M1+M2.

СЛОЖЕНИЕ. 2 пары, лежащие в пересекающихся плоскостях, эквивалентны 1 паре, момент которой равен сумме моментов двух данных пар.

Дано: (F1, F1’), (F2, F2’)

Доказательство:

Приведем данные силы к плечу АВ – оси пересечения плоскостей. Получим пары:

(Q1,Q1’) и (Q2,Q2’). При этом M1=M(Q1,Q1’)=M(F1, F1’),

M2=M(Q2,Q2’)=M(F2, F2’).

Сложим силы R=Q1+Q2, R’=Q1’+Q2’. Т. к. Q1’= - Q1, Q2’= - Q2R= -R’. Доказано, чтосистемадвухпарэквивалентнасистеме (R,R’). M(R,R’)=BA×R=BA×(Q1+Q2)= BA×Q1+BA×Q2=M(Q1,Q1’)+ M(Q2,Q2’)=M(F1,F1’)+ M(F2,F2’) M=M1+M2.

УСЛОВИЯ РАВНОВЕСИЯ:

Система находится в равновесии, если суммарный момент всех пар сил, действующих на тело, равен нулю.

M1+ M2+…+Mn=0.


Вопрос 38:

Лемма о параллельном переносе силы.

Сила, приложенная к какой-либо точке твердого тела, эквивалентна такой же силе, приложенной к любой другой точке тела, и паре сил, момент которой равен моменту данной силы относительно новой точки приложения.



Доказательство: пусть дана сила F. Приложим к какой-либо точке В систему F и F”.

|F|=|F|=|F|. F(F,F,F”), т.к. (F’,F”) 0, то

F (F,F’,F”) (F,F,F) (F’,M(F,F”)).

НоM(F,F”)=BAxF=MB(F).

Получаем:

F (F’,M(F,F”))

Ч. т. д.


Вопрос 39:

Теорема о приведении произвольной системы сил к силе и паре сил - основная теорема статики.

Теорема Пуассо: Произвольная система сил, действующих на твердое тело, можно привести к какому-либо центру О, заменив все действующие силы главным вектором системы сил R, приложенным к точке О, и главным моментом MO системы сил относительно точки О.



Доказательство:

Пусть О – центр приведения. Переносим силы F1, F2,…,Fn в точку О: FO=F1 +F2+…+Fn= ∑Fk. При этом получаем каждый раз соответствующую пару сил (F1,F1”)…(Fn,Fn”), Моменты этих пар равны моментам этих сил относительно точки О. M1=M(F1,F1”)=r1xF1=MO(F1). На основании правила приведения систем пар к простейшему виду MO=M1+…+M2=∑MO(Fk)= ∑rkxFk => (F1, F2,…,Fn) (R,MO) (не зависит от выбора точки О).
При приведении системы сил к заданому центру возникает главный вектор R равный сумме всех сил и главный момент Мо, равный сумме моментов всех сил относительно центра приведения.




Вопрос 41:

Главный вектор и главный момент системы сил.

Пусть дана система сил (F1, F2,…,Fn).

Главным вектором системы сил называется вектор, равный векторной сумме этих сил.

R=∑Fk.

Rx=∑Fkx; cos(x,R)=Rx/R;

Ry=∑Fky; cos(y,R)=Ry/R;

Rz=∑Fkz; cos(z,R)=Rz/R;



Главный момент системы сил – сумма моментов сил относительно какого-либо полюса (центра приведения).

Lx=∑Mx(Fk)
R0 - главный вектор

L0 - главный пучок моментов сил

Главный вектор не зависит от точки приведения, а главный момент зависит.

Главный момент системы сил относительно точки О называют сумму векторных моментов всех сил системы относительно этой точки.



Вопрос 42:

Условия равновесия произвольной системы сил. Частные случаи.

R=0 и Lo=0 –ур-я равновесия. Им соотв-ют 6 скалярных алгебраических ур-1 равновесия для простр.системы сил:

Fkх=0 Fkу=0 Fkz=0 Мх(Fk)=0 Му(Fk)=0 Мz(Fk)=0 – аналитическое условие равновесия для произвольной системы сил.

Пусть все силы пл-тихоу, тогда: Fkх=0 Fkу=0 Мо(Fk)=0 условие равновесия для произвольной плоской системы сил.

Условие равновесия для плоской системы параллельных сил.

Пустьсилы оси оу, тогда Fkх=0 Мо(Fk)=0

Условие равновесия для пространственной системы параллельных сил.

F1, F2, F3,…,Fn оси оz, тогда: Fkz=0 Мх(Fk)=0 Му(Fk)=0


написать администратору сайта