Детали машин проект по модулю проектирование ступенчатого редуктора. Детали машин Проект по модулю. Задание на проектирование 6 Исходные данные 7
Скачать 1.97 Mb.
|
2.3 Проектный расчет передачигде Ка=410 для непрямозубых передач. Примем коэффициент ширины зубчатого венца для шевронной передачи ψba=0,63. На этапе проектного расчета задаемся значением коэффициента контактной нагрузки KH=1,2. Тогда: Полученное межосевое расстояние округлим до большего стандартного значения aw=225 мм. Рекомендуемый диапазон для выбора модуля: Из полученного диапазона выбираем стандартный модуль mn = 3 мм. Суммарное число зубьев шевронной передачи: Полученное значение округляем до ближайшего целого: . Уточним угол наклона зубьев шевронной передачи: Число зубьев шестерни: Полученное значение Z1 округлим до ближайшего целого числа Z1 = 22. Число зубьев колеса: Фактическое передаточное число: При u > 4,5 отличие фактического передаточного числа от номинального не должно превышать 4%: Ширина зубчатого венца колеса и шестерни: Округлим bw2 и bw1 до ближайших значений из ряда нормальных линейных размеров bw2=140 мм. Ширину зубчатого венца шестерни примем bw1=150 мм. Определим диаметры окружностей зубчатых колес: -делительные окружности: -окружности вершин зубьев -окружности впадин зубьев Для полученной скорости назначим степень точности непрямозубой передачи, учитывая, что nст=9 для закрытой зубчатой передачи применять не рекомендуется, примем nст=8. 2.4 Проверочный расчет передачи2.4.1 Проверка контактной прочности зубьевИспользуем формулу: где Zσ=8400 для шевронных передач. Коэффициент контактной нагрузки: Коэффициент неравномерности распределения нагрузки между зубьями: где А=0,15 для шевронных передач, Kw – коэффициент, учитывающий приработку зубьев. При НВ2 350 используем формулу: Тогда: Коэффициент неравномерности распределения нагрузки по ширине колеса: где K0Hβ – коэффициент неравномерности распределения нагрузки в начальный период работы. Для определения K0Hβ найдем коэффициент ширины венца по диаметру: По значению Ψbd определим K0Hβ, применяя линейную интерполяцию, K0Hβ=1,149. Тогда: Динамический коэффициент KHV=1,145 определили методом линейной интерполяции. Окончательно найдем: Поскольку , выполним расчет недогрузки по контактным напряжениям: 2.4.2 Проверка изгибной прочности зубьевНапряжения изгиба в зубе шестерни: Коэффициент формы зуба при xj=0: где – эквивалентное число зубьев. Коэффициент, учитывающие влияние угла наклона зуба на его прочность для шевронной передачи: Коэффициент торцевого перекрытия: Коэффициент, учитывающие перекрытие зубьев: Коэффициент нагрузки при изгибе: Для определения его коэффициентов используем зависимости: Тогда: где Напряжение в зубьях колеса: где |