Главная страница
Навигация по странице:

  • Отношения «хищник–жертва» («продуцент–консумент»)

  • Отрицательные обратные связи

  • Отношения «паразит–хозяин» Паразитизм

  • Биогеоценозы

  • Количество энергии, проходящее через трофический уровень на единице площади за единицу времени, называется продуктивностью трофического уровня

  • Антропогенные экосистемы

  • Промышленные экосистемы – это экосистемы, формирующиеся на территории промышленных предприятий

  • Конспект экология. Введение Взаимодействие организма и среды


    Скачать 376 Kb.
    НазваниеВведение Взаимодействие организма и среды
    Дата14.05.2022
    Размер376 Kb.
    Формат файлаdoc
    Имя файлаКонспект экология.doc
    ТипРеферат
    #528689
    страница4 из 8
    1   2   3   4   5   6   7   8

    Мутуализм – это форма симбиоза, при которой два разных организма получают преимущество от совместного существования – такой тип взаимодействий называется реципрокным. Мутуализм относится к облигатным (обязательным) взаимодействиям, поскольку ни один из пары организмов не может существовать без партнера. Примерами трофического мутуализма служат взаимоотношения между термитами и обитающими в их кишечнике многожгутиковыми простейшими, между жвачными парнокопытными и обитающими в их желудке инфузориями.

    Протокооперация относится к факультативным (необязательным) взаимодействиям, поскольку оба партнера могут существовать друг без друга. Примерами протокооперации служат: симбиоз актинии и рака-отшельника, симбиоз между человеком и обитающими в его кишечнике непатогенными бактериями, наличие сходной предостерегающей окраски у разных защищенных видов насекомых, например, черно-желто-полосатая окраска тела ос, пчел и шмелей (мюллеровская мимикрия).

    Комменсализм – форма взаимодействий, при которой организм–комменсал использует организм хозяина как местообитание, но не вступает с ним в тесные метаболические взаимодействия. Как правило, комменсал получает выгоду от сотрудничества, а вид–хозяин при этом не страдает.

    Примеры комменсализма:

    – комменсал обитает в жилище хозяина (например, некоторые черви–нереиды поселяются в раковинах, занятых раками-отшельниками);

    – комменсал находит у хозяина защиту от других организмов (например, мелкие рыбы находят защиту между щупальцами кишечнополостных);

    – комменсал использует остатки пищи, которой питается хозяин, или пищу, которая сопутствует хозяину (например, многие птицы питаются насекомыми, которых вспугивают пасущиеся копытные).

     

    К сложным симбиотическим взаимодействиям относятся: взаимодействие между грибом и водорослью в теле лишайника, взаимодействия между проростками орхидей и грибами, между заростками плаунов и грибами.

    Симбиотические взаимодействия также описываются уравнениями Лотки–Вольтерра.

     

    Отношения «хищник–жертва» («продуцент–консумент»)

    Этот тип межвидовых взаимодействий отличается асимметрией. Популяция жертвы может существовать без популяции хищника, но популяция хищника не может существовать без популяции жертвы. Увеличение численности жертвы расширяет ресурсную базу хищника, а увеличение численности хищника является элиминирующим фактором для жертвы.

    Поэтому взаимодействие «хищник–жертва» носит периодический характер и описывается системой уравнений Лотки–Вольтерра, в которые вводятся константы хищничества. Устойчивость системы «хищник–жертва» основана на системе обратных связей.

    Положительные обратные связи означают, что при увеличении численности жертвы возрастает численность хищника, а при уменьшении численности жертвы численность хищника уменьшается.

    Отрицательные обратные связи означают, что при увеличении численности хищника численность жертвы уменьшается, а при уменьшении численности хищника численность жертвы увеличивается.

    При наличии специализированных хищников связь между популяцией жертвы и популяцией хищника оказывается более тесной. Если же хищник менее специализирован (полифаг), то взаимозависимость между популяциями выражена слабее.

     

    Отношения «паразит–хозяин»

    Паразитизм – это форма взаимоотношений, при которой организм–паразит использует хозяина и как местообитание, и как источник пищи. При истинном паразитизме метаболические системы паразита и хозяина неразрывно связаны.

    Различают следующие виды паразитизма:

    а) экзопаразитизм и эндопаразитизм – в первом случае паразит находится на поверхности тела хозяина, во втором случае – внутри тела хозяина;

    б) облигатный и факультативный – в первом случае паразит не может существовать без хозяина, во втором случае – способен и к самостоятельному существованию (например, используя трупы хозяев или отходы их жизнедеятельности);

    в) временный и стационарный – в первом случае паразит нападает на хозяина только для питания, во втором случае – проводит на хозяине большую часть жизни.

    При паразитизме во многих случаях наблюдается смена хозяев. Разным стадиям жизненного цикла паразитов часто соответствуют разные (обычно строго определенные) хозяева.

    Численность популяций при взаимодействиях «паразит–хозяин» также регулируется системой обратных связей. Но в отличие от хищников паразиты любого типа оказывают меньшее влияние на численность эксплуатируемой популяции, но зато сами паразиты вследствие специализации гораздо сильнее зависят от эксплуатируемой популяции, чем хищник от жертвы. Поэтому амплитуда колебаний численности паразита более тесно связана с амплитудой колебаний численности хозяина, но фазовый сдвиг значительно меньше, чем в системе «хищник–жертва».

    Подобные взаимодействия наблюдаются и при бэтсовской мимикрии. Бэтсовская мимикрия заключается  в том, что незащищенный вид–имитатор подражает внешнему виду защищенного вида–модели (пример: внешнее сходство незащищенных бабочек–стеклянниц и жалящих ос). Тогда можно считать, что незащищенный вид–имитатор «эксплуатирует» предостерегающую окраску защищенного вида–модели, то есть ведет себя подобно информационному паразиту. В этом случае численность вида–имитатора должна быть значительно ниже численности вида–модели.

     

    1. Экосистемы.

    Экосистема – это любое единство, включающее все организмы и весь комплекс физико-химических факторов и взаимодействующее с внешней средой. Экосистемы – это основные природные единицы на поверхности Земли.

    Учение об экосистемах было создано английским ботаником Артуром Тенсли (1935).

    Для экосистем характерен разного рода обмен веществ не только между организмами, но и между их живыми и неживыми компонентами. При изучении экосистем особое внимание уделяется функциональным связям между организмами, потокам энергии и круговороту веществ.

    Пространственно-временные границы экосистем могут выделяться достаточно произвольно. Экосистема может быть и долговечной (например, биосфера Земли), и кратковременной (например, экосистемы временных водоемов). Экосистемы могут быть естественными и искусственными. С точки зрения термодинамики, естественные экосистемы – всегда открытые системы (обмениваются с внешней средой веществом и энергией); искусственные экосистемы могут быть изолированными (обмениваются с внешней средой только энергией).

    Биогеоценозы. Параллельно с учением об экосистемах развивалось и учение о биогеоценозах, созданное Владимиром Николаевичем Сукачевым (1942).

    Биогеоценоз – это совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, растительности, животного мира и микроорганизмов, почвы, горной породы и гидрологических условий), имеющая свою особую специфику взаимодействий слагающих компонентов и определенный тип обмена веществом и энергией между собой и другими явлениями природы и представляющая собой внутренне противоречивое единство, находящееся в постоянном движении, развитии.

    Биогеоценозы характеризуются следующими чертами:

    – биогеоценоз связан с определенным участком земной поверхности; в отличие от экосистемы пространственные границы биогеоценозов не могут быть проведены произвольно;

    – биогеоценозы существуют длительное время;

    – биогеоценоз – это биокосная система, представляющая собой единство живой и неживой природы;

    – биогеоценоз – это элементарная биохорологическая ячейка биосферы (то есть биолого-пространственная единица биосферы);

    – биогеоценоз – это арена первичных эволюционных преобразований (то есть эволюция популяций протекает в конкретных естественноисторических условиях, в конкретных биогеоценозах).

    Таким образом, как и экосистема, биогеоценоз представляет собой единство биоценоза и его неживой среды обитания; при этом основой биогеоценоза является биоценоз. Понятия экосистемы и биогеоценоза внешне сходны, но, в действительности, они различны. Иначе говоря, любой биогеоценоз – это экосистема, но не любая экосистема – биогеоценоз.

     

    Поддержание жизнедеятельности организмов и круговорот веществ в экосистеме возможны только за счет постоянного притока высокоорганизованной энергии. Основным первичным источником энергии на Земле является солнечная энергия.

    В экосистемах наблюдается постоянный поток энергии, которая переходит из одной формы в другую.

    Фотосинтезирующие организмы переводят энергию солнечного света в энергию химических связей органических веществ. Эти организмы являются производителями, или продуцентами органического вещества. В большинстве случаев функции продуцентов в экосистемах выполняют растения.

    Гетеротрофные организмы получают энергию при поглощении органических веществ и называются потребителями, или консументами. Существуют консументы первого порядка (растительноядные организмы, или фитофаги), второго порядка (организмы, питающиеся фитофагами, или зоофаги) и высших порядков (хищники и сверх–хищники, паразиты и сверх–паразиты). В большинстве случаев функции консументов в экосистемах выполняют животные. Организмы, которые специализируются на добывании строго определенной пищи, называются монофаги. Организмы, которые могут питаться различной пищей, называются полифаги. Для полифагов характерен широкий спектр питания, включающий основную, второстепенную и случайную пищу.

    Погибшие организмы и отходы жизнедеятельности в любой форме потребляются организмами, разрушающими мертвое органическое вещество до неорганических веществ – редуцентами, или деструкторами. К редуцентам относятся различные животные (как правило, беспозвоночные), грибы, прокариоты:

    некрофаги – трупоеды;

    копрофаги (копрофилы, копротрофы) – питаются экскрементами;

    сапрофаги (сапрофиты, сапрофилы, сапротрофы) – питаются мертвым органическим веществом (опавшими листьями, линочными шкурками); к сапрофагам относятся:

    ксилофаги (ксилофилы, ксилотрофы) – питаются древесиной;

    кератинофаги (кератинофилы, кератинотрофы) – питаются роговым веществом;

    детритофаги – питаются полуразложившимся органическим веществом;

    окончательные минерализаторы – полностью разлагают органическое вещество.

    Продуценты и редуценты обеспечивают круговорот веществ в экосистеме: окисленные формы углерода и минеральных веществ превращаются в восстановленные и наоборот; происходит превращение неорганических веществ в органические, а органических – в неорганические.

     

    При последовательной передаче энергии от одних организмов к другим образуются пищевые (трофические) цепи.

    Трофические цепи, которые начинаются с продуцентов, называются пастбищные цепи, или цепи выедания. Отдельные звенья пищевых цепей называются трофические уровни. В пастбищных цепях выделяют следующие уровни:

    1-й уровень – продуценты (растения);

    2-й уровень – консументы первого порядка (фитофаги);

    3-й уровень – консументы второго порядка (зоофаги);

    4-й уровень – консументы третьего порядка (хищники);

    5-й уровень – консументы высших порядков (сверх–хищники, паразиты и сверх–паразиты).

    Погибшие организмы и отходы жизнедеятельности каждого уровня разрушаются редуцентами. Трофические цепи, которые начинаются с редуцентов, называются детритные цепи. Детритные цепи являются основой существования зависимых экосистем, в которых органического вещества, произведенного продуцентами, недостаточно для обеспечения энергией консументов (например, глубоководные экосистемы, экосистемы пещер, экосистемы почвы). В этом случае существование экосистемы возможно за счет энергии, содержащейся в мертвом органическом веществе.

    Органическое вещество, находящееся на каждом трофическом уровне, может потребляться различными организмами и различными способами. Один и тот же организм может относиться к разным трофическим уровням. Таким образом, в реальных экосистемах пищевые цепи превращаются в пищевые сети.

    Ниже приведен фрагмент пищевой сети смешанного леса.

     

    Количество энергии, проходящее через трофический уровень на единице площади за единицу времени, называется продуктивностью трофического уровня. Продуктивность измеряется в ккал/га·год или других единицах (в тоннах сухого вещества на 1 га за год; в миллиграммах углерода на 1 кв. метр или на 1 куб. метр за сутки и т. д.).

    Энергия, поступившая на трофический уровень, называется валовой первичной продуктивностью (для продуцентов) или рационом (для консументов). Часть этой энергии расходуется на поддержание процессов жизнедеятельности (метаболические затраты, или затраты на дыхание), часть – на образование отходов жизнедеятельности (опад у растений, экскременты, линочные шкурки и иные отходы у животных), часть – на прирост биомассы. Часть энергии, затраченная на прирост биомассы, может быть потреблена консументами следующего трофического уровня.

    Энергетический баланс трофического уровня может быть записан в виде следующих уравнений:

    (1) валовая первичная продуктивность = дыхание + опад + прирост биомассы

    (2) рацион = дыхание + отходы жизнедеятельности

    + прирост биомассы

    Первое уравнение применяется по отношению к продуцентам, второе – по отношению к консументам и редуцентам.

    Разность между валовой первичной продуктивностью (рационом) и затратами на дыхание называется чистой первичной продуктивностью трофического уровня. Энергия, которая может быть потреблена консументами следующего трофического уровня, называется вторичной продуктивностью рассматриваемого трофического уровня.

    При переходе энергии с одного уровня на другой часть ее безвозвратно теряется: в виде теплового излучения (затраты на дыхание), в виде отходов жизнедеятельности. Поэтому количество высокоорганизованной энергии постоянно уменьшается при переходе с одного трофического уровня на последующий. В среднем на данный трофический уровень поступает ≈ 10 % энергии, поступившей на предыдущий трофический уровень; эта закономерность называется правилом «десяти процентов», или правилом экологической пирамиды. Поэтому количество трофических уровней всегда ограничено (4-5 звеньев), например, уже на четвертый уровень поступает только 1/1000 часть энергии от поступившей на первый уровень.

     

    В формирующихся экосистемах на образование вторичной продукции расходуется лишь часть прироста биомассы; в экосистеме происходит накопление органического вещества. Такие экосистемы закономерно сменяются другими типами экосистем. Закономерная смена экосистем на определенной территории называется сукцессия. Пример сукцессии: озеро → зарастающее озеро →болото → торфяник → лес.

    Различают следующие формы сукцессий:

    первичные – возникают на ранее незаселенных территориях (например, на незадернованных песках, скалах); биоценозы, первоначально формирующиеся в таких условиях, называются пионерными сообществами;

    вторичные – возникают в нарушенных местообитаниях (например, после пожаров, на вырубках);

    обратимые – возможен возврат к ранее существовавшей экосистеме (например, березняк → гарь → березняк → ельник);

    необратимые – возврат к ранее существовавшей экосистеме невозможен (например, уничтожение реликтовых экосистем; реликтовая экосистема – это экосистема, сохранившаяся от прошлых геологических периодов);

    антропогенные – возникающие под воздействием человеческой деятельности.

    Накопление органического вещества и энергии на трофических уровнях приводит к повышению устойчивости экосистемы. В ходе сукцессии в определенных почвенно-климатических условиях формируются окончательные климаксные сообщества. В климаксных сообществах весь прирост биомассы трофического уровня расходуется на образование вторичной продукции. Такие экосистемы могут существовать бесконечно долго.

    В деградирующих (зависимых) экосистемах энергетический баланс отрицательный – энергии, поступившей на низшие трофические уровни, недостаточно для функционирования высших трофических уровней. Такие экосистемы неустойчивы и могут существовать только при дополнительных затратах энергии (например, экосистемы населенных пунктов и антропогенных ландшафтов). Как правило, в деградирующих экосистемах число трофических уровней снижается до минимума, что еще больше увеличивает их неустойчивость.

     

    Антропогенные экосистемы

    К основным типам антропогенных экосистем относятся агробиоценозы и промышленные экосистемы.

    Агробиоценозы – это  экосистемы, созданные человеком для получения сельскохозяйственной продукции.

    В результате севооборотов в агробиоценозах обычно происходит смена видового состава растений. Поэтому при описании агробиоценоза дается его характеристика на протяжении нескольких лет.

    Особенности агробиоценозов:

    – обедненный видовой состав продуцентов (монокультура);

    – систематический вынос элементов минерального питания с урожаем и необходимость внесения удобрений;

    – благоприятные условия для размножения вредителей в связи с монокультурой и необходимость применения средств защиты растений;

    – необходимость уничтожения сорняков – конкурентов культурных растений;

    – сокращение числа трофических уровней в связи с обедненностью видового разнообразия; упрощение цепей (сетей) питания;

    – невозможность самовоспроизведения и саморегуляции.

    Для поддержания устойчивости агробиоценозов необходимы дополнительные затраты энергии. Например, в экономически развитых странах для производства одной пищевой калории затрачивается 5-7 калорий энергии ископаемого топлива.

    Промышленные экосистемы – это экосистемы, формирующиеся на территории промышленных предприятий. Промышленные экосистемы характеризуются следующими особенностями:

    – высокий уровень загрязненности (физические, химические и биологические загрязнения);

    – высокая зависимость от внешних источников энергии;

    – исключительная обедненность видового разнообразия;

    – неблагоприятное влияние на смежные экосистемы.

    Для контроля за состоянием антропогенных экосистем используются экологические знания.

    На первом этапе работы необходима комплексная инвентаризация (паспортизация) антропогенных экосистем. Полученные данные необходимо проанализировать, выявить состояние экосистемы, степень ее устойчивости. В ряде случаев необходимо поставить эксперименты, спланированные для выявления действия комплекса факторов.

    На следующем этапе ведется построение комплексных моделей, объясняющих имеющееся состояние экосистемы и служащих для прогнозирования изменений. Вырабатываются и исполняются рекомендации по повышению устойчивости экосистем. Постоянно ведется корректировка управления деятельностью человека.

    На заключительном этапе работы планируется и осуществляется система наблюдений за состоянием экосистемы – экологический мониторинг (от англ. monitor – подстерегающий). При осуществлении экологического мониторинга используются физико-химические измерительные методы, а также методы биотестирования и биоиндикации.
    1   2   3   4   5   6   7   8


    написать администратору сайта