Главная страница
Навигация по странице:

  • Лекция № 16.

  • Рис.4.

  • Лекция № 17.

  • Крутые лекции. Сопромат лекции конспект 2009 КАИ-1. Введение и основные понятия Метод сечений для определения внутренних усилий


    Скачать 3.83 Mb.
    НазваниеВведение и основные понятия Метод сечений для определения внутренних усилий
    АнкорКрутые лекции
    Дата26.12.2019
    Размер3.83 Mb.
    Формат файлаdoc
    Имя файлаСопромат лекции конспект 2009 КАИ-1.doc
    ТипДокументы
    #102251
    страница8 из 24
    1   ...   4   5   6   7   8   9   10   11   ...   24

    Рис.2. Фрагмент вырезанной части гибкой нити

     

    ,

    откуда



    (1)

       Отсюда следует, что кривая провисания нити является параболой. Когда обе точки подвеса нити находятся на одном уровне, то Величина в данном случае будет так называемой стрелой провисания. Ее легко определить. Так как в этом случае, ввиду симметрии, низшая точка нити находится посредине пролита, то ; подставляя в уравнение (1) значения и получаем:



    (2)

    Из этой формулы находим величину силы Н:



    (3)

    Величина Н называется горизонтальным натяжением нити.

       Таким образом, если известны нагрузка q и натяжение H, то по формуле (2) найдем стрелу провисания . При заданных и натяжение Н определяется формулой (3). Связь этих величин с длиной нити по кривой провисания устанавливается при помощи известной из математики приближенной формулы)

    Составим еще одно условие равновесия вырезанной части нити, а именно, приравняем нулю сумму проекций всех сил на ось :

    Из этого уравнения найдем силу Т — натяжение в произвольной точке

       Откуда следует, что сила Т увеличивается от низшей точки нити к опорам и будет наибольшей в точках подвеса — там, где касательная к кривой провисания нити составляет наибольший угол с горизонталью. При малом провисании нити этот угол не достигает больших значений, поэтому с достаточной для практики степенью точности можно считать, что усилие в нити постоянно и равно ее натяжению Н. На эту величину обычно и ведется расчет прочности нити. Если все же требуется вести расчет на наибольшую силу у точек подвеса, то для симметричной нити ее величину определим следующим путем. Вертикальные составляющие реакций опор равны между собой и равны половине суммарной нагрузки на нить, т. е. . Горизонтальные составляющие равны силе Н, определяемой по формуле (3). Полные реакции опор получатся как геометрические суммы этих составляющих:

    Условие прочности для гибкой нити, если через F обозначена площадь сечения, имеет вид:

    Заменив натяжение Н его значением по формуле (3), получим:

       Из этой формулы при заданных , , и можно определить необходимую стрелу провисания . Решение при этом упростится, если в включен лишь собственный вес; тогда , где — вес единицы объема материала нити, и

    т. е. величина F не войдет в расчет.

    Если точки подвеса нити находятся на разных уровнях, то, подставляя в уравнение (1) значения и , находим и :

    Отсюда из второго выражения определяем натяжение

    а деля первое на второе, находим:

    или

    Имея в виду, что , получаем:

    или

    Подставив это значение в формулу определенного натяжения Н, окончательно определяем:



    (6.15)

       Два знака в знаменателе указывают на то, что могут быть две основные формы провисания нити. Первая форма при меньшем значении Н (знак плюс перед вторым корнем) дает нам вершину параболы между опорами нити. При большем натяжении Н (знак минус перед вторым корнем) вершина параболы расположится левее опоры А (Рис.1). Получаем вторую форму кривой. Возможна и третья (промежуточная между двумя основными) форма провисания, соответствующая условию ; тогда начало координат совмещается с точкой А. Та или иная форма будет получена в зависимости от соотношений между длиной нити по кривой провисания АОВ (Рис.1) и длиной хорды АВ.

       Если при подвеске нити на разных уровнях неизвестны стрелы провисания и , но известно натяжение Н, то легко получить значения расстояний а и b и стрел провисания, и . Разность h уровней подвески равна:

    Подставим в это выражение значения и , и преобразуем его, имея в виду, что :

    откуда

    а так как то

    и

       Следует иметь в виду, что при будет иметь место первая форма провисания нити, при — вторая форма провисания и при — третья форма. Подставляя значения и в выражения для стрел провисания и , получаем величины и :

       Теперь выясним, что произойдет с симметричной нитью, перекрывающей пролет , если после подвешивания ее при температуре и интенсивности нагрузки температура нити повысится до а нагрузка увеличится до интенсивности (например, из-за ее обледенения). При этом предположим, что в первом состоянии задано или натяжение , или стрела провисания (Зная одну из этих двух величин, всегда можно определить другую.)

       При подсчете деформации нити, являющейся по сравнению с длиной нити малой величиной, сделаем два допущения: длина нити 'равна ее пролету, а натяжение постоянно и равно Н. При пологих нитях эти допущения дают небольшую погрешность.

    В таком случае удлинение нити, вызванное увеличением температуры, будет равно

    где — коэффициент линейного температурного расширения материала нити.

       При повышении температуры нить удлиняется. В связи с этим увеличится ее стрела провисания и, как следствие, уменьшится ее натяжение. С другой стороны, из-за увеличения нагрузки, как видно из формулы (3), натяжение увеличится. Допустим, что окончательно натяжение увеличивается. Тогда удлинение нити, вызванное увеличением натяжения, будет, согласно закону Гука, равно:

    Если окажется меньше, чем то величина будет отрицательной. При понижении температуры будет отрицательной величина .

       Таким образом, длина нити во втором ее состоянии будет равна длине при первом ее состоянии с добавлением тех деформаций, которые произойдут от повышения температуры и натяжения:

    Изменение длины нити вызовет изменение и ее стрелы провисания. Вместо, она станет .

    Теперь заменим в последнем уравнении и их известными выражениями, а деформации и — также их полученными ранее значениями. Тогда уравнение для S2примет следующий вид:

    В этом уравнении заменим и их значениями по формуле (2):

    и

    Тогда, после некоторых преобразований, уравнение для расчета натяжения может быть написано в виде:

    Определив из этого уравнения натяжение , можно найти по формуле (2) и стрелу .

       В случае, если при переходе от первого ко второму состоянию нагрузка не изменяется, а изменяется лишь температура, то в последнем уравнении интенсивность заменяется на . В случае, если при переходе от первого ко второму состоянию не изменяется температура, а изменяется лишь нагрузка, то в этом уравнении средний член в квадратной скобке равен нулю. Полученное уравнение пригодно, конечно, и при понижении температуры и уменьшении нагрузки.

       В тех случаях, когда стрела провисания не является малой по сравнению с пролетом, выведенные выше формулы, строго говоря, неприменимы, так как действительная кривая провисания нити, цепная линия, будет уже значительно отличаться от параболы, полученной нами благодаря предположению о равномерном распределении нагрузки по пролету нити, а не по ее длине, как то имеет место в действительности.

       Точные подсчеты показывают, что значение погрешности в величине натяжения Н, вызванной этим предположением, таково: при отношении погрешность не превосходит 0,3%, при ошибка составляет уже 1,3%, а при погрешность несколько, превосходит 5%.

    Лекция № 16. Геометрические характеристики плоских сечений.

    Вычисление моментов инерции и моментов сопротивления для простейших сечений.

       Известно, что интеграл вида является моментом инерции сечения относительно нейтральной оси.

       Здесь — расстояние элементарной площадки dF от нейтральной оси; суммирование охватывает всю площадь сечения. Покажем в качестве примера вычисление этого интеграла для прямоугольника (Рис.1) высотой h и шириной b. Проведем через его центр тяжести О оси симметрии Oz и Оу. Если внешние силы, действующие на балку, лежат в плоскости Oz, то нейтральной осью будет ось Оу. Найдем относительно этой оси сначала момент инерции, а потом и момент сопротивления площади прямоугольника.

       Площадки dF, на которые следует разбить всю площадь сечения, выберем в виде узких прямоугольников шириной b и высотой dz (Рис.1а). Тогда:

    и интеграл J принимает вид:

    Чтобы взять интеграл по всей площади прямоугольника, следует z менять от до Тогда

    Момент сопротивления относительно нейтральной оси Оу мы получим, разделив Jy на

       Если необходимо вычислить момент инерции и момент сопротивления прямоугольника относительно оси Oz, то в полученных формулах следовало бы b и h поменять местами: и

       Заметим, что сумма произведений не изменится, если мы сдвинем все полоски dF = bdz параллельно самим себе так, что они расположатся в пределах параллелограмма ABCD.

    Рис.1. Расчетная модель для определения осевого момента инерции прямоугольника.

     

       Иначе, момент инерции параллелограмма относительно оси у равен моменту инерции равновеликого ему прямоугольника

       При вычислении момента инерции круга радиуса (Рис.2) также разбиваем площадь на узкие полоски размером вдоль оси Oz; ширина этих полосок b = b(z) тоже будет переменной по высоте сечения. Элементарная площадка

    Момент инерции равен:

    Рис.2. Расчетная модель для определения осевого момента инерции кругового сечения.

     

       Так как верхняя и нижняя половины сечения одинаковы, то вычисление момента инерции достаточно провести для одной нижней и результат удвоить. Пределами для изменения z будут 0 и :

    Введем новую переменную интегрирования — угол (Рис.2); тогда

    Пределы: при ; при , следовательно,

    и

    Для треугольного сечения (Рис.3) момент инерции относительно оси АВ равен

    ; ,

       В последующем будет изложен метод вычисления момента инерции для сечения любой сложной формы относительно любой оси.

       На практике из симметричных сечений встречаются чаще всего: для дерева — прямоугольник и круг, для металлов — двутавровое и тавровое сечения. Для прокатных профилей можно пользоваться таблицами ОСТ (сортамент), в которых помещены размеры и

    Рис.3. Расчетная модель для определения осевого момента инерции сечения треугольного профиля

     

    величины J и W для профилей, выпускаемых заводами.

       В балках из металла обычно применяются сложные поперечные сечения, потому что в них материал может быть использован экономичнее, чем в таких сечениях, как прямоугольник и круг.

       Так, известно, что валы делают полыми, чтобы удалить ту часть материала, которая слабо работает. Известно также, что при изгибе балок материал около нейтральной оси принимает на себя малые нормальные напряжения и также не может быть использован полностью. Поэтому целесообразнее переделать прямоугольное сечение так, чтобы удалить материал у нейтральной оси и часть его сэкономить, а часть перенести в верхнюю и нижнюю зоны балки, где он будет работать более интенсивно. Так получается из прямоугольного сечения профиль двутавра, обладающего той же прочностью и меньшим весом. Применение двутавра целесообразно при материалах, одинаково сопротивляющихся растяжению и сжатию (большинство металлов).

       Сечения в виде тавра, применяются или в случаях, вызываемых специальными конструктивными обстоятельствами, или для таких материалов, как чугун, бетон, у которых сопротивления растяжению и сжатию резко разнятся между собой; последнее обстоятельство требует, чтобы напряжения в крайних волокнах были различными.

       Как видно из изложенного, при решении вопроса о наиболее экономичном проектировании сечения следует стремиться к тому, чтобы при одной и той же площади F получить наибольший момент сопротивления и момент инерции. Это ведет к размещению большей части материала подальше от нейтральной оси.

       Однако для некоторых сечений можно увеличить момент сопротивления не добавлением, а, наоборот, путем срезки некоторой части сечения, наиболее удаленной от нейтральной оси.

       Так, например, для круглого сечения срезка заштрихованных сегментов (Рис.4) несколько увеличивает момент сопротивления, так как при этом мы уменьшаем момент инерции сечения в меньшей степени, чем расстояние до крайнего волокна .

    Рис.4. Срезка сегментов для увеличения осевого момента сопротивления.

     

    Общий способ вычисления моментов инерции сложных сечений.

       При проверке прочности частей конструкций нам приходится встречаться с сечениями довольно сложной формы, для которых нельзя вычислить момент инерции таким простым путем, каким мы пользовались для прямоугольника и круга.

       Таким сечением может быть, например, тавр (Рис.5 а) кольцевое сечение трубы, работающей на изгиб (авиационные конструкции) (Рис.5, б), кольцевое сечение шейки вала или еще более сложные сечения. Все эти сечения можно разбить на простейшие, как-то: прямоугольники, треугольники, круги и т.д. Можно показать, что момент инерции такой сложной фигуры является суммой моментов инерции частей, на которые мы ее разбиваем.

    Рис.5. Сечения типа тавр — а) и кольцо б)

     

    Известно, что момент инерции любой фигуры относительно оси уу равен:

    где z—расстояние элементарных площадок до оси уу.

       Разобьем взятую площадь на четыре части: , , и . Теперь при вычислении момента инерции можно сгруппировать слагаемые в подинтегральной функции так, чтобы отдельно произвести суммирование для каждой из выделенных четырех площадей, а затем эти суммы сложить. Величина интеграла от этого не изменится.

    Наш интеграл разобьется на четыре интеграла, каждый из которых будет охватывать одну из площадей, , и :

    Каждый из этих интегралов представляет собой момент инерции соответствующей части площади относительно оси у у; поэтому

    где — момент инерции относительно оси уу площади , — то же для площади и т. д.

       Полученный результат можно формулировать так: момент инерции сложной фигуры равен сумме моментов инерции составных ее частей. Таким образом, нам необходимо уметь вычислять момент инерции любой фигуры относительно любой оси, лежащей в ее плоскости.

    Решение этой задачи и составляет содержание настоящей и последующих двух собеседований.

    Лекция № 17. Моменты инерции относительно параллельных осей.

       Задачу — получить наиболее простые формулы для вычисления момента инерции любой фигуры относительно любой оси — будем решать в несколько приемов. Если взять серию осей, параллельных друг другу, то оказывается, что можно легко вычислить моменты инерции фигуры относительно любой из этих осей, зная ее момент инерции относительно оси, проходящей через центр тяжести фигуры параллельно выбранным осям.

    Рис.1. Расчетная модель определения моментов инерции для параллельных осей.

     

       Оси, проходящие через центр тяжести, мы будем называть центральными осями. Возьмем (Рис.1) произвольную фигуру. Проведем центральную ось Оу, момент инерции относительно этой оси назовем . Проведем в плоскости фигуры ось параллельно оси у на расстоянии от нее. Найдем зависимость между и — моментом инерции относительно оси . Для этого напишем выражения для и . Разобьем площадь фигуры на площадки ; расстояния каждой такой площадки до осей у и назовем и . Тогда

    и

    Из рис.1 имеем:

       Первый из этих трех интегралов — момент инерции относительно центральной оси Оу. Второй — статический момент относительно той же оси; он равен нулю, так как ось у проходит через центр тяжести фигуры. Наконец, третий интеграл равен площади фигуры F. Таким образом,



    (1)

    т. е. момент инерции относительно любой оси равен моменту инерции относительно центральной оси, проведенной параллельно у данной, плюс произведение площади фигуры на квадрат расстояния между осями.

       Значит, наша задача теперь свелась к вычислению только центральных моментов инерции; если мы их будем знать, то сможем вычислить момент инерции относительно любой другой оси. Из формулы (1) следует, что центральный момент инерции является наименьшим среди моментов инерции относительно параллельных осей и для него мы получаем:

    Найдем также центробежный момент инерции относительно осей , параллельных центральным, если известен (Рис.1). Так как по определению

    где: , то отсюда следует

       Так как два последних интеграла представляют собой статические моменты площади относительно центральных осей Оу и Oz то они обращаются в нуль и, следовательно:



    (2)

       Центробежный момент инерции относительно системы взаимно перпендикулярных осей, параллельных центральным, равен центробежному моменту инерции относительно этих центральных осей плюс произведение из площади фигуры, на координаты ее центра тяжести относительно новых осей.

       Зависимость между моментами инерции при повороте осей.

       Центральных осей можно провести сколько угодно. Является вопрос, нельзя ли выразить момент инерции относительно любой центральной оси в зависимости от момента инерции относительно одной или двух определенных осей. Для этого посмотрим, как будут меняться моменты инерции относительно двух взаимно перпендикулярных осей при повороте их на угол .

       Возьмем какую-либо фигуру и проведем через ее центр тяжести О две взаимно перпендикулярные оси Оу и Oz (Рис.2).
    1   ...   4   5   6   7   8   9   10   11   ...   24


    написать администратору сайта