Главная страница

Контрольная работа по физиологии животных. Физиология животных кр. Вопрос 35. Рефлексогенные зоны сосудов и их значение для саморегуляции кровяного давления и дыхания


Скачать 29.53 Kb.
НазваниеВопрос 35. Рефлексогенные зоны сосудов и их значение для саморегуляции кровяного давления и дыхания
АнкорКонтрольная работа по физиологии животных
Дата12.03.2022
Размер29.53 Kb.
Формат файлаdocx
Имя файлаФизиология животных кр.docx
ТипДокументы
#393325

Вопрос 4. Ферменты желудочного, поджелудочного и кишечного соков и их роль в пищеварении. Как регулируется секреция желудочного сока?

Вопрос 24. Строение и функции эритроцитов и лейкоцитов. Как образуется лимфа и тканевая жидкость? Что такое микроциркуляторное ложе и микроциркуляция?

Вопрос 35. Рефлексогенные зоны сосудов и их значение для саморегуляции кровяного давления и дыхания.

Вопрос 60. Значение углеводов и белков в организме и особенности их обмена у животных с простым и сложным желудком. Роль витаминов в их обмене. Влияние структуры, состава рациона и физической формы корма на рубцовые процессы и соотношение летучих жирных кислот.


Вопрос 4. Ферменты желудочного, поджелудочного и кишечного соков и их роль в пищеварении. Как регулируется секреция желудочного сока?

Ферменты - это биологические катализаторы, ускорители переваривания пищевых веществ. По своей химической природе они относятся к белкам, по физической - к коллоидным веществам. Ферменты вырабатываются клетками пищеварительных желез большей частью в виде проферментов предшественников ферментов, не обладающих активностью. Проферменты становятся активными только при воздействии ряда физических и химических активаторов, различных для каждого из них.

В желудочном соке содержатся ферменты: протеазы, расщепляющие белки, и липаза, расщепляющая жиры. Пепсины, желатиназа и химозин (реннин) - это протеазы. Желудочные железы выделяют пепсиногены, служащие предшественниками пепсина. Их три: один из них образуется клетками всех отделов желудка, а два других клетками желез дна желудка.

Пепсин активен только в кислой среде, создаваемой, соляной кислотой (рН О,8-1). В результате гидролиза пепсин расщепляет белки пищи до полипептидов и пептидов. В этом большую роль играет хлористоводородная (соляная) кислота, под влиянием которой белки набухают и становятся более доступными для воздействия указанного фермента. О содержании пепсина в желудочном соке судят по степени активности его действия, или по переваривающей силе сока. Пепсин действует не на все виды белков одинаково. Так, белки мяса и крови (фибрин) расщепляются быстрее, чем яичный белок, коллаген и пр. Пепсин получен в чистом виде в кристаллическом состоянии.

Химозин, или реннин, который образуется из проренина, действует на молочный белок казеиноген, превращая его в казеин, и тем самым створаживает молоко. Активность химозина проявляется в слабокислой, нейтральной и слабощелочной средах, и только в присутствии солей кальция. У молодых животных химозина больше, чем пепсина, что связано с их молочным питанием. У взрослых животных больше пепсина и соляной кислоты.

Желатиназа - фермент с протеолитическим свойством; выделен и экстракта слизистой оболочки желудка. Этот фермент разжижает желатин гораздо быстрее, чем кристаллический пепсин.

Липаза желуд сока расщепляет нейтральные жиры на жирные кислоты и глицерин. Хорошо выражено ее действие на жир молока (эмульгированный жир).

Поджелудочный сок - вырабатывается зимогенной частью поджелудочный железы. В состав плотного остатка входят белковые вещества, представленные главным образом ферментами, минеральные соли: бикарбонаты, хлориды, фосфаты, сульфаты, натрий , калий , кальций и другие неорганические вещества. На белковые вещества пищи действует целая группа протеолитических ферментов.

К ним относятся:

Трипсин- расщепляет белки до пептидов и аминокислот . Вырабатывается в неактивной форме - форме трипсиногена и активируется ферментом кишечного сока энтерокиназой

Химотрипсин- расщепляет белки и полипептиды до аминокислот , вырабатывается в неактивной форме – химотрипсиногена и активируется трипсином;

Карбоксиполипептидаза -расщепляет полипептиды, отщепляя от них аминокислотысо стороны свободных карбоксильных групп;

Дипептидаза - - расщепляет дипептиды до свободных аминокислот;

Нуклеаза - расщепляет нуклеиновые кислоты на нуклеотиды;

Протаминаза- расщепляет простые белки протамины до аминокислот.

Эластата-расщепляет соединительнотканные белки эластин и коллаген до пептидов и аминокислот.

Кишечный сок - бесцветная жидкость, которая при отстаивании разделяется на два слоя: нижний, содержащий слизистые комочки, и верхний — жидкий прозрачный слой.

В кишечном соке имеются все ферменты, действующие на углеводы. Но особенно высока активность ферментов, расщепляющих дисахариды: глюкозидаза, фруктофуронидаза, галактозидаза.

Кишечная липаза расщепляет жиры, но ее содержание в кишечном соке незначительно. Фосфолипаза действует на эфирные связи в фосфолипидах, расщепляя их на жирные кислоты, глицерин и фосфаты. В отличие от ферментов желудочного или поджелудочного сока ферменты кишечного сока действуют на продукты промежуточного гидролиза питательных веществ. Так, пептидазы кишечного сока не действуют на нативные белки или высокомолекулярные продукты их разложения, но разлагают пептиды невысокой молекулярной массы до отдельных аминокислот.

Регуляция желудочной секреции.

Пищеварительная секреция регулируется посредством нейрогуморальных механизмов. В ней выделяют три фазы: сложнорефлекторную, желудочную и кишечную.

Сложнорефлекторная делится на условнорефлекторный и безусловнорефлекторный периоды. Условнорефлекторный начинается с того момента, когда запах, вид пищи, звуки предшествующие кормлению вызывают возбуждение обонятельной, зрительной и слуховой сенсорных систем. В результате вырабатывается так называемый запальный желудочный сок. Он обладает высокой кислотностью и большой протеолитической активностью. После того, как пища попадает в ротовую полость, начинается безусловнорефлекторный период. Она раздражает тактильные, температурные и вкусовые рецепторы полости рта, глотки, пищевода. Нервные импульсы от них поступают в центр регуляции желудочной секреции продолговатого мозга. От него импульсы по эфферентным волокнам вагуса идут к желудочным железам, стимулируя их активность. Таким образом, в первой фазе регуляцию секреции осуществляют бульбарный центр секреции, гипоталамус, лимбическая система и кора больших полушарий.
Вопрос 24. Строение и функции эритроцитов и лейкоцитов. Как образуется лимфа и тканевая жидкость? Что такое микроциркуляторное ложе и микроциркуляция?

Эритроцитыкрасные кровяные летки составляют главную массу клеток крови. Свое название они получили от греческого слова «эритрос» - красный. Они определяют красный цвет крови. Эритроциты рыб, амфибий, рептилий и птиц - крупные, овальной формы клетки, содержащие ядро. Эритроциты млекопитающих значительно мельче, лишены ядра и имеют форму двояковогнутых дисков (только у верблюдов и лам они овальные).

Двояковогнутая форма увеличивает поверхность эритроцитов и способствует быстрой и равномерной диффузии кислорода через их оболочку. Эритроцит состоит из тонкой сетчатой стромы, ячейки которой заполнены пигментом гемоглобином, и более плотной оболочки. Последняя образована слоем липидов, заключённым между двумя мономолекулярными слоями белков. Оболочка обладает избирательной проницаемостью. Через нее легко проходят вода, анионы, глюкоза, мочевина, однако не пропускает белки и почти непроницаема для большинства катионов.

Эритроциты очень эластичны, легко сжимаются и поэтому могут проходить через узкие капилляры, диаметр которых меньше их диаметра.

Размеры эритроцитов позвоночных колеблются в широких пределах, наименьший диаметр они имеют у млекопитающих, а среди них у дикой и домашней козы; эритроциты наибольшего диаметра найдены у амфибий, в частности у протея.

В крови у животных разных видов содержится неодинаковое число эритроцитов. Увеличение количества эритроцитов в крови вследствие усиленного их образования называют истинным эритроцитозом, если же число эритроцитов в крови увеличивается вследствие поступления их из депо крови, говорят о перераспределительном эритроцитозе.

Функции эритроцитов.

Они весьма многообразны: перенос кислорода от легких к тканям; перенос углекислого газа от тканей к легким; транспортировка питательных веществ - адсорбированных на их поверхности аминокислот - от органов пищеварения к клеткам организма; поддержание рН крови на относительно постоянном уровне благодаря наличию гемоглобина; активное участие в процессах иммунитета: эритроциты адсорбируют на своей поверхности различные яды, которые затем разрушаются клетками мононуклеарной фагоцитарной системы (МФС); осуществление процесса свертывания крови. В них найдены почти все факторы, которые содержатся в тромбоцитах. Кроме того, их форма удобна для прикрепления нитей фибрина, а их поверхность катализирует гемостаз.

Гемолиз. Разрушение оболочки эритроцитов и выход из них гемоглобина называется гемолизом. Он может быть химический, когда их оболочка разрушается химическими веществами (кислотами, щелочами, сапонином, мылом, эфиром, хлороформом и т. д.); физический, который подразделяют на механический (при сильном встряхивании), температурный (под действием высокой и низкой температуры), лучевой (под действием рентгеновских или ультрафиолетовых лучей). Осмотический гемолиз - разрушение эритроцитов в воде или гипотонических растворах, осмотическое давление которых меньше, чем в плазме крови. Вследствие того, что давление внутри эритроцитов больше, чем в окружающей среде, вода переходит в эритроциты, их объем увеличивается и оболочки лопаются, а гемоглобин выходит наружу. Если окружающий раствор имеет достаточно низкую концентрацию соли, наступает полный гемолиз и вместо нормальной непрозрачной крови образуется относительно прозрачная «лаковая» кровь. Если раствор, в котором находятся эритроциты, менее гипотоничен, наступает частичный гемолиз. Биологический гемолиз может возникнуть при переливании крови, если кровь несовместима, при укусах некоторых змей и т.д.

Гемоглобин. Свою основную функцию - перенос газов кровью - эритроциты выполняют благодаря наличию в них гемоглобина, который представляет сложный белок - хромопротеид, состоящий из белковой части (глобина) и небелковой пигментной группы (гема), соединенных между собой гистидиновым мостиком.

Гемоглобин, присоединивший кислород, превращается в оксигемоглобин (НЬО) ярко-алого цвета, что и определяет цвет артериальной крови. Оксигемоглобин образуется в капиллярах легких, где напряжение кислорода высокое. В капиллярах тканей, где кислорода мало, он распадается на гемоглобин и кислород. Гемоглобин, отдавший кислород, называют восстановленным или редуцированным гемоглобином (НЬ). Он придает венозной крови вишневый цвет. И в оксигемоглобине, и в восстановленном гемоглобине атомы железа находятся в двухвалентном состоянии. Третье физиологическое соединение гемоглобина - карбогемоглобин - соединение гемоглобина с углекислым газом. Таким образом, гемоглобин участвует в переносе углекислого газа из тканей в легкие. Карбогемоглобин содержится в венозной крови.

Лейкоциты – белые кровяные клетки имеют цитоплазму и ядро. Их подразделяют на две большие группы: зернистые (гранулоциты) и незернистые (агранулоциты). В цитоплазме зернистых лейкоцитов содержатся зернышки (гранулы), в цитоплазме незернистых гранулы отсутствуют.

Зернистые лейкоциты зависимости от окраски гранул различают эозинофильные (гранулы окрашиваются в розовый цвет кислыми красками, например эозином), базофильные (в синий цвет основными красками) и нейтрофильные теми и другими красками в розово-фиолетовый цвет), У юных гранулоцитов ядро округлое, у молодых оно в виде подковы или палочки (палочкоядерные); по мере развития ядро перешнуровывается и разделяется на несколько сегментов. Сегментоядерные, нейтрофилы составляют основную массу гранулоцитов.

Незернистые лейкоциты делятся на лимфоциты и моноциты. Лимфоциты имеют крупное ядро, окруженное узким поясом цитоплазмы. В зависимости от размера различают большие, средние и малые лимфоциты. Лимфоциты составляют большую часть белых кровяных клеток: у крупного рогатого скота.

Функции лейкоцитов.

Лейкоциты играют важную роль в защитных и восстановительных процессах организма. Моноциты и нейтрофилы способны к амебеоидному движению. Скорость движения последних может доходить до 40 мкм/м что равно расстоянию, в З-4 раза превышающему диаметр этих клеток. Данные виды лейкоцитов проходят через эндотелий капилляров и движутся в тканях к месту скопления микробов, инородных частиц или разрушающихся клеток самого организма. Один нейтрофил может захватить до 20-30 бактерий, а моноцит фагоцитирует до 100 микробов. Кроме протеолитических ферментов, эти формы лейкоцитов выделяют, а так же адсорбируют на своей поверхности и переносят вещества, обезвреживаюшие микробы и чужеродные белки - антитела.

Эозинофилыучаствуют в разрушении и обезвреживании чужеродных белков и токсинов белкового происхождения. Предполагают, что эозинофилы адсорбируют и расщепляют гистамин благодаря образованию фермента гистаминазы. Гистамин является продуктом промежуточного обмена белков и обладает сильным биологическим действием. Количество эозинофилов в крови повышается при паразитарных заболеваниях, аллергических состояниях и болезнях кожи.

Базофилыимеют слабовыраженную способность к фагоцитозу или совсем ее не обнаруживают. Как и тучные клетки соединительной ткани, они синтезируют гепарин - вещество, препятствующее свертыванию крови. Кроме того, базофилы способны образовывать гистамин. Гепарин предотвращает свертывание крови, а гистамин расширяет капилляры в очаге воспаления, что ускоряет процесс рассасывания и заживления.

Лимфоцитыпринимают участие в выработке антител, поэтому имеют большое значение в создании невосприимчивости к инфекционным заболеваниям (инфекционный иммунитет), а также ответственны за реакции на введение чужеродных белков и отторжение чужеродных тканей при пересадке органов (трансплантационный иммунитет).

Микроциркуляторное русло.

Пройдя по разветвлениям артериальной системы, кровь достигает микроциркуляторного кровеносного русла. Под микроциркуляцией понимают процесс направленного движения жидкостей в тканях, окружающих кровеносные и лимфатические микрососуды. Кровеносные микрососуды представляют первую часть системы микроциркуляции. Второй ее частью являются пути транспорта веществ в тканях. Третью составную часть образуют лимфатические микрососуды. Все три составные части системы микроциркуляции функционально взаимосвязаны и взаимодействуют между собой. Именно микроциркуляция обеспечивает обмен веществ во всех тканях, поддерживает необходимое для организма постоянство внутренней среды. Нарушение микроциркуляции лежит в основе многих патологических процессов, в первую очередь сосудистых заболеваний.

Микроциркуляторное кровеносное русло состоит из нескольких звеньев, обладающих присущими им анатомическими и функциональными особенностями.

Артериолыпредставляют собой начальное звено микроциркуляторного русла. Диаметр артериол составляет 15-30 мкм. Стенка артериол, как и артерий, состоит из 3 оболочек - внутренней, средней и наружной, однако клеточные элементы имеют в них однослойное расположение. Благодаря наличию гладких миоцитов стенка артериол может сокращаться и просвет их суживается. Артериолы связаны между собой анастомозами. Это способствует выравниванию кровотока на входе в систему микроциркуляции.

Прекапилляры, или прекапиллярные артериолы, имеют диаметр 8-20 мкм и обычно ответвляются от артериол под прямым углом. В местах отхождения прекапилляров и на их протяжении мышечные клетки образуют прекапиллярные сфинктеры, которые регулируют поступление крови в капилляры. Артериолы и прекапилляры благодаря своей сократительной активности обеспечивают распределение крови между отдельными участками капиллярного русла.

Кровеносные капиллярыпредставляют собой основное структурное звено микроциркуляторной системы. Они наиболее тесно связаны с тканевыми элементами органов и играют главную роль в обмене веществ между кровью и тканями. Скорость кровотока в капиллярах – 0.8 мм/с. Капилляры - это тонкостенные эндотелиальные трубки, лишенные сократительных элементов. Они могут быть прямыми, штопоро- и винтообразными, изогнутыми в виде шпилек или закрученными в клубки. У капилляров имеются артериальные и венозные части, однако морфологические различия между ними выявляются только на электронно-микроскопическом уровне.
Вопрос 35. Рефлексогенные зоны сосудов и их значение для саморегуляции кровяного давления и дыхания.

Сосудистые рефлексогенные зоны (СРЗ) – небольшие участки кровеносного русла, на которых сконцентрированы баро-, хемо-, а возможно терморецепторы. Барорецепторы, воспринимают колебания кровяного давления. Хеморецепторы – изменения уровня некоторых веществ. Такими веществами являются прежде всего, Н+ и СО2. Существование в СРЗ специфических рецепторов на НСО-3 большинством физиологов в последнее время отрицается. Остается открытым вопрос наличия в СРЗ терморецепторов. С одной стороны целесообразность их существования очевидна, с другой – трудно привести обстоятельные, общепризнанные работы, которые бы подтверждали наличие подобных рецепторов.

Нервные окончания центростремительных нервов, расположенные в сосудистой стенке артерий и аорты, представляют собой прессорецепторы. Их естественным раздражителем является растяжение сосудистой стенки при повышении артериального давления. Возникающий в результате этого поток центростремительных импульсов, исходящих от прессорецепторов, повышает тонус ядер блуждающих нервов, что и приводит к замедлению и ослаблению сердцебиений. Причем чем сильнее поток центростремительных импульсов, тем больше тормозится деятельность сердца.

Гистологически доказано наличие рецепторов и в самом сердце в миокарде, эндокарде. Их раздражение изменяет работу сердца и тонус кровеносных сосудов. В правом предсердии и у устья полых вен располагаются механорецепторы, реагирующие на растяжение, возникающее при повышении давления в полости предсердия или в полых венах. Центростремительные импульсы от этих рецепторов обусловливают рефлекторное ускорение ритма сердца. Данные импульсы влияют и на работу других органов. Например, при повышении давления крови в левом предсердии выделение мочи почками возрастает в 2-5 раз, вследствие чего уменьшается объем циркулирующей крови, и поэтому наполнение кровью полостей сердца приходит в норму.

Хеморецепторы раздражаются гуморальным путем при изменении химического состава крови: избыток СО2 недостаток 02 и ряда других веществ. В легочной артерии имеются рецепторные зоны, поэтому при повышении в ней кровяного давления сердечный ритм замедляется (рефлекс Парина).

В регуляции сердечного ритма имеют значение и сигналы от проприорецепторов скелетных мышц. При мышечной работе потоки биотоков усиливаются, что тормозит центры блуждающего нерва и ведет к учащению сердцебиений.

Значение газового состава крови в регуляции дыхания было впервые выяснено Л. Фридериком (1871) в опыте с «перекрестным кровообращением». Для этого у двух собак перерезали, а затем соединяли сонные артерии и яремные вены. В результате такого перекрестного соединения голова одной собаки снабжалась кровью из туловища другой собаки и наоборот. Когда у одной из собак зажимали трахею и производили удушье (апное), у другой собаки появлялась резко выраженная одышка (диспное). Это доказывает, что у первой собаки вследствие недостатка кислорода произошло накопление СО2 в крови и, как следствие, возбуждение дыхательного центра, усиление вентиляции легких.

Дыхательный центр может возбуждаться не только в результате поступления в него крови, насыщенной двуокисью углерода, но и под влиянием раздражений, идущих из сосудистых рефлексогенных зон, приходящих в состояние возбуждения при изменении химического состава крови (накопление СО2 , недостаток кислорода, изменение концентрации водородных ионов).

Различное функциональное состояние организма отражается на частоте и глубине дыхания. Болевые реакции, холод, повышенная температура воздуха изменяют ритм дыхания. Во время отрыгивания корма жвачные рефлекторно задерживают выдох, а при глотании у многих из них прекращается вдох.

Важное значение в рефлекторно поддержании тонуса дыхательного центра играет слизистая оболочка носовых путей. Струя воздуха, проходящая через слизистую оболочку, раздражает чувствительные окончания тройничного нерва и повышает рефлекторно тонус центра.

Приспособление дыхания к изменениям условий внешней среды тесно связано с функцией высших отделов мозга. Так, у собак с удаленной корой полушарий дыхание в покое осуществляется без видимых отклонений, но при попытке сделать даже несколько шагов у них возникает резко выраженная одышка. Усиление дыхания можно выработать рефлекторно, сочетая специфические раздражения хеморецепторов сосудистых рефлексогенных зон с любым внешним раздражителем, например световым или звуковым.

В регуляции дыхания большое значение имеет сложная система информации высших центров об изменениях парциального давления кислорода и углекислого газа в крови при разнообразных условиях физической работы.


написать администратору сайта