Главная страница

патан лекции. Всякий активный процесс познания начинается со знакомства с реальным материальным субстратом, который предполагает получение ответа на вопрос что такое


Скачать 4.05 Mb.
НазваниеВсякий активный процесс познания начинается со знакомства с реальным материальным субстратом, который предполагает получение ответа на вопрос что такое
Анкорпатан лекции.doc
Дата20.02.2018
Размер4.05 Mb.
Формат файлаdoc
Имя файлапатан лекции.doc
ТипРеферат
#15725
страница33 из 104
1   ...   29   30   31   32   33   34   35   36   ...   104

Морфологическая идентификация B-клеток: плазматические клетки являются эффекторными (исполнительными) B-клетками. Плазмоциты имеют характерное морфологическое строение (табл. 2). Плазмоциты имеют размеры 12-15 мкм в диаметре, базофильную цитоплазму (базофилия объясняется присутствием большого количества РНК, требуемой для синтеза иммуноглобулинов), в которой обнаруживается зона Гольджи, видимая как бледная область, расположенная рядом с ядром, расположенным эксцентрично; хроматин в ядре расположен в виде крупных глыбок по периферии (в виде «колеса телеги» или «циферблата»). Иммуноглобулины могут выявлятся в цитоплазме иммунологическими методами.

Другие B-лимфоциты могут быть идентифицированы только иммунологическими, иммуноморфологическими и генетическими методами. Иммунофлюоресцентный или иммунопероксидазный методы, использующие антитела к человеческому иммуноглобулину, обнаруживают присутствие поверхностного иммуноглобулина (на созревающих B-клетках) и цитоплазматического иммуноглобулина (в плазматических клетках). Также используются специфические моноклональные антитела, которые реагируют с B-клетками (табл. 1). Генетические методы, которые обнаруживают присутствие перестроенных генов иммуноглобулинов, могут также помочь идентифицировать B-лимфоциты.
«Нулевые» клетки (NK-клетки и K-клетки)
«Нулевые» клетки – это гетерогенная группа лимфоцитов, не обладающих способностью формировать E-розетки (иммунологический тест, которые раньше использовался для идентифицикации T-лимфоцитов) и не несущие поверхностного иммуноглобулина (следовательно, немаркированные или «нулевые» клетки). Эта группа включает некоторые клетки, которые являются явно T- или B-клетками, что было недавно доказано генетическими методами и методом моноклональных антител, однако обозначение этих клеток было оставлено. Популяция “нулевых” клеток представляет собой Т- и В-клетки, находящиеся на ранних этапах дифференцировки, до появления большого количества маркеров на их поверхности. «Нулевые» клетки составляют 5-10% от всех лимфоцитов периферической крови.
Некоторые «нулевые» клетки обладают цитотоксической активностью и названы естественными киллерами (NK-клетками); они могут разрушать некоторые чужеродные клетки, даже если организм никогда не встечался с данным антигеном. Другие (названные K-клетками) участвуют в разрушении клеток с помощью антител (антителозависимая клеточная цитотоксичность (ADCC – antibody-dependent cell-mediated cytotoxicity)).
Имеются доказательства, что активность, которую проявляют NK-клетки и K-клетки,– это 2 различных функции одного типа клеток. NK клетки могут играть защитную роль при опухолевом процессе, устраняя потенциально неопластические клетки.
МАКРОФАГИ
Распределение в организме: макрофаги отличаются от лимфоцитов, но также играют важную роль в иммунном ответе, и как антиген-обрабатывающие клетки при возникновении ответа, и как фагоциты в виде исполнительного звена. В крови они названны моноцитами; в тканях – гистиоцитами или тканевыми макрофагами. Исследование гемопоэза в костном мозге животных и человека установило, что все макрофаги возникают из предшественников моноцитов в костном мозге. Макрофаги найдены во всех тканях организма (гистиоциты), а также в лимфатических узлах, где они распологаются как диффузно, так и фиксированно в субкапсулярном пространстве и в синусах мозгового слоя. Тканевые макрофаги также обнаруживаются в синусах красной пульпы селезенки. В печени макрофаги известны как клетки Купфера, в легких – как альвеолярные макрофаги, а в мозговой ткани – как микроглия. В периферической крови и костном мозге они выявляются в виде моноцитов и их предшественников. Дендритические ретикулярные клетки в фолликулах лимфатических узлов и интердигитирующие ретикулярные клетки в паракортикальной зоне – специализированные клетки «обработки» антигенов для B- и T-лимфоцитов соответственно. Хотя их происхождение не установлено, предполагается, что они относятся к макрофагам. В более старой литературе для обозначения этих типов клеток использовался термин “ретикулоэндотелиальная система”.
Идентификация макрофагов: макрофаги содержат многочисленные цитоплазматические ферменты и могут быть идентифицированы в тканях гистохимическими методами, которые обнаруживают эти ферменты. Некоторые ферменты, типа мурамидазы (лизоцима) и химотрипсина, могут обнаруживаться методом меченных антител (иммуногистохимия), при котором используются антитела против белков фермента. Такие моноклональные антитела против различных CD антигенов широко используются для идентифицикации макрофагов (табл. 1; CD11, CD68).
Функции макрофагов: функции макрофагов включают в себя фагоцитоз, “обработку” антигенов и взаимодействие с цитокинами.

Фагоцитоз:

Неиммунный фагоцитоз: макрофаги способны фагоцитировать чужеродные частицы, микроорганизмы и остатки поврежденных клеток непосредственно, без вызова иммунного ответа. Однако фагоцитоз микроорганизмов и их уничтожение значительно облегчаются при присутствии специфических иммуноглобулинов, комплемента и лимфокинов, которые производятся иммунологически активированными T-лимфоцитами (табл. 3).

Иммунный фагоцитоз: макрофаги имеют поверхностные рецепторы для C3b и Fc-фрагмента иммуноглобулинов. Любые частицы, которые покрыты иммуноглобулином или комплементом (то есть, опсонизированы), фагоцитируются значительно легче, чем «голые» частицы.

«Обработка» антигенов: макрофаги «обрабатывают» антигены и представляют их B- и T-лимфоцитам в необходимой форме (рис. 1); это клеточное взаимодействие включает одновременное распознавание лимфоцитами MHC молекул и “обработанных антигенов”, находящихся на поверхности макрофагов.

Взаимодействие с цитокинами: макрофаги взаимодействуют с цитокинами, производимыми T-лимфоцитами (табл. 3) для защиты организма против определенных повреждающих агентов. Типичный результат такого взаимодействия – формирование гранулем. Макрофаги также производят цитокины, включая интерлейкин-λ, β-интерферон и факторы роста T- и B-клеток (табл. 3). Различные взаимодействия лимфоцитов и макрофагов в тканях проявляются морфологически при хроническом воспалении.
ИММУНОГЛОБУЛИНЫ (антитела)
Синтез иммуноглобулинов: иммуноглобулины синтезируются плазматическими клетками, которые образуются из трансформированных, стимулированных антигеном B-лимфоцитов (B-иммунобластов). Все молекулы иммуноглобулинов, синтезированных отдельной плазматической клеткой, идентичны и имеют специфическую реактивность против единственной антигенной детерминанты. Аналогично, все плазматические клетки, полученные путем трансформации и пролиферации одного B-лимфоцита-предщественника, идентичны; то есть, они составляют клон. Молекулы иммуноглобулинов, синтезированные клетками различных клонов плазматических клеток, имеют различные последовательности аминокислот, что обусловливает различную третичную структуру молекул и придает иную специфичность антителу (то есть, они реагируют с разными антигенами). Эти различия в последовательности аминокислот происходят в так называемом V (вариабельном, переменном) участке молекулы иммуноглобулина (рис. 3).
Структура иммуноглобулинов (рис. 3): большинство молекул иммуноглобулинов составлены из двух тяжелых (H) цепей и двух легких (L) цепей, соединенных дисульфидными связями. Легкие цепи состоят или из двух k цепей, или из двух l цепей. Тяжелые цепи могут быть одного из пяти классов (IgA, IgG, IgM, IgD, и IgE) (табл. 4). Существует несколько подклассов тяжелых цепей (изотипы). Эти различные цепи иммуноглобулинов являются антигенами для животных и имеют отличающиеся антигенные детерминанты, поэтому, при введении их животным, антитела, производимые против них, могут использоваться для распознавания и определения различных типов легких цепей и классов тяжелых цепей у человека.
Таблица 4
Классы иммуноглобулинов
Признак
IgG
IgM
IgA1
IgD
IgE

Тяжелая цепь γ μ α δ ε

Подклассы 4 2 2 - -

Легкая цепь κ или λ κ или λ κ или λ κ или λ κ или λ

Молекулярный вес 150 000 900 000 160 000 180 000 190 000

Валентность2 2 10 2 2 2

Фиксация комплемента + + - - -

Трансплацентарная передача + - - - -

Kонцентрация в крови (мг/мл) 13-15 0.5 1.9 0.03 0.0003

Срок полураспада (дней) 14-21 5 5 3 1
1 Обратите внимание, что IgA синтезируется в плазмоцитах как мономер (МВ=160 000) и секретируется через эпителий уже в виде димера, при этом две молекулы объединяются J-цепью, а также добавляется секреторный компонент. Конечный молекулярный вес равен 380 000. Секреторный компонент образуется в эпителиальных клетках и служит для облегчения секреции антитела через клеточную мембрану и защищает его от переваривания ферментами.

2 Количество антиген-связывающих участков на молекуле.
Каждая цепь имеет постоянный и вариабельный участок. Постоянный участок остается постоянным в последовательности аминокислот и антигенности в пределах данного класса иммуноглобулинов; вариабельный участок, напротив, характеризуется большой непостоянностью последовательности аминокислот. Именно в вариабельной части цепи происходит реакция соединения с антигеном. Каждая молекула IgG состоит из двух соединенных цепей, которые формируют два антиген-связывающих участка (рис. 3). На вариабельном участке каждой цепи имеются гипервариабильные участки – три в легких цепях и четыре в тяжелых цепях. Разновидности последовательности аминокислот в этих гипервариабильных участках определяют специфичность антитела. При определенных условиях эти гипервариабильные области могут также выступать в роли антигенов (идиотипы). Антитело против идиотипов, т.е. производимое против гипервариабильной области антител, имеет ограниченный диапазон реактивности и соединяется только с молекулами иммуноглобулина, имеющими данную гипервариабильную область. В сущности, реактивность антител против идиотипов ограничена исключительно специфическими антителами, полученными из единственного клона. Хотя вышеописанное относится строго к IgG, другие классы иммуноглобулинов имеют такую же основную структуру, за исключением того, что IgM является пентамером (то есть, состоит из 5 основных единиц (молекул), связанных в области Fc-концов), а IgA обычно существует как димер.


Рис. 3 Строение иммуноглобулинов (IgG)
IgD и IgE имеют сходную структуру. IgA – димер, а IgM – пентамер. Антиген-связывающие места формируются концами тяжелой и легкой цепей; каждая молекула IgG имеет два места связывания. При энзиматическом расщеплении образуются следующие фрагменты: Fc-фрагмент содержит участки обоих постоянных частей; Fab-фрагмент содержит легкую и часть тяжелой цепи с одним антиген-связывающим участком. F(ab)’2-фрагмент состоит из двух связанных между собой Fab-фрагментов.

Н - область «вилки»; HV,LV - вариабельные концы тяжелой и легкой цепей; HC,LC - постоянные концы тяжелой и легкой цепей; —— - дисульфидные связи между цепями
Постоянный участок каждой молекулы иммуноглобулина имеет рецепторы для комплемента, а также имеется на Fc-фрагменте участок, который связывается с клетками, имеющими Fc-рецепторы (что необходимо для осуществлениея клеточного иммунитета). Унаследованные антигенные различия между тяжелыми цепями составляют аллотипы. Молекулы иммуноглобулинов можно разбить на части различными протеолитическими ферментами. При воздействии папаина молекула разделяется в области расхождения тяжелых цепей (“вилки”) (рис. 3) на два Fab-фрагмента и один Fc-фрагмент (кристаллизующийся). Пепсин разрывает молекулу на F(ab)’2-фрагмент и Fc-фрагмент. Fc-фрагмент представляет собой постоянный участок; отсутствие изменяемости последовательности аминокислот – главная причина возможности кристаллизации данного фрагмента. Fab и F(ab)’2-фрагменты несут один и два антиген-связывающих участка соответственно. Fc-фрагмент несет специфические антигены, включая те, которые определяют иммунологическое различие пяти главных классов антител. Участок фиксации комплемента также расположен на Fc-фрагменте. Метод ферментативного расщепления имеет историческое значение в процессе выяснения структуры иммуноглобулинов.
Регулирование производства антител: производство антител начинается после активации B-клеток антигеном. Максимальная концентрация антител в сыворотке наблюдается с 1 по 2 неделю и затем начинает снижаться. Непрерывное присутствие свободного антигена поддерживает ответ до тех пор, пока увеличение уровня антител не приведет к усиленному удалению антигена и, таким образом, прекращению стимуляции B-клеток. Существуют также более тонкие механизмы регуляции синтеза иммуноглобулинов. T-хелперы (CD4-позитивные) играют важную роль в регуляции ответа В-клеток на большое количество антигенов и их постоянное присутствие увеличивает производство антител. Этот эффект возникает благодаря, по крайней мере частично, высвобождению лимфокинов (табл. 3). T-супрессоры (CD8-позитивные) оказывают противоположное влияние, вызывая снижение иммунного ответа; сильное подавление ответа может быть одним из механизмов, лежащих в основе толерантности. Одним из дополнительных регулирующих механизмов является выработка анти-идиотипов (т.е. антител против собственных антител (аутоантител)). Предполагается, что при иммунном ответе производство специфического антитела обязательно сопровождается производством второго антитела (анти-идиотипного) со специфичностью против вариабельных (V) последовательностей (идиотипов или антиген-связывающих участков) первого антитела. Анти-идиотипное антитело способно к распознаванию идиотипов на антигенном рецепторе B-клеток (который построен из иммуноглобулина, идентичного по строению идиотипу первого антитела), таким образом оно конкурирует с антигеном и служит для ингибирования активации B-клетки.
РАСПОЗНАВАНИЕ АНТИГЕНОВ И ОСНОВЫ РАЗНООБРАЗИЯ АНТИГЕННЫХ РЕЦЕПТОРОВ
Существуют большое количество различных антител. Все они реагируют с огромным количеством разнообразных антигенов. Аналогично, огромное количество T-клеток распознает огромное количество разнообразных антигенов. Специфическое распознавание антигена осуществляется лимфоцитами, которые имеют рецепторы для антигена на их поверхностях. Существует огромное количество рецепторов с отличающейся специфичностью, реагирующих со всем диапазоном известных антигенов, но каждый лимфоцит имеет рецепторы только для единственного антигена. Отсюда следует, что существует огромное количество лимфоцитов (приблизительно 106-109), имеющих один единственный тип рецептора каждый. Антигенными рецепторами B-лимфоцитов являются иммуноглобулины. Действие механизма перестройки генов (см. ниже) приводит к появлению разнообразных молекул иммуноглобулинов, которые служат как рецепторы для антигенов на поверхности клетки и, в конечном счете, представляют собой специфический иммуноглобулин (антитело), которое будет секретироваться плазматическими клетками после возникновения иммунного ответа. В упрощенном виде, антиген выбирает лимфоциты, которые имеют рецепторы (то есть, поверхностный иммуноглобулин B-клеток), соответсвующие ему (подходят друг к другу, как ключ к замку). Это взаимодействие приводит к делению и трансформации B-клетки, и, в конечном счете, к образованию клона плазматических клеток, которые секретируют молекулы антител со специальными связывающими участками, которые являются по существу такими же, как и расположенные на поверхности клетки первоначального лимфоцита, распознавшего антиген (рис. 1). T-лимфоциты также имеют рецепторы для антигенов и популяции T-клеток имеют подобную степень разнообразия. Рецептор Т-клетки состоит из пары полипептидных цепей (α- и β-цепи), при этом каждая цепь имеет вариабельный и постоянный участок, таким образом рецептор подобен рецептору В-клетки (который является поверхностным иммуноглобулином). Рецептор Т-клетки таким образом может быть расценен как член «семейства иммуноглобулинов высшего качества», которое включает не только иммуноглобулины, но и другие молекулы, вовлеченные во взаимодействие и распознавание клеток, при этом все они имеют общее эволюционное происхождение. Разнообразие антиген-распознающих рецепторов Т-клетки формируется в раннем эмбриональном периоде при помощи механизма перестройки генов, который похож на механизм образования разнообразия иммуноглобулинов. Также, параллельно с активацией В-клеток, антиген выбирает и T-клетки, несущие рецепторы с соответствующей специфичностью, и, таким образом, стимулирует пролиферацию специфического клона T-клеток, результатом которого является образование поколения многочисленных T-клеток-эффекторов идентичной специфичности. Обратите внимание, что распознавание антигена T-клетками – сложный процесс, вовлекающий пространственное взаимодействие антигена с MHC-молекулой на макрофагах и рецептором антигена Т-клетки при участии CD3 и CD4 или CD8 молекул на T-клетках. T-хелперы распознают антигены, связанные с молекулами MHC II класса, а T-супрессоры и цитотоксические Т-клетки распознают антигены, связанные с молекулами MHC I класса. Были описаны T-клетки, несущие рецептор, составленный из гамма и дельта цепей, однако их функция неизвестна.
ВОЗНИКНОВЕНИЕ РАЗНООБРАЗИЯ: ГЕН-«ПЕРЕТАСОВЫВАЮЩИЙ» МЕХАНИЗМ
Разнообразие антигенных рецепторов на B- и T-клетках возникает на уровне ДНК во время дифференцировки лимфоидных предшественников в эмбриональном периоде. Вовлеченные в данный процесс гены расположены в хромосомах 2 (κ цепь), 22 (λ цепь), 14 (тяжелые цепи, α и γ цепи рецепторов Т-клеток) и 7 (β и δ цепи рецепторов Т-клеток). Хотя каждый из этих генов функционирует как «генная единица» производства цепи полипептидов, каждый ген существует в цепи ДНК как сложный «мультиген», состоящий из большого количества различных сегментов ДНК, которые могут быть свернуты или собраны вместе в различных модификациях, что приводит к возникновению многочисленных различных шаблонов ДНК. Например, мультиген тяжелых цепей содержит до 200 различных V (вариабельных) сегментов (VH); каждая кодировка соответствует специфической последовательности аминокислот в антиген-связывающем участке (вариабельном участке) тяжелой цепи иммуноглобулина. Ген тяжелой цепи также содержит множественные D (diversity – разнообразие), J (joining – соединение) и C (constant – постоянная область) сегменты, по одному для каждого подкласса и класса тяжелых цепей (μ, δ, γ1, γ2, γ3, γ4, α1, α2, ε). Специальный механизм соединяет по одному сегменту ДНК от каждой категории, формируя VDJC-последовательность, которая служит как функциональный ген, на котором образуется иРНК, кодирующая всю тяжелую цепь. Легкие цепи составляются подобно, за исключением того, что они не содержат сегментов D. Ген бета-цепи T-рецептора также содержит множественные V, D, J, и C гены, кодирующие тяжелую цепь, в то время как ген альфа-цепи T-рецептора содержит только множественные V и J сегменты с единственным C сегментом.
1   ...   29   30   31   32   33   34   35   36   ...   104


написать администратору сайта