|
Введение Важнейшие проблемы народного хозяйства России Улучшение качественных характеристик
Литейные свойства металлов характеризуют способность их образовывать отливки без трещин, раковин и других дефектов. Основными литейными свойствами являются жидкотекучесть, усадка и ликвация.
Жидкотекучесть — способность расплавленного металла хорошо заполнять полость литейной формы.
Усадка при кристаллизации — это уменьшение объема металла при переходе из жидкого состояния в твердое; является причиной образования усадочных раковин и усадочной пористости в слитках и отливках.
Ликвация — неоднородность химического состава сплавов, возникающая при их кристаллизации, обусловлена тем, что сплавы, в отличие от чистых металлов, кристаллизуются не при одной температуре, а в интервале температур. Чем шире температурный интервал кристаллизации сплава, тем сильнее развивается ликвация, причем наибольшую склонность к ней проявляют те компоненты сплава, которые наиболее сильно влияют на ширину температурного интервала кристаллизации (для стали, например, сера, кислород, фосфор, углерод). Методика выбора материала
При выборе марки стали для конкретной детали конструктор должен учитывать требуемый уровень прочности, надёжности и долговечности детали, а также технологию её изготовления, экономию металла и специфические условия службы детали (температура, окружающая среда, скорость нагружения и т.п.).
Единых принципов при выборе марки стали пока не разработано, поэтому каждый конструктор выполняет эту задачу в зависимости от своего опыта и знаний; вследствие этого при выборе марки стали случаются и ошибки, что может привести к нежелательным последствиям.
Решая эту задачу, прежде всего, необходимо знать форму, размеры и условия работы детали. Предположим, что чисто конструктивно оптимальное решение найдено. Если сила, воздействующая на деталь, известна, то можно определить уровень напряжений в наиболее опасных сечениях детали (чем сложнее конфигурация изделия, тем точность такого расчёта меньше). Так как модули упругости для всех сталей практически одинаковы (Е2Ю5 МПа, G0,8-105 МПа), то во многих случаях можно подсчитать упругую деформацию при максимальной нагрузке. При невозможности проведения таких расчётов необходимо провести натурные испытания. Если эта деформация находится в допустимых пределах, то следует перейти к основному вопросу - выбору марки стали, а если нет, то необходимо изменить конфигурацию детали: увеличить сечение, ввести рёбра жесткости и др. Следует помнить, что путём подбора марки стали упругую деформацию уменьшить практически невозможно. После этого следует перейти к оценке прочности, надёжности и долговечности детали.
Прочность характеризует сопротивление металла пластической деформации. В большинстве случаев нагрузка не должна вызывать остаточную пластическую деформацию выше определённого значения. Для многих деталей машин (за исключением пружин и других упругих элементов остаточной деформацией, меньшей 0,2 %, можно пренебречь, то есть, условный предел текучести (σ0,2) определяет для них верхний предел допустимого напряжения.
Надёжность - это свойство материала противостоять хрупкому разрушению. Деталь должна работать при соблюдении условий, предусмотренных проектом (напряжение, температура, скорость нагружения и т.п.) и преждевременный её выход из строя свидетельствует о том, что она выполнена не из того металла, были нарушения технологии её изготовления или допущены серьёзные ошибки в расчётах прочности и т.д. Но в процессе эксплуатации возможны кратковременные отклонения некоторых параметров от пределов, установленных проектом, и если при этом деталь выдержала экстремальные условия, то она надёжна. Следовательно, надёжность зависит от температуры, скорости деформации и других выходящих за пределы расчёта параметров.
Долговечность - это свойство материала сопротивляться развитию постепенного разрушения, и она оценивается временем, в течение которого деталь может сохранять работоспособность. Это время не бесконечно, т.к. в процессе эксплуатации могут изменяться свойства материала, состояние поверхности детали и т.п. Другими словами, долговечность характеризуется сопротивлением усталости, износу, коррозии, ползучести и другим воздействиям, которые определяются временными показателями.
Кроме необходимого комплекса механических свойств, к конструкционным сталям предъявляются и технологические требования, суть которых в том, чтобы трудоёмкость изготовления деталей из них была минимальной. Для этого сталь должна обладать хорошей обрабатываемостью резанием и давлением, свариваемостью, способностью к литью и т.д. Эти свойства зависят от её химического состава и правильного выбора режимов предварительной термической обработки.
Наконец, к материалам для деталей машин предъявляются и экономические требования. При этом надо учитывать не только стоимость стали, но и трудоёмкость изготовления детали, её эксплуатационную стойкость в машине и другие факторы. В первую очередь нужно стремиться выбрать более дешёвую сталь, т.е. углеродистую или низколегированную. Выбор дорогой легированной стали оправдан только в том случае, когда за счёт повышения долговечности детали и уменьшения расхода запасных частей достигается экономический эффект.
Следует иметь в виду, что легирование стали должно быть рациональным, т.е. обеспечивать необходимую прокаливаемость. Введение легирующих элементов сверх этого, помимо удорожания стали, как правило, ухудшает её технологические свойства и повышает склонность к хрупкому разрушению. Пластмассы: типы, состав, методы получения Пластмассы - материалы на основе органических природных, синтетических или органических полимеров, из которых можно после нагрева и приложения давления формовать изделия сложной конфигурации. Полимеры - это высоко молекулярные соединения, состоящие из длинных молекул с большим количеством одинаковых группировок атомов, соединенных химическими связями. Кроме полимера в пластмассе могут быть некоторые добавки.
Признаками классификации пластмасс являются: назначение, вид наполнителя, эксплуатационные свойства и другие признаки.
Классификация пластмасс по эксплуатационному назначению: 1 - по применению, 2 - по совокупности параметров эксплуатационных свойств, 3 - по значению отдельных параметров эксплуатационных свойств.
По применеию различают: 1 - пластмассы для работы при действии кратковременной или длительной механической нагрузки: стеклонаполненные композиции полипропилена ПП, этролы, пентапласт, полисульфон ПСФ, полиимид ПИ, материалы на основе кремнийорганических соединений и др.; 2 - пластмассы для работы при низких температурах (до минус 40-60 С): полиэтилены ПЭ, сополимеры этилена СЭП, СЭБ, СЭВ, полипропилен морозостойкий, фторопласт ФТ, полисульфон ПСФ, полиимиды ПИ и др.; 3 - пластмассы антифрикционного назначения: фторопласты ФТ, полиимиды ПИ, текстолиты, полиамиды, фенопласты, полиформальдегид ПФ и др; 4 - пластмассы электро- и радиотехнического назначения: полиэтилены ПЭ, полистиролы ПС, фторопласты ФТ, полисульфон ПСФ, полиимиды, отдельные марки эпоксидных и кремнийорганических материалов и др.; 5 - пластмассы для получения прозрачных изделий: полистирол ПС, прозрачные марки фторпласта ФТ, полиамидов 6,12, ПЭТФ, полисульфон ПСФ, эпоксидные смолы и др.; 6 - пластмассы тепло- и звукоизоляционного назначения: газонаполненные материалы на основе полиэтилена ПЭ, полистирола ПС, поливинилхлорида, полиуретана ПУР, полиимида ПИ, фенопласта, аминопласта и др.; 7 - пластмассы для работы в агрессивных средах: полиэтилены ПЭ, фторопласты ФТ, полипропилен ПП, поливинилхлорид ПВХ, полиимиды ПИ, полусольфон ПСФ и другие.
По совокупности параметров эксплуатационных свойств пластмассы делятся на две
большие группы: 1 - общетехнического назначения, 2 - инженерно-технического назначения.
Пластмассы общетехнического назначения имеют более низкие характеристики параметров эксплуатационных свойств, чем пластмассы инженерно-технического назначения. Пластмассы инженерно-технического назначения сохраняют высокие значения механических свойств не только при нормальной и повышенной температурах, но могут работать и при кратковременных нагрузках при повышенных температурах. Этого не обеспечивают пластмассы общетехнического назначения; они работают в ненагруженном или слабонагруженном состоянии при обычной и средних температурах (до 55 С). Пластмассы инженерно-технического назначения делят на группы, обеспечивающие определенные свойства в некотором интервале; различают пять групп пластмасс по этому классификационному признаку.
По значению отдельных параметров эксплуатационных свойств составляют ряды пластмасс для различных параметров эксплуатационных свойств. Порядок расположения пластмасс в рядах соответствует снижению параметра эксплуатационных свойств. Параметры классификации: электро- и радиотехнические свойства - объемное и поверхностноеэлектросопротивление, электрическая прочность, диэлектрическая проницаемость, механические свойства - коэффициент трения, износа, Пуассона, линейного теплового расширения и другие.
В зависимости от применяемости наполнителя и степени его измельчения все материалы подразделяют на четыре группы: порошковые (пресспорошки), волокнистые, крошкообразные и слоистые.
Технологические свойства пластмасс влияют на выбор метода их переработки. К технологическим свойствам пластмасс относят: текучесть, влажность, время отверждения, дисперсность, усадку, таблетируемость, объемные характеристики.
Текучесть характеризует способность материала к вязкому течению под полимера, выдавленной в течение 10 мин через стандартное сопло под давлением определенного груза при заданной температуре. Так для литья под давлением текучесть равна 1,2-3 г/10 мин, для нанесения покрытий используют полимеры с текучестью 7 г /10 мин. Текучесть реактопласта равна длине стержня в мм, отпрессованного в подогреваемой прессформе с каналом уменьшающегося поперечного сечения. Этот показатель текучести, хотя и является относительной величиной, позволяет предварительно установить метод переработки: при текучести по Рашигу 90-180 мм применяют литьевое прессование, при текучести 30-150 мм - прямое прессование.
Усадка характеризует изменение размеров при формовании изделия и термообработке:
У = (Lф-Lи) / Lф * 100 % ; Уд = (L-Lт) / Lф * 100 % ;
где У - усадка после формования и охлаждения; Уд - дополнительная усадка после термообработки; Lф, Lи - размер формы и размер изделия после охлаждения; L, Lт - размер изделия до термообработки и после охлаждения.
Усадка изделий из реактопластов зависит от способа формования изделия и вида реакции сшивания: полимеризации или поликонденсации. Причем последняя сопровождается выделением побочного продукта - воды, которая под действием высокой температуры испаряется. Процесс усадки протекает во времени; чем больше время выдержки, тем полнее протекает химическая реакция, а усадка изделия после извлечения из формы меньше. Однако после некоторого времени выдержки усадка при дальнейшем его увеличении остается постоянной. Влияние температуры на усадку: усадка увеличивается прямо пропорционально увеличению температуры. Усадка после обработки также зависит от влажности прессматериала и времени предварительного нагрева: с увеличением влажности усадка увеличивается, а с увеличением времени предварительного нагрева - уменьшается.
Усадка изделий из термопластов после формования связана с уменьшением плотности при понижении температуры до температуры эксплуатации.
Усадка полимера в различных направлениях по отношению к направлению течения для термо- и рекатопластов различна, т.е. полимеры имеют анизотропию усадки. Усадка термопластов больше усадки реактопластов.
Содержание влаги и летучих веществ. Содержание влаги в прессматериалах и полимерах увеличивается при хранении в открытой таре из-за гигроскопичности материала или конденсации ее на поверхности. Содержание летучих веществ в полимерах зависит от содержания в них остаточного мономера и низкокипящих пластификаторов, которые при переработке могут переходить в газообразное состояние.
Оптимальное содержание влаги: у реактопластов 2,5 - 3,5%, у термопластов - сотые и тысячные доли процента.
Гранулометрический состав оценивают размерами частиц и однородностью. Этот показатель определяет производительность при подаче материала из бункера в зоны нагрева и равномерность нагрева материала при формовании, что предупреждает вздутия и неровности поверхности изделия.
Объемные характеристики материала: насыпная плотность, удельный объем, коэффициент уплотнения. (Удельный объем - величина, определяемая отношением объема материала к его массе; насыпная плотность - величина обратная удельному объему). Этот показатель определяет величину загрузочной камеры прессформы, бункера и некоторые размеры оборудования, а при переработке пресспорошков с большим удельным объемом уменьшается производительность из-за плохой теплопроводности таких порошков.
Таблетируемость - это возможность спрессовывания прессматериала под действием внешних сил и сохранения полученной формы после снятия этих сил.
Пластмассы выбирают исходя из требований к эксплуатационным свойствам и геометрическим параметрам изделия. Поэтому сначала выбирают вид пластмассы на основе требований к ее эксплуатационным свойствам, а затем базовую марку и марку с улучшенными технологическими свойствами, которую можно эффективно переработать выбранным способом.
Существует два метода выбора вида пластмасс:
1 - метод аналогий - качественный;
2 - количественный метод.
Метод аналогий применяют при невозможности точного задания параметров эксплуатационных свойств пластмассы; в этом случае используют для выбора характерные параметры эксплуатационных свойств, назначение, достоинства, ограничения, рекомендации по применению и способам переработки; в этом случае для выбора также могут быть использованы рекомендации по применению пластмасс в других типах изделий, работающих в аналогичных условиях.
Порядок выбора пластмасс количественным методом по комплексу заданных значений эксплуатационных свойств сводится к следующему:
- выявление условий эксплуатации изделия и соответствующих им значений параметров эксплуатационных свойств пластмасс при основных условиях работы изделия;
- подбор пластмассы с требуемыми параметрами эксплуатационных свойств;
- проверка выбранной пластмассы по другим параметрам, не вошедшим в основные.
порядок выбора пластмассы следующий:
I. Составление поискового образа пластмассы:
- составление графа дерева свойств изделия,
- составление параметрического ряда и определение значения параметров,
- определение веса параметров с использованием метода расстановки приоритетов,
- установление порога совпадения поисковых параметров;
II. Порядок выбора:
- выбор материала по поисковым параметрам, начиная с наиболее ценного, методом последовательного приближения,
- при наличии нескольких равноценных марок материала сопоставление и выбор лучшей с помощью обобщенного показателя или по результатам опробования.
Выбор базовой марки полимера. Базовую марку полимера выбирают по вязкости (текучести) в зависимости от предполагаемого способа переработки. Далее подбирают базовую марку по вязкости (текучести) в зависимости от конфигурации и размеров детали. В справочниках (на пластмассы) обычно приведены конкретные рекомендации по применению различных марок пластмасс. Выбор литьевых марок пластмасс для литья под давлением наиболее сложен, поэтому приведем его.
Выбор базовых марок для литья под давлением. Основными параметрами при этом являются толщина детали S и отношение длины детали к тощине L/S. Керамика, основные виды и область применения
Термин «керамики» охватывает широкий круг материалов, например кирпич, камень, стекло и огнеупорные материалы. Керамики формуются из комбинации одного или более металлов с неметаллическим элементом, таким как кислород, азот или углерод. Керамики обычно твердые и хрупкие, хорошие электрические и тепловые изоляторы, обладают высоким сопротивлением химическому воздействию. У них низкое сопротивление термическому удару, поскольку они имеют низкие теплопроводность и термическое расширение.
Керамики чаще всего кристаллической структуры, хотя возможны аморфные состояния. Если, например, кварц в расплавленном состоянии охладить очень медленно, то он кристаллизуется в точке застывания. Однако если его охлаждать много быстрее, то его атомы не успевают расположиться в упорядоченном состоянии, как у кристалла, в связи с чем стекла характеризуются неупорядоченностью и неоднородностью внутреннего строения.
Технические керамики
В основе обычных технических керамик — глинозем (окись алюминия), нитрид кремния, карбиды: бора, кремния, тантала, вольфрама и циркония. Из-за повышенной твердости, хорошей из-носо- и теплостойкости они, как правило, используются в качестве пластин для режущих инструментов. Они соединены с такими связующими металлами, как никель, кобальт, хром или молибден, в форме композитного материала. Большинство обычных форм — это вольфрамовый карбид, связанный с кобальтом, а большинство комплексных форм включает целый ряд карбидов с кобальтом. Стекла
Главной составной частью большинства стекол является песок, т.е. керамический силикат. Обыкновенное оконное стекло сделано из смеси песка, известняка (углекислый кальций) и кальцинированной соды (углекислый натрий). Теплостойкие стекла, такие как пирекс, получены при замещении кальцинированной соды окисью бора. Предел прочности при растяжении определяют эффективно по микроскопическим дефектам и трещинам на поверхности. Стекла имеют низкую пластичность, обладают хрупкостью, имеют низкое тепловое расширение и низкую теплопроводность, а из-за этого и плохое сопротивление термическому удару. Закалка повышает прочность и термостойкость стекла. Стекла хорошие электрические изоляторы и стойки ко многим кислотам, растворителям и другим химикатам.
|
|
|