Главная страница

Вариант 3. Задача По территории региона приводятся данные за 199Х год Номер региона


Скачать 285.93 Kb.
НазваниеЗадача По территории региона приводятся данные за 199Х год Номер региона
Дата06.12.2021
Размер285.93 Kb.
Формат файлаdocx
Имя файлаВариант 3.docx
ТипЗадача
#293512
страница3 из 3
1   2   3
фактора , чем фактора .

  1. Коэффициенты парной корреляции мы уже нашли:

; ; .

Они указывают на весьма сильную связь каждого фактора с результатом, а также высокую межфакторную зависимость (факторы и явно коллинеарны, т.к. ). При такой сильной межфакторной зависимости рекомендуется один из факторов исключить из рассмотрения.

Частные коэффициенты корреляции характеризуют тесноту связи между результатом и соответствующим фактором при элиминировании (устранении влияния) других факторов, включенных в уравнение регрессии.

При двух факторах частные коэффициенты корреляции рассчитываются следующим образом:

;

.

Если сравнить коэффициенты парной и частной корреляции, то можно увидеть, что из-за высокой межфакторной зависимости коэффициенты парной корреляции дают завышенные оценки тесноты связи. Именно по этой причине рекомендуется при наличии сильной коллинеарности (взаимосвязи) факторов исключать из исследования тот фактор, у которого теснота парной зависимости меньше, чем теснота межфакторной связи.

Коэффициент множественной корреляции определить через матрицу парных коэффициентов корреляции:

,

где



– определитель матрицы парных коэффициентов корреляции;



– определитель матрицы межфакторной корреляции.

;

.

Коэффициент множественной корреляции

.

Коэффициент множественной корреляции показывает на весьма сильную связь всего набора факторов с результатом.

  1. Нескорректированный коэффициент множественной детерминации оценивает долю вариации результата за счет представленных в уравнении факторов в общей вариации результата. Здесь эта доля составляет и указывает на весьма высокую степень обусловленности вариации результата вариацией факторов, иными словами – на весьма тесную связь факторов с результатом.

Скорректированный коэффициент множественной детерминации



определяет тесноту связи с учетом степеней свободы общей и остаточной дисперсий. Он дает такую оценку тесноты связи, которая не зависит от числа факторов и поэтому может сравниваться по разным моделям с разным числом факторов. Оба коэффициента указывают на весьма высокую (более ) детерминированность результата в модели факторами и .

  1. Оценку надежности уравнения регрессии в целом и показателя тесноты связи дает -критерий Фишера:

.

В нашем случае фактическое значение -критерия Фишера:

.

Получили, что (при ), т.е. вероятность случайно получить такое значение -критерия не превышает допустимый уровень значимости . Следовательно, полученное значение не случайно, оно сформировалось под влиянием существенных факторов, т.е. подтверждается статистическая значимость всего уравнения и показателя тесноты связи .

  1. С помощью частных -критериев Фишера оценим целесообразность включения в уравнение множественной регрессии фактора после и фактора после при помощи формул:

;

.

Найдем и .

;

.

Имеем

;

.

Получили, что . Следовательно, включение в модель фактора после того, как в модель включен фактор статистически нецелесообразно: прирост факторной дисперсии за счет дополнительного признака оказывается незначительным, несущественным; фактор включать в уравнение после фактора не следует.

Если поменять первоначальный порядок включения факторов в модель и рассмотреть вариант включения после , то результат расчета частного -критерия для будет иным. , т.е. вероятность его случайного формирования меньше принятого стандарта . Следовательно, значение частного -критерия для дополнительно включенного фактора не случайно, является статистически значимым, надежным, достоверным: прирост факторной дисперсии за счет дополнительного фактора является существенным. Фактор должен присутствовать в уравнении, в том числе в варианте, когда он дополнительно включается после фактора .

  1. Общий вывод состоит в том, что множественная модель с факторами и с содержит неинформативный фактор . Если исключить фактор , то можно ограничиться уравнением парной регрессии:

,
1   2   3


написать администратору сайта