Главная страница
Навигация по странице:

  • Расчет статически неопределимых систем по способу допускаемых нагрузок.

  • Лекция № 14.

  • Деформации при действии собственного веса.

  • Лекция № 15.

  • Крутые лекции. Сопромат лекции конспект 2009 КАИ-1. Введение и основные понятия Метод сечений для определения внутренних усилий


    Скачать 3.83 Mb.
    НазваниеВведение и основные понятия Метод сечений для определения внутренних усилий
    АнкорКрутые лекции
    Дата26.12.2019
    Размер3.83 Mb.
    Формат файлаdoc
    Имя файлаСопромат лекции конспект 2009 КАИ-1.doc
    ТипДокументы
    #102251
    страница7 из 24
    1   2   3   4   5   6   7   8   9   10   ...   24

    Рис.1. Расчетная схема статически определимой стержневой системы

     

    Рассчитывая эту систему обычным путем, найдем усилия N1 = N2 no формуле:

    (из равновесия узла А). Отсюда площадь каждого из стержней равна:

    По способу допускаемых нагрузок имеем:

       Введя в качестве коэффициента запаса для конструкции в целом ту же величину k, которая была принята в качестве коэффициента запаса для напряжений, мы получим, что величина

    Предельной, опасной величиной Pпр будет та, при которой напряжения в стержнях дойдут до предела текучести:

    Таким образом, допускаемая величина Р равна:

    Условие прочности принимает вид

    а учитывая, что

    ,

    получаем:

    Отсюда:

       Таким образом, расчет по допускаемым нагрузкам привел в данном случае к тем же результатам, что и расчет по допускаемым напряжениям. Это всегда имеет место для статически определимых конструкций при равномерном распределении напряжений, когда материал по всему сечению используется полностью.

     

    Расчет статически неопределимых систем по способу допускаемых нагрузок.

       Совсем другие результаты мы получим, если будем применять способ допускаемых нагрузок к статически неопределимым системам, стержни которых изготовлены из материала, обладающего способностью к большим пластическим деформациям, например из малоуглеродистой стали.

    В качестве примера рассмотрим систему из трех стержней, нагруженных силой Q (рис. 2). Пусть все стержни сделаны из малоуглеродистой стали с пределом текучести . Длины крайних стержней, как и выше, обозначим ; длину среднего . Допускаемое напряжение

    Рис.2. Расчетная схема однократно статически неопределимой стержневой системы.

     

    Как и раньше, при расчете этой статически неопределимой системы зададимся отношением площадей стержней; примем, что все три стержня будут иметь одинаковую площадь F. Получим:







    Используя закон Гука, получим:

    Следовательно:

    Так как , средний стержень напряжен больше, чем крайние; поэтому подбор площади сечения F надо произвести по формуле:

    Ту же величину площади надо дать и боковым стержням; в них получается некоторый дополнительный запас.

    Применим способ допускаемых нагрузок; условием прочности будет:

       Что в данном случае следует понимать под предельной нагрузкой конструкции? Так как конструкция выполнена из материала, имеющего площадку текучести, то, по аналогии с простым растяжением стержня из такого материала, за предельную нагрузку следует взять груз, соответствующий достижению состояния текучести для всей конструкции в целом. Назовем эту нагрузку . Пока сила Q не достигла этого значения, для дальнейшей деформации (опускания точки A) требуется возрастание нагрузки. Когда же Q сделается равным , дальнейший рост деформаций будет происходить уже без увеличения нагрузки, — конструкция выйдет из строя.

       Для определения величины рассмотрим постепенный ход деформации нашей стержневой системы. Так как средний стержень напряжен сильнее крайних, то в нем раньше, чем в других, напряжение дойдет до предела текучести. Нагрузку, соответствующую этому моменту, обозначим QТ; она будет равна:

    где — усилие в среднем стержне, соответствующее его пределу текучести.

       Напряжения в крайних стержнях, имеющих ту же площадь, в этот момент еще не дойдут до предела текучести, и эти стержни будут упруго сопротивляться дальнейшей деформации. Для того чтобы эта деформация происходила, необходимо дальнейшее увеличение нагрузки до тех пор, пока в крайних стержнях напряжения тоже не дойдут до предела текучести. Лишь тогда будет достигнута предельная грузоподъемность конструкции .

       Так как при нагрузке QТ напряжения в среднем стержне дойдут уже до предела текучести , то при дальнейшем возрастании груза они, а стало быть и усилие N3, останутся без увеличения. Наша статически неопределимая система превратится в статически определимую, состоящую из двух стержней АВ и АС и нагруженную в точке А силой Q, направленной вниз, и известным усилием , равным (Рис.3).


    Рис.3. Эквивалентная статически определимая система

     

    Такая схема работы нашей конструкции будет иметь место, пока

       Для иллюстрации хода деформации рассматриваемой конструкции изобразим графически зависимость между силой Q и перемещением f точки А (Рис. 4). Пока опускание точки А равно удлинению среднего стержня и определяется формулой

    Рис.4. Динамика деформации в зависимости от нагрузочной способности системы

     

       Как только Q будет заключаться в промежутке перемещение точки А должно быть вычислено, как опускание этого узла в системе двух стержней АС и АВ, нагруженных в точке А силой . Так как:

    и, в свою очередь:

    Отсюда

       Для f12 (на втором участке) получаем уравнение прямой, но уже не проходящей через начало координат. После достижения нагрузкой Q значения напряжения в крайних стержнях достигнут предела текучести, и система будет деформироваться без увеличения нагрузки. График перемещения идет теперь параллельно оси абсцисс.

       Для определения предельной грузоподъемности всей системы мы должны для системы двух стержней, нагруженных силой , найти то значение Q, при котором напряжения и в крайних стержнях дойдут до предела текучести. Такая задача решена в предыдущем параграфе; подставляя в выражение (а) § 26 вместо Р величину , получаем:

    Отсюда

    Допускаемая нагрузка будет равна

    а учитывая, что

    ,

    получаем

    Окончательно:

    и

    Эта величина меньше, чем полученная обычным методом расчета, т. е.

    При (сталь) получаем: по обычному способу

    по способу допускаемых нагрузок:

       Таким образом, метод расчета по допускаемым нагрузкам позволяет спроектировать статически неопределимую систему из материала, обладающего площадкой текучести, экономичнее, чем при расчете по допускаемым, напряжениям. Это понятно: при способе расчета по допускаемым напряжениям мы считали за предельную нагрузку нашей конструкции величину QТ, при которой до предела текучести доходил лишь материал среднего стержня, крайние же были недонапряжены. При методе расчета по допускаемым нагрузкам предельная грузоподъемность определяется величиной . При нагрузке полностью используется материал всех трех стержней.

       Таким образом, новый метод расчета позволяет реализовать скрытые при старом способе запасы прочности в статически неопределимых системах, добиться повышения их расчетной грузоподъемности и действительной равнопрочности всех частей конструкции. Не представит никаких затруднений распространить этот метод на случай, когда соотношение площадей среднего и крайних стержней не будет равно единице.

       Изложенные выше теоретические соображения проверялись неоднократно на опыте, причем всегда наблюдалась достаточно близкая сходимость величин предельной нагрузки — вычисленной и определенной при эксперименте. Это дает уверенность в правильности теоретических предпосылок метода допускаемых нагрузок.

    Лекция № 14. Учет собственного веса при растяжении и сжатии.

    Подбор сечений с учетом собственного веса (при растяжении и сжатии).

       При установлении внешних сил, растягивающих или сжимающих элементы конструкций, мы до сих пор игнорировали собственный вес этих элементов. Возникает вопрос, не вносится ли этим упрощением расчета слишком большая погрешность? В связи с этим подсчитаем величины напряжений и деформаций при учете влияния собственного веса растянутых или сжатых стержней.

       Пусть вертикальный стержень (Рис.1, а) закреплен своим верхним концом; к нижнему его концу подвешен груз Р. Длина стержня l, площадь поперечного сечения F, удельный вес материала и модуль упругости Е. Подсчитаем напряжения по сечению АВ, расположенному на расстоянии от свободного конца стержня.

    а)                  б)

    Рис.1. Исходная расчетная схема бруса а) и б) — равновесие нижней отсеченной части.

     

       Рассечем стержень сечением АВ и выделим нижнюю часть длиной с приложенными к ней внешними силами (Рис.1, б) — грузом Р и ее собственным весом . Эти две силы уравновешиваются напряжениями, действующими на площадь АВ от отброшенной части. Эти напряжения будут нормальными, равномерно распределенными по сечению и направленными наружу от рассматриваемой части стержня, т. е. растягивающими. Величина их будет равна:

       Таким образом, при учете собственного веса нормальные напряжения оказываются неодинаковыми во всех сечениях. Наиболее напряженным, опасным, будет верхнее сечение, для которого достигает наибольшего значения l; напряжение в нем равно:

    Условие прочности должно быть выполнено именно для этого сечения:

    Отсюда необходимая площадь стержня равна:

       От формулы, определяющей площадь растянутого стержня без учета влияния собственного веса, эта формула отличается лишь тем, что из допускаемого напряжения вычитается величина .

       Чтобы оценить значение этой поправки, подсчитаем ее для двух случаев. Возьмем стержень из мягкой стали длиной 10 м; для него , а величина . Таким образом, для стержня из мягкой стали поправка составит т. е. около 0,6%. Теперь возьмем кирпичный столб высотой тоже 10 м; для него , а величина Таким образом, для кирпичного столба поправка составит , т.е. уже 15%.

       Вполне понятно, что влиянием собственного веса при растяжении и сжатии стержней можно пренебрегать, если мы не имеем дела с длинными стержнями или со стержнями из материала, обладающего сравнительно небольшой прочностью (камень, кирпич) при достаточном весе. При расчете длинных канатов подъемников, различного рода длинных штанг и высоких каменных сооружений (башни маяков, опоры мостовых ферм) приходится вводить в расчет и собственный вес конструкции.

       В таких случаях возникает вопрос о целесообразной форме стержня. Если мы подберем сечение стержня так, что дадим одну и ту же площадь поперечного сечения по всей длине, то материал стержня будет плохо использован; нормальное напряжение в нем дойдет до допускаемого лишь в одном верхнем сечении; во всех прочих сечениях мы будем иметь запас в напряжениях, т. е. излишний материал. Поэтому желательно так запроектировать размеры стержня, чтобы во всех его поперечных сечениях (перпендикулярных к оси) нормальные напряжения были постоянны,

       Такой стержень называется стержнем равного сопротивления растяжению или сжатию. Если при этом напряжения равны допускаемым, то такой стержень будет иметь наименьший вес.

       Возьмем длинный стержень, подверженный сжатию силой Р и собственным весом (Рис.2). Чем ближе к основанию стержня мы будем брать сечение, тем больше будет сила, вызывающая напряжения в этом сечении, тем большими придется брать размеры площади сечения. Стержень получит форму, расширяющуюся книзу. Площадь сечения F будет изменяться по высоте в зависимости от , т. е. .

    Установим этот закон изменения площади в зависимости от расстояния сечения от верха стержня.

    Рис.2. Расчетная схема бруса равного сопротивления

     

    Площадь верхнего сечения стержня определится из условия прочности:

    и

    где — допускаемое напряжение на сжатие; напряжения во всех прочих сечениях стержня также должны равняться величине

       Чтобы выяснить закон изменения площадей по высоте стержня, возьмем два смежных бесконечно близких сечения на расстоянии от верха стержня; расстояние между сечениями ; площадь верхнего назовем , площадь же смежного .

       Приращение площади при переходе от одного сечения к другому должно воспринять вес элемента стержня между сечениями. Так как на площади он должен вызвать напряжение, равное допускаемому , то определится из условия:

    Отсюда:

    После интегрирования получаем:

    При площадь ; подставляя эти значения, имеем:

    и

    Отсюда

    ,

       Если менять сечения точно по этому закону, то боковые грани стержня получат криволинейное очертание (Рис.2), что усложняет и удорожает работу. Поэтому обычно такому сооружению придают лишь приближенную форму стержня равного сопротивления, например в виде усеченной пирамиды с плоскими гранями. Приведенный расчет является приближенным. Мы предполагали, что по всему сечению стержня равного сопротивления передаются только нормальные напряжения; на самом деле у краев сечения напряжения будут направлены по касательной к боковой поверхности.

       В случае длинных канатов или растянутых штанг форму стержня равного сопротивления осуществляют тоже приближенно, разделяя стержень по длине на ряд участков; на протяжении каждого участка сечение остается постоянным (Рис.3) — получается так называемый ступенчатый стержень.

    Рис.3. Эквивалентный ступенчатый брус с приближением к модели бруса равного сопротивления

     

       Определение площадей ... при выбранных длинах производится следующим образом. Площадь поперечного сечения первого нижнего участка будет по формуле равна:

       Чтобы получить площадь поперечного сечения второго участка, надо нагрузить его внешней силой Р и весом первого участка:

       Для третьего участка к внешней силе добавляются веса первого и второго участков. Подобным же образом поступают и для других участков.

     

    Деформации при действии собственного веса.

       При определении влияния собственного веса на деформацию при растяжении и сжатии стержней придется учесть, что относительное удлинение различных участков стержня будет переменным, как и напряжение . Для вычисления полного удлинения стержня постоянного сечения определим сначала удлинение бесконечно малого участка стержня длиной , находящегося на расстоянии от конца стержня (Рис.4).

    Рис.4. Расчетная модель бруса с учетом собственного веса.

     

    Абсолютное удлинение этого участка равно

    Полное удлинение стержня равно:

    Величина представляет собой полный вес стержня. Таким образом, для вычисления удлинения от действия груза и собственного веса можно воспользоваться прежней формулой:

    подразумевая под S внешнюю силу и половину собственного веса стержня.

    Что же касается деформаций стержней равного сопротивления, то, так как нормальные напряжения во всех сечениях одинаковы и равны допускаемым , относительное удлинение по всей длине стержня одинаково и равно

    Абсолютное же удлинение при длине стержня l равно:

    где обозначения соответствуют приведенным на рис.1.

       Деформацию ступенчатых стержней следует определять по частям, выполняя подсчеты по отдельным призматическим участкам. При определении деформации каждого участка учитывается не только его собственный вес, но и вес тех участков, которые влияют на его деформацию, добавляясь к внешней силе. Полная деформация получится суммированием деформаций отдельных участков.

    Лекция № 15. Расчет гибких нитей.

       В технике встречается еще один вид растянутых элементов, при определении прочности которых важное значение имеет собственный вес. Это — так называемые гибкие нити. Таким термином обозначаются гибкие элементы в линиях электропередач, в канатных дорогах, в висячих мостах и других сооружениях.

       Пусть (Рис.1) имеется гибкая нить постоянного сечения, нагруженная собственным весом и подвешенная в двух точках, находящихся на разных уровнях. Под действием собственного веса нить провисает по некоторой кривой АОВ.

       Горизонтальная проекция расстояния между опорами (точками ее закрепления), обозначаемая , носит название пролета.

       Нить имеет постоянное сечение, следовательно, вес ее распределен равномерно по ее длине. Обычно провисание нити невелико по сравнению с ее пролетом, и длина кривой АОВ мало отличается (не более чем на 10%) от длины хорды АВ. В этом случае с достаточной степенью точности можно считать, что вес нити равно- мерно распределен не по ее длине, а по длине ее проекции на горизонтальную ось, т. е. вдоль пролета l.


    Рис.1. Расчетная схема гибкой нити.

     

       Эту категорию гибких нитей мы и рассмотрим. Примем, что интенсивность нагрузки, равномерно распределенной по пролету нити, равна q. Эта нагрузка, имеющая размерность сила/длина, может быть не только собственным весом нити, приходящимся на единицу длины пролета, но и весом льда или любой другой нагрузкой, также равномерно распределенной. Сделанное допущение о законе распределения нагрузки значительно облегчает расчет, но делает его вместе с тем приближенным; если при точном решении (нагрузка распределена вдоль кривой) кривой провисания будет цепная линия, то в приближенном решении кривая провисания оказывается квадратной параболой.

       Начало координат выберем в самой низшей точке провисания нити О, положение которой, нам пока неизвестное, очевидно, зависит от величины нагрузки q, от соотношения между длиной нити по кривой и длиной пролета, а также от относительного положения опорных точек. В точке О касательная к кривой провисания нити, очевидно, горизонтальна. По этой касательной направим вправо ось .

       Вырежем двумя сечениями — в начале координат и на расстоянии от начала координат (сечение mn) — часть длины нити. Так как нить предположена гибкой, т. е. способной сопротивляться лишь растяжению, то действие отброшенной части на оставшуюся возможно только в виде силы, направленной по касательной к кривой провисания нити в месте разреза; иное направление этой силы невозможно.

       На рис.2 представлена вырезанная часть нити с действующими на нее силами. Равномерно распределенная нагрузка интенсивностью q направлена вертикально вниз. Воздействие левой отброшенной части (горизонтальная сила Н) направлено, ввиду того, что нить работает на растяжение, влево. Действие правой отброшенной части, сила Т, направлено вправо по касательной к кривой провисания нити в этой точке.

       Cоставим уравнение равновесия вырезанного участка нити. Возьмем сумму моментов всех сил относительно точки приложения силы Т и приравняем ее нулю. При этом учтем, опираясь на приведенное в начале допущение, что равнодействующая распределенной нагрузки интенсивностью q будет , и что она приложена посредине отрезка . Тогда
    1   2   3   4   5   6   7   8   9   10   ...   24


    написать администратору сайта