Главная страница
Навигация по странице:

  • Применение алюминиевых керамик

  • Композиционные материалы

  • Эвтектические композиционные материалы

  • Полимерные композиционные материалы

  • Порошковая металлургия

  • Потеющие сплавы

  • Введение Важнейшие проблемы народного хозяйства России Улучшение качественных характеристик


    Скачать 3.48 Mb.
    НазваниеВведение Важнейшие проблемы народного хозяйства России Улучшение качественных характеристик
    АнкорKurs_lektsy.docx
    Дата19.09.2017
    Размер3.48 Mb.
    Формат файлаdocx
    Имя файлаKurs_lektsy.docx
    ТипДокументы
    #8771
    страница11 из 32
    1   ...   7   8   9   10   11   12   13   14   ...   32

    Огнеупоры

    Это специальные материалы, применяемые в конструкциях, которые способны выдерживать высокие температуры. Основные широко используемые огнеупорные материалы состоят из кремнезема и глинозема. Способность материала из этих компонентов выдерживать высокие температуры (термин «огнеупоры» применяется для описания этого качества) возрастает с увеличением окиси алюминия выше точки эвтектики.
    Применение алюминиевых керамик

    Широко используются огнеупорные материалы, состоящие из глинозема и кремнезема. Огнеупорность возрастает с увеличением содержания глинозема. Изделия с содержанием глинозема 20.. .40% употребляются в качестве огнеупорного шамотного кирпича. Для более жестких условий применения увеличивается количество глинозема: керамика с глиноземом более 71.8% может работать до 1800°С. С содержанием глинозема 90% производится прочная, тонко гранулированная керамика для заданных механических условий. С содержанием же 96% выпускается керамика, которая обладает превосходными свойствами для специального назначения в электронике, а с содержанием 99.9% — твердая, прочная керамика для жестких механических условий и агрессивной среды.
    Таблица 6

    Область применения связанных карбидов

    Состав [%|

    Размер зерна

    Применение как инструмента

    97WC-3G)

    Средний

    Превосходное абразивное сопротивление, низкая ударная стойкость, эксплуатация с острой режущей кромкой. Для механической обработки литейного чугуна, нежелезных металлов и неметаллических материалов


    94WC-6CO

    Тонкий

    Для механической обработки нежелезных и высокотемпературных сплавов



    Средний

    Для основной механической обработки металлов, иных чем сталь, а также для маленьких и средних матриц прессования

    94WC-6CO

    Грубый

    Для механической обработки литейного чугуна, нежелезных металлов и неметаллических материалов, а также для маленьких штампов, вытягивающих проволоку, и матриц прессования

    90WC-10CO

    Тонкий

    Для механической обработки стали и фрезерования высокотемпературных металлов, для фасонных резцов, цилиндрических фрез, торцевых фрез, отрезных резцов, резьбонарезного инструмента

    84WC 16Со

    Тонкий

    В горном деле для режущих кромок вращающихся буров и вставных резцов, сотрясающихся при бурении



    Грубый

    Для средних и больших матриц, где требуется прочность, для вырубных матриц и больших пробойников

    75WC-25CO

    Средний

    Для матриц высадки головок, матриц холодного выдавливания, пуансонов и матриц для вырубки тяжелого проката

    71WC-12.5T1C-12ТаС-4.5Со

    Средний

    Для чистовой и легкой черновой обработки плакированных углеродистых, легированных сталей и легированных литейных чугунов

    72WC—8TiC—

    11.5ТаС-8.5Со

    Средний

    Прочный, износостойкий и стойкий к высоким температурам. Для тяжелой механической нагрузки, для фрезерования плакированных углеродистых, легированных сталей и легированных литейных чугунов

    64TiC—28WC—2ТаС—

    2Сг2С3-5.0Со

    Средний

    Для высокоскоростной чистовой обработки сталей и литейных чугунов

    57WC—27ТаС—16Со

    Грубый

    Для срезания горячих подтеков со сварных трубопроводов и матриц для горячего выдавливания алюминия



    Таблица 7

    Область применения стекол

    Стекло

    Применение

    Алюмосиликат

    Стойкое к термическим ударам. Для термометров

    Боросиликат (пирекс)

    Стойкое к термическим ударам и легко формуется. Для стеклянной термопрочной кухонной утвари

    Плавленый кремнезем

    Стойкое к термическим ударам. Для лабораторного оборудования

    Свинцовая щелочь (54% кремнезема)

    Высокий показатель преломления. Для режущих стеклянных деталей

    Натровая известь кремнезема

    Легко формуется. Для стеклянных пластин, оконного стекла и бутылок


    Композиционные материалы, свойства, область применения
    Композиционные материалы – искусственно созданные материалы, которые состоят из двух или более компонентов, различающихся по составу и разделенных выраженной границей, и которые имеют новые свойства, запроектированные заранее.

    Компоненты композиционного материала различны по геометрическому признаку. Компонент, непрерывный во всем объеме композиционного материала, называется матрицей. Компонент прерывистый, разделенный в объеме композиционного материала, называется арматурой. Матрица придает требуемую форму изделию, влияет на создание свойств композиционного материала, защищает арматуру от механических повреждений и других воздействий среды.

    В качестве матриц в композиционных материалах могут быть использованы металлы и их сплавы, полимеры органические и неорганические, керамические, углеродные и другие материалы. Свойства матрицы определяют технологические параметры процесса получения композиции и ее эксплуатационные свойства: плотность, удельную прочность, рабочую температуру, сопротивление усталостному разрушению и воздействию агрессивных сред.

    Армирующие или упрочняющие компоненты равномерно распределены в матрице. Они, как правило, обладают высокой прочностью, твердостью и модулем упругости и по этим показателям значительно превосходят матрицу. Вместо термина армирующий компонент можно использовать термин наполнитель.

    Композиционные материалы классифицируют по геометрии наполнителя, расположению его в матрице, природе компонентов.

    По геометрии наполнителя композиционные материалы подразделяются на три группы:

    • с нуль-мерными наполнителями, размеры которых в трех измерениях имеют один и тот же порядок;

    • с одномерными наполнителями, один из размеров которых значительно превышает два других;

    • с двухмерными наполнителями, два размера которых значительно превышают третий.

    По схеме расположения наполнителей выделяют три группы композиционных материалов:

    • с одноосным (линейным) расположением наполнителя в виде волокон, нитей, нитевидных кристаллов в матрице параллельно друг другу;

    • с двухосным (плоскостным) расположением армирующего наполнителя, матов из нитевидных кристаллов, фольги в матрице в параллельных плоскостях;

    • с трехосным (объемным) расположением армирующего наполнителя и отсутствием преимущественного направления в его расположении.

    По природе компонентов композиционные материалы разделяются на четыре группы:

    • композиционные материалы, содержащие компонент из металлов или сплавов;

    • композиционные материалы, содержащие компонент из неорганических соединений оксидов, карбидов, нитридов и др.;

    • композиционные материалы, содержащие компонент из неметаллических элементов, углерода, бора и др.;

    • композиционные материалы, содержащие компонент из органических соединений эпоксидных, полиэфирных, фенольных и др.

    Свойства композиционных материалов зависят не только от физико-химических свойств компонентов, но и от прочности связи между ними. Максимальная прочность достигается, если между матрицей и арматурой происходит образование твердых растворов или химических соединений.

    В композиционных материалах с нуль-мерным наполнителем наибольшее распространение получила металлическая матрица. Композиции на металлической основе упрочняются равномерно распределенными дисперсными частицами различной дисперсности. Такие материалы отличаются изотропностью свойств.

    В таких материалах матрица воспринимает всю нагрузку, а дисперсные частицы наполнителя препятствуют развитию пластической деформации. Эффективное упрочнение достигается при содержании 5…10 % частиц наполнителя. Армирующими наполнителями служат частицы тугоплавких оксидов, нитридов, боридов, карбидов. Дисперсионно упрочненные композиционные материалы получают методами порошковой металлургии или вводят частицы армирующего порошка в жидкий расплав металла или сплава.

    Промышленное применение нашли композиционные материалы на основе алюминия, упрочненные частицами оксида алюминия (Al2O3). Их получают прессованием алюминиевой пудры с последующим спеканием (САП). Преимущества САП проявляются при температурах выше 300oС, когда алюминиевые сплавы разупрочняются. Дисперсионно упрочненные сплавы сохраняют эффект упрочнения до температуры 0,8 Тпл.

    Сплавы САП удовлетворительно деформируются, легко обрабатываются резанием, свариваются аргонодуговой и контактной сваркой. Из САП выпускают полуфабрикаты в виде листов, профилей, труб, фольги. Из них изготавливают лопатки компрессоров, вентиляторов и турбин, поршневые штоки.

    В композиционных материалах с одномерными наполнителями упрочнителями являются одномерные элементы в форме нитевидных кристаллов, волокон, проволоки, которые скрепляются матрицей в единый монолит. Важно, чтобы прочные волокна были равномерно распределены в пластичной матрице. Для армирования композиционных материалов используют непрерывные дискретные волокна с размерами в поперечном сечении от долей до сотен микрометров.

    Материалы, армированные нитевидными монокристаллами, были созданы в начале семидесятых годов для авиационных и космических конструкций. Основным способом выращивания нитевидных кристаллов является выращивание их из перенасыщенного пара (ПК-процесс). Для производства особо высокопрочных нитевидных кристаллов оксидов и других соединений осуществляется рост по П-Ж-К – механизму: направленный рост кристаллов происходит из парообразного состояния через промежуточную жидкую фазу. Осуществляется создание нитевидных кристаллов вытягиванием жидкости через фильеры. Прочность кристаллов зависит от сечения и гладкости поверхности.

    Композиционные материалы этого типа перспективны как высокожаропрочные материалы. Для увеличения к.п.д. тепловых машин лопатки газовых турбин изготавливают из никелевых сплавов, армированных нитями сапфира (Al2O3), это позволяет значительно повысить температуру на входе в турбину (предел прочности сапфировых кристаллов при температуре 1680oС выше 700 МПа).

    Армирование сопл ракет из порошков вольфрама и молибдена производят кристаллами сапфира как в виде войлока, так и отдельных волокон, в результате этого удалось удвоить прочность материала при температуре 1650oС. Армирование пропиточного полимера стеклотекстолитов нитевидными волокнами увеличивает их прочность. Армирование литого металла снижает его хрупкость в конструкциях. Перспективно упрочнение стекла неориентированными нитевидными кристаллами.

    Для армирования композиционных материалов применяют металлическую проволоку из разных металлов: стали разного состава, вольфрама, ниобия, титана, магния – в зависимости от условий работы. Стальная проволока перерабатывается в тканые сетки, которые используются для получения композиционных материалов с ориентацией арматуры в двух направлениях.

    Для армирования легких металлов применяются волокна бора, карбида кремния. Особенно ценными свойствами обладают углеродистые волокна, их применяют для армирования металлических, керамических и полимерных композиционных материалов.

    Эвтектические композиционные материалы – сплавы эвтектического или близкого к эвтектическому состава, в которых упрочняющей фазой выступают ориентированные кристаллы, образующиеся в процессе направленной кристаллизации. В отличие от обычных композиционных материалов, эвтектические получают за одну операцию. Направленная ориентированная структура может быть получена на уже готовых изделиях. Форма образующихся кристаллов может быть в виде волокон или пластин. Способами направленной кристаллизации получают композиционные материалы на основе алюминия, магния, меди, кобальта, титана, ниобия и других элементов, поэтому они используются в широком интервале температур.

    Полимерные композиционные материалы. Особенностью является то, что матрицу образуют различные полимеры, служащие связующими для арматуры, которая может быть в виде волокон, ткани, пленок, стеклотекстолита.

    Формирование полимерных композиционных материалов осуществляется прессованием, литьем под давлением, экструзией, напылением.

    Широкое применение находят смешанные полимерные композиционные материалы, куда входят металлические и полимерные составляющие, которые дополняют друг друга по свойствам. Например, подшипники, работающие в условиях сухого трения, изготовляют из комбинации фторопласта и бронзы, что обеспечивает самосмазываемость и отсутствие ползучести.

    Созданы материалы на основе полиэтилена, полистирола с наполнителями в виде асбеста и других волокон, обладающие высокими прочностью и жесткостью.

     

    Материалы порошковой металлургии

     Порошковая металлургия – область техники, охватывающая процессы получения порошков металлов и металлоподобных соединений и процессы изготовления изделий из них без расплавления.

    Характерной особенностью порошковой металлургии является применение исходного материала в виде порошков, из которых прессованием формуются изделия заданной формы и размеров. Полученные заготовки подвергаются спеканию при температуре ниже температуры плавления основного компонента.

    Основными достоинствами технологии производства изделий методом порошковой металлургии являются

    1. возможность изготовления деталей из тугоплавких металлов и соединений, когда другие методы использовать невозможно;

    2. значительная экономия металла за счет получения изделий высокой точности, в минимальной степени нуждающихся в последующей механической обработке (отходы составляют не более 1…3 %);

    3. возможность получения материалов максимальной чистоты;

    4. простота технологии порошковой металлургии.

    Методом порошковой металлургии изготавливают твердые сплавы, пористые материалы: антифрикционные и фрикционные, фильтры; электропроводники, конструкционные детали, в том числе работающие при высоких температурах и в агрессивных средах.

     

    Пористые порошковые материалы

     Отличительной особенностью является наличие равномерной объемной пористости, которая позволяет получать требуемые эксплуатационные свойства.

    Антифрикционные материалы (пористость 15…30 %), широко применяющиеся для изготовления подшипников скольжения, представляют собой пористую основу, пропитанную маслом. Масло поступает из пор на поверхность, и подшипник становится самосмазывающимся, не требуется подводить смазку извне. Это существенно для чистых производств (пищевая, фармацевтическая отрасли). Такие подшипники почти не изнашивают поверхность вала, шум в 3…4 раза меньше, чем от шариковых подшипников.

    Подшипники работают при скоростях трения до 6 м/с при нагрузках до 600 МПа. При меньших нагрузках скорости скольжения могут достигать 20…30 м/с. Коэффициент трения подшипников – 0,04…0,06.

    Для изготовления используются бронзовые или железные порошки с добавлением графита (1…3 %).

    Разработаны подшипниковые спеченные материалы на основе тугоплавких соединений (боридов, карбидов и др.), содержащие в качестве твердой смазки сульфиды, селениды и гексагональный нитрид бора. Подшипники могут работать в условиях вакуума и при температурах до 500oС.

    Применяют металлопластмассовые антифрикционные материалы: спеченные бронзографиты, титан, нержавеющие стали пропитывют фторопластом. Получаются коррозионностойкие и износостойкие изделия. Срок службы металлопластмассовых материалов вдвое больше, чем материалов других типов.

    Фрикционные материалы (пористость 10…13 %) предназначены для работы в муфтах сцепления и тормозах. Условия работы могут быть очень тяжелыми: трущиеся поверхности мгновенно нагреваются до 1200oС, а материал в объеме – до 500…600oС. Применяют спеченные многокомпонентные материалы, которые могут работать при скоростях трения до 50 м/с на нагрузках 350…400 МПа. Коэффициент трения при работе в масле – 0,08…0,15, при сухом трении – до 0,7.

    По назначению компоненты фрикционных материалов разделяют на группы:

    а) основа – медь и ее сплавы – для рабочих температур 500…600oС, железо, никель и сплавы на их основе – для работы при сухом трении и температурах 1000…1200oС;

    б) твердые смазки – предотвращают микросхватывание при торможении и предохраняют фрикционный материал от износа; используют свинец, олово, висмут, графит, сульфиты бария и железа, нитрид бора;

    в) материалы, обеспечивающие высокий коэффициент трения – асбест, кварцевый песок, карбиды бора, кремния, хрома, титана, оксиды алюминия и хрома и др.

    Примерный состав сплава: медь – 60…70 %, олово – 7 %, свинец – 5 %, цинк – 5…10%, железо – 5…10 %, кремнезем или карбид кремния – 2…3 %, графит – 1…2 %.

    Из фрикционных материалов изготавливают тормозные накладки и диски. Так как прочность этих материалов мала, то их прикрепляют к стальной основе в процессе изготовления (припекают к основе) или после (приклепывают, приклеивают и т.д.).

    Фильтры (пористость 25…50 %) из спеченных металлических порошков по своим эксплуатационным характеристикам превосходят другие фильтрующие материалы, особенно когда требуется тонкая фильтрация.

    Они могут работать при температурах от –273oС до 900oС, быть коррозионностойкими и жаропрочными (можно очищать горячие газы). Спекание позволяет получать фильтрующие материалы с относительно прямыми тонкими порами одинакового размера.

    Изготавливают фильтры из порошков коррозионностойких материалов: бронзы, нержавеющих сталей, никеля, серебра, латуни и др. Для удовлетворения запросов металлургической промышленности разработаны материалы на основе никелевых сплавов, титана, вольфрама, молибдена и тугоплавких соединений. Такие фильтры работают тысячи часов и поддаются регенерации в процессе работы. Их можно продуть, протравить, прожечь.

    Фильтрующие материалы выпускают в виде чашечек, цилиндров, втулок, дисков, плит. Размеры колеблются от дисков диаметром 1,5 мм до плит размерами 450 х 1000 мм. Наиболее эффективно применение фильтров из нескольких слоев с различной пористостью и диаметром пор.

     

    Прочие пористые изделия.

     “Потеющие сплавы – материалы, через стенки которых к рабочей наружной поверхности детали поступает жидкость или газ. Благодаря испарению жидкости температура поверхности понижается (лопатки газовых турбин).

    Сплавы выпускаются на основе порошка нихроми с порами диаметром до 10…12 мкм при пористости 30 %. Сплавы этого типа используются и для решения обратной задачи: крылья самолетов покрывают пористым медно-никелевым слоем и подают через него на поверхность антифриз, препятствующий обледенению.
    1   ...   7   8   9   10   11   12   13   14   ...   32


    написать администратору сайта