Главная страница
Навигация по странице:

  • Морфология и физиология вирусов

  • Классификация вирусов (тип НК, строение генома, тип симметрии, число капсомеров, наличие суперкапсида

  • Метопы лабораторной диагностики вирусных инфекций.

  • Занятие 15 История открытия вирусов


    Скачать 244.4 Kb.
    НазваниеЗанятие 15 История открытия вирусов
    Дата25.12.2021
    Размер244.4 Kb.
    Формат файлаdocx
    Имя файлаMB15-16.docx
    ТипЗанятие
    #317739
    страница1 из 5
      1   2   3   4   5

    Занятие 15

    1. История открытия вирусов:

    В 80-е годы 19 века на юге России табачные плантации подверглись грозному нашествию. Отмирали верхушки растений, на листьях появлялись светлые пятна, год от года число пораженных полей увеличивалось, а причина заболеваний неизвестна.

    В Бессарабию и Украину была направлена экспедиция, в которую входили Д.И. Ивановский и В.В. Половцев.

    В 1892 году Ивановский открыл новое царство живых существ.

    На поиски возбудителей болезни Ивановский потратил несколько лет. Он собирал факты, делал наблюдения, расспрашивал крестьян о симптомах болезни, и экспериментировал. Опыты показали, что дело не в составляющих растения – корневой системе, семенах, пыльце или цветках: болезнетворное начало поражает растения иным путём. Тогда молодой учёный ставит простой опыт. Он собирает больные листья, измельчает их и закапывает на участках со здоровыми растениями. Через некоторое время растения заболевают. Итак, путь от больного растения к здоровому найден. Возбудитель передаётся листьями, попавшими в почву, перезимовывает и весной поражает посевы.

    Но о самом возбудителе он так ничего и не узнал. Его опыты показали лишь одно, – нечто заразное содержится в соке. В эти годы ещё несколько учёных в мире бились над опознанием этого "нечто". А. Майер в Голландии предложил, что заразное начало – бактерии. Однако Ивановский доказал, что Майер ошибся, посчитав носителями болезни бактерии. Профильтровав заразный сок через тонкопористые фарфоровые фильтры, он осадил на них бактерии. Теперь бактерии удалены… но заразность сока сохранилась.

    Итак, этот непонятный агент, вызывающий болезнь не размножается на искусственных средах, проникает сквозь самые тонкие поры, погибает при нагревании. Фильтруемый яд. Таким был вывод ученого. Но яд это – вещество, а возбудитель болезни табака был существом. Он отлично размножался в листьях растений.

    Так Ивановский открыл новое царство живых организмов, самых мелких из всех живых и потому невидимых в световом микроскопе, проходящих сквозь тончайшие фильтры, сохраняющихся в соке годами и при этом не теряющих вирулентности.

    Итак, как было выяснено, вирусы проходят через фильтры, задерживающие бактерии. Они не растут даже на самых сложных по составу питательных средах и развиваются только в живых организмах, что считалось основным критерием отличия развития вирусов от других микроорганизмов. Но были открыты бактерии, не развивающиеся на питательных средах - риккетсии и хламидии. Таким образом, живая клетка - единственная возможная среда обитания для вирусов, риккетсий, хламидий и некоторых простейших. Но сейчас выяснилось, что вирусы для своего размножения не нуждаются в целой клетке, им достаточно её одной определённой части.

    1. Морфология и физиология вирусов:


    Вирус - неклеточный инфекционный агент, не видимый в обыкновенный микроскоп.

    Отличительные признаки:

    1) содержат лишь один тип нуклеиновой кислоты (РНК или ДНК);

    2) не имеют собственных белоксинтезирующих и энергетических систем;

    3) не имеют клеточной организации;

    4) обладают дизъюнктивным (разобщенным) способом репродукции (синтез белков и нуклеиновых кислот происходит в разных местах и в разное время);

    5) облигатный паразитизм вирусов реализуется на генетическом уровне;

    6) вирусы проходят через бактериальные фильтры.

    Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).

    • форма вириона, размер, методы определения;

    Вирион-полностью сформированная инфекционная частица, состоящая из нуклеиновой кислоты и капсида (оболочки, состоящей из белка и, реже, липидов) и находящаяся вне живой клетки.

    По форме вирионы могут быть:

    1) округлыми;

    2) палочковидными;

    3) в виде правильных многоугольников;

    4) нитевидными и др.

    Размеры их колеблются от 15–18 до 300–400 нм.

    Методы определения размеров:

    1. Фильтрование через бактериальные фильтры с известной величиной спор

    Фильтрование через коллодиевые мембраны. Метод основан на пропускании вируссодержащего материала через мембраны с известным размером пор. Размер вирусной частицы в данном случае определяется весьма приблизительно.

    2. Ультрацентрифугирование. Осаждение при ультрацентрифугировании. Многие способы определения размеров вирионов основаны на анализе скорости их движения в суспендирующей жидкости. Частицы, взвешенные в жидкости, оседают с разной скоростью, благодаря чему компоненты взвеси можно быстро разделить центрифугированием. Крупные вирусы осаждаются быстрее.

    3. Фотографирование вирусов в электронном микроскопе.

    Электронная микроскопия – наиболее широко применяемый метод определения размеров вирусных частиц. Метод исключительно быстр, прост и позволяет судить не только о размере вирионов, но отчасти об их форме и характере симметрии.

    • строение вириона: нуклеопротеид, капсид, капсомеры, суперкапсид:

    Вирионы состоят из ДНК или РНК и белков. Это комплексы нуклеиновых кислот и белков - нуклеопротеиды. ДНК или РНК находятся в центре, а снаружи – одна или две оболочки.

    Функции ДНК или РНК - хранение и передача наследственной информации.

    Функции белков: а) защитная функция (белки капсида);б) стабилизация структуры нуклеиновой кислоты (внутренние белки);в) ферментативная функция; ферменты вирусной частицы участвуют в проникновении в клетку (лизоцим, АТФаза и т.д.), в репликации и транскрипции (ДНК- и РНК-полимеразы).

    Если вирусы имеют одну оболочку, они называются простыми. Эта оболочка состоит из белковых субъединиц – капсомеров и называется капсид. Нуклеиновая кислота и капсид вместе называются нуклеокапсидом.

    Если вирусы имеют две оболочки они называются сложными. Вторая оболочка называется суперкапсид. Суперкапсид образуется при выходе вируса из клетки-хозяина, поэтому в его составе имеются углеводы и липиды мембраны этой клетки.

    Липиды и углеводы сложных вирусов образуют комплексы с белками – липопротеиды и гликопротеиды. Они защищают вирусы от неблагоприятных условий. Гликопротеиды – вирусные антигены – гемагглютинины, которые вызывают реакцию агглютинации эритроцитов.

    • этапы взаимодействия вируса с чувствительной клеткой, тропизм вирусов.

    Основные этапы взаимодействия вируса с клеткой хозяина.

    1.Адсорбция- пусковой механизм, связанный со взаимодействием специфических рецепторов вируса и хозяина (у вируса гриппа- гемагглютинин, у вируса иммунодефицита человека- гликопротеин gp 120).

    2.Проникновение- путем слияния суперкапсида с мембраной клетки или путем эндоцитоза (пиноцитоза).

    3.Освобождение нуклеиновых кислот- “раздевание” нуклеокапсида и активация нуклеиновой кислоты.

    4.Синтез нуклеиновых кислот и вирусных белков, т.е. подчинение систем клетки хозяина и их работа на воспроизводство вируса.

    5.Сборка вирионов- ассоциация реплицированных копий вирусной нуклеиновой кислоты с капсидным белком.

    6.Выход вирусных частиц из клетки, приобретения суперкапсида оболочечными вирусами.

    Исходы взаимодействия вирусов с клеткой хозяина.

    1.Абортивный процесс- когда клетки освобождаются от вируса:

    - при инфицировании дефектным вирусом, для репликации которого нужен вирус- помощник, самостоятельная репликация этих вирусов невозможна ( так называемые вирусоиды). Например, вирус дельта (D) гепатита может реплицироваться только при наличии вируса гепатита B, его Hbs — антигена, аденоассоциированный вирус- в присутствии аденовируса);

    - при инфицировании вирусом генетически нечувствительных к нему клеток;

    - при заражении чувствительных клеток вирусом в неразрешающих условиях.

    2.Продуктивный процесс- репликация (продукция) вирусов:

    - гибель (лизис) клеток (цитопатический эффект)- результат интенсивного размножения и формирования большого количества вирусных частиц — характерный результат продуктивного процесса, вызванного вирусами с высокой цитопатогенностью. Цитопатический эффект действия на клеточные культуры для многих вирусов носит достаточно узнаваемый специфический характер;

    - стабильное взаимодействие, не приводящее к гибели клетки (персистирующие и латентные инфекции) — так называемая вирусная трансформация клетки.

    3.Интегративный процесс- интеграция вирусного генома с геномом клетки хозяина. Это особый вариант продуктивного процесса по типу стабильного взаимодействия. Вирус реплицируется вместе с геномом клетки хозяина и может длительно находиться в латентном состоянии. Встраиваться в ДНК- геном хозяина могут только ДНК- вирусы (принцип “ДНК- в ДНК”). Единственные РНК- вирусы, способные интегрироваться в геном клетки хозяина- ретровирусы, имеют для этого специальный механизм. Особенность их репродукции- синтез ДНК провируса на основе геномной РНК с помощью фермента обратной транскриптазы с последующим встраиванием ДНК в геном хозяина.

    Проявление тропизма вирусов.

    Тропизм – свойство вирусов действоать на клетки и ткани определённого типа.

    По тропизму вирусы делят на:

    1 Вирусы животных (например вирус собачьей чумы)

    2 Вирусы растений

    3 Вирусы бактерий (бактериофаги)

    Классификация по тропизму к различным тканям:

    1 Пневмотропные – поражающие верхние дыхательные пути

    2 Нейротропные преимущественно поражающие ЦНС (энцефалит)

    3 Дерматотропные вызывают поражение кожи (оспа ветрянка)

    4 Пантропные вирусы которые поражают все или почти все органы и ткани ( натуральная оспа) Вирус герпеса к примеру поражает печень, лёгкие, желудок (язва желудка).

    1. Классификация вирусов (тип НК, строение генома, тип симметрии, число капсомеров, наличие суперкапсида, форма, размер, тропизм, антигены, экология - хозяева, переносчики, пути передачи).

    тип НК: Вирусы содержат только один тип нуклеиновой кислоты, ДНК или РНК, но не оба типа одновременно.

    строение генома: процентное содержание НК в вирионе, молекулярная масса. Они обычно гаплоидны, т.е. име­ют один набор генов. Геном вирусов представлен различными видами нуклеиновых кислот: двунитчатыми, однонитчатыми, линейными, кольцевыми, фрагментированными.

    тип симметрии:

    1). Кубический тип симметрии.

    Кубические капсиды представляют собой косайдеры обладающий примерно 20-ю треугольными поверхностями и 12 вершинами. Они формируют напоминающую сферическое образование структуру, но на самом деле это многогранник. В ряде случаев к вершинам таких косаэдрических многогранников прикрепляются особые липопротеиновые образования именуемые шипами. Роль этих шипов предположительно сводится к взаимодействию вирионов или вирусных частиц с соответствующими участками чувствительных к ним клеток хозяев. При кубической симметрии вирусная нуклеиновая кислота уложена плотно (свернута в клубок), а белковые молекулы окружают ее, образуя многогранник (икосаэдр). Икосаэдр – многогранник с двадцатью треугольными гранями, имеющий кубическую симметрию и приблизительно сферическую форму (рис. 27). К икосаэдрическим вирусам относятся вирус простого герпеса, реовирусы и др.

    2). Спиральный тип симметрии. Спиральные капсиды устроены несколько проще. Т е капсомеры составляющие капсид покрывают спиральную НК и формируют тоже достаточно стабильную белковую оболочку этих вирусов. И при использовании высокоразрешающих электронных микроскопов и соответствующих методов приготовления препарата можно видеть спирализованные структуры на вирусах. При спиральной симметрии капсида вирусная нуклеиновая кислота образует спиральную (или винтообразную) фигуру, полую внутри, и субъединицы белка (капсомеры) укладываются вокруг нее тоже по спирали (трубчатый капсид) (рис. 26). Примером вируса со спиральной симметрией капсида является вирус табачной мозаики, который имеет палочковидную форму, а его длина составляет 300 нм с диаметром 15 нм. В состав вирусной частицы входит одна молекула РНК размером около 6000 нуклеотидов. Капсид состоит из 2000 идентичных субъединиц белка, уложенных по спирали.

    число капсомеров: число капсомеров для каждого вируса является постоянным, оно имеет диагностическое значение. Например, вирион аденовирусов имеет 252 капсомера, у паповавирусов - 72.

    наличие суперкапсида: «+»-сложные или «-»-простые

    форма: различны, они могут быть нитевидными, сферическими, пулевидными, палочковидными, многоугольными, кирпичеобразными, кубическими, при этом некоторые имеют кубическую головку и отросток.

    размер: варьируют в пределах от 20 до 300 нм

    тропизм: см.выше

    антигены: различают несколько групп антигенов: ядерные (или коровые), капсидные (или оболочечные) и суперкапсидные. На поверхности некоторых вирусных частиц встречаются особые V-антигены — гемагглютинин и фермент нейраминидаза. Антигены вирусов различаются по происхождению. Часть из них — вирусоспецифические. Информация об их строении картирована в нуклеиновой кислоте вируса.

    экология – хозяева:

    У вирусов эволюционно сформировались 3 среды обитания:

    Чувствительная клетка или микросреда, в которой протекает наиболее активная фаза жизни вируса с комплексом молекулярно-биологических процессов в процессе репродукции.

    Организм хозяина, макросреда. Эта среда своими защитными механизмами оказывает большое влияние и вирусы проявляют весь арсенал «нападения» на организм хозяина.
    Окружающая внешняя среда, экзосреда. Вирусы с экскретами, калом и с другими выделениями выводится из организма хозяина во внешнюю среду, а там на них действуют физические и химические факторы внешней среды.

    переносчики: основными переносчиками вирусов служат насекомые, животные, человек

    пути передачи:

    Способы передачи вирусных заболеваний. Капельная инфекция - самый обычный способ распространения респираторных заболеваний. При кашле и чихании в воздух выбрасываются миллионы крошечных капелек жидкости (слизи и слюны). Эти капли вместе с находящимися в них живыми вирусами могут вдохнуть другие люди, особенно в местах скопления большого количества народа, к тому же еще и плохо вентилируемых. Стандартные гигиенические приемы для защиты от капельной инфекции правильное пользование носовыми платками и проветривание комнат. Некоторые микроорганизмы, такие, как вирус оспы, очень устойчивы к высыханию и сохраняются в пыли, содержащей высохшие остатки капель. Даже при разговоре изо рта вылетают микроскопические брызги слюны, поэтому подобного рода инфекции очень трудно предотвратить, особенно если микроорганизм очень вирулентен (заразен). Контагиозная передача (при непосредственном физическом контакте). В результате непосредственного физического контакта с больными людьми или животными передаются сравнительно немногие болезни. Сюда прежде всего относятся венерические (т. е. передающиеся половым путем) болезни, такие, как СПИД. К контагиозным вирусным болезням относятся обычные бородавки (папилломавирус) и простой герпес - "лихорадка" на губах. Переносчик - это любой живой организм, который разносит инфекцию. Он получает инфекционное начало от организма, называемого резервуаром или носителем. Вирус бешенства сохраняется и передается одним и тем же животным, например собакой или летучей мышью. В этих случаях переносчик выступает в качестве второго хозяина, в теле которого может размножаться патогенный микроорганизм. Насекомые могут переносить возбудителей болезней на наружных покровах тела.

    1. Метопы лабораторной диагностики вирусных инфекций.

    1.Быстрые (экспресс-методы) — прямое обнаружение вируса или его компонентов (антигенов, НК), включений непосредственно в клиническом материале.

    II. Вирусологический метод основан на:

    • культивировании вирусов в чувствительных биологических системах (клеточных культурах, курином эмбрионе, организмах лабораторных животных),

    • их индикации по цитопатогенному действию на биологическую систему,

    • идентификации по ингибиции действия вирусов соответствующими противовирусными антителами.

    III. Серологический метод — определение противовирусных антител (оптимально — IgM) и/или определение динамики нарастания их титров за определенный период заболевания в парных сыворотках. Диагностически значимым считают нарастание титра антител в 4 и более раз.

    5. Противовирусный иммунитет:

    Противовирусный иммунитет – состояние устойчивости организма к патогенному вирусу, осуществляемое системой иммунитета. Однако кроме системы иммунитета невосприимчивость к инфекции зависит от неиммунитетных факторов.

    • видовая резистентность;

    Видовая невосприимчивость – это генетически закрепленную невосприимчивость одного вида животных к возбудителю, вызывающему инфекционное заболевание у другого вида (например, человек не болеет чумкой собак и кошек, а крысы не болеют дифтерией).

    Причины видовой невосприимчивости:

    Видовая невосприимчивость бывает абсолютной (ни при каких обстоятельствах нельзя воспроизвести инфекционное заболевание) и относительной (при определенных условиях можно привить болезнь, так, например, Л. Пастеру показал, что у кур, обладающих невосприимчивостью к сибирской язве, можно вызвать данное заболевание путем понижения температуры тела).

    • неспецифические механизмы резистентности (вирусные ингибиторы,интерферон, комплемент, фагоцитоз);

    Приобретенный иммунитет против вирусов характеризуется действием как специфических, так и неспецифических факторов защиты. К неспецифическим факторам относятся вирусные ингибиторы и интерферон.

    Ингибиторы, способные нейтрализовать активность вирусов, содержатся в плазме крови, секретах, тканях животных и человека; они действуют как на ДНК, так и на РНК-содержащие вирусы. Наряду с качественными и количественными различиями в содержании сывороточных ингибиторов у различных видов животных существуют индивидуальные, а также колебания в количестве ингибиторов у одного и того же животного в разные периоды жизни. Ингибиторы делятся на:

    1) термолабильные (рингибиторы), разрушающиеся при температуре 62—65 °С в течение часа,

    2) термостабильные: умеренно термостабильные (аингибиторы), разрушающиеся при температуре 75 °С, и высокотермостабильные (уингибиторы), выдерживающие нагревание до 100 °С.

    Термолабильные рингибиторы, являющиеся липопротеинами, обычно очень активны и способны нейтрализовать инфекционную активность ряда вирусов: гриппа (типов А и В), парагриппозных, аденовирусов, энтеровирусов, вируса кори и др.

    Умеренно термостабильные «ингибиторы (ингибитор Френсиса) являются мукопротеинами. Высокотермостабильный уингибитор обнаружен в сыворотке крови многих животных и человека. Активность его очень велика: он способен нейтрализовать сотни и тысячи инфекционных доз вируса гриппа. По химическому составу ингибитор является нерастворимым эйглобулином, соединенным с белком. Количество ингибиторов в организме животных при заболевании или иммунизации изменяется.

    Механизм действия вирусных ингибиторов и антител сходен. При взаимодействии с вирусами ингибиторы оседают на поверхности вириона, блокируя его, в результате чего вирус теряет способность адсорбироваться чувствительной клеткой, не может в нее проникнуть и репродуцироваться. Поскольку ингибиторы обладают довольно широким спектром активности в отношении различных вирусов, их можно считать факторами неспецифического иммунитета. Однако некоторая специфичность действия ингибиторов все же имеется. Она связана с общими химическими группами у вирусных частиц, которые и взаимодействуют с ингибиторами. Так, ингибиторы, относящиеся к категории мукополисахаридов и имеющие в составе нейраминовую кислоту, нейтрализуют миксовирусы, а ингибиторы, относящиеся к категории липопротеинов, подавляют активность вирусов полиомиелита, клещевого энцефалита и др.

    Интерфероны (ИФН или IFN) представляют собой разновидность специфических гликопротеинов, которые оказывают множество биологических эффектов широкого спектра, вырабатываются многими клетками в ответ на внедрение вируса или сложных биополимеров. Интерферон, образованный клетками человека, функционально активен только в организме человека, но не животных, и наоборот, т.е. обладает видовой специфичностью.

    Выделяют три главных класса интерферонов: альфа-интерферон вырабатывают В-лимфоциты, его получают из лейкоцитов крови (лейкоцитарный); бетта-интерферон получают при заражении вирусами культуры клеток фибробластов человека (фибробластный) и гамма-интерферон получают из иммунных Т-лимфоцитов, сенсибилизированных антигенами (иммунный).

    Действие интерферона не связано с непосредственным влиянием на вирусы или клетки, т.е. интерферон не действует вне клетки. Адсорбируясь на поверхности клетки или проникая внутрь клетки, он через геном клетки влияет на процессы репродукции вируса или пролиферацию клетки (активирует синтез ферментов и ингибиторов, блокирующих трансляцию вирусных иРНК, тем самым предохраняя соседние клетки от вирусной инфекции).

    Значение интерферонов. Интерфероны играют большую роль в поддержании резистентности к вирусам, поэтому его применяют для профилактики и лечения многих вирусных инфекций. Антипролиферативное действие, особенно гамма-интерферона, используют для лечения злокачественных опухолей, а иммуномодулирующее действие - для коррекции работы иммунной системы с целью ее нормализации при различных иммунодефицитах.

    • Система комплемента - это комплекс растворимых белков и белков клеточной поверхности, взаимодействие которых опосредует разные биологические эффекты:

    • разрушение (лизис) клеток,

    • привлечение лейкоцитов в очаг инфекции или воспаления (хемотаксис),

    • облегчение фагоцитоза (опсонизация),

    • стимуляция воспаления и реакций гиперчувствительности (анафилотоксины).

    • Большая часть компонентов комплемента синтезируются гепатоцитами и мононуклеарными фагоцитами. Компоненты комплемента циркулируют в крови в неактивной форме. При определенных условиях самопроизвольный каскад ферментативных реакций ведет к последовательной активации каждого из компонентов системы комплемента. Компоненты комплемента обозначают латинской буквой С и арабскими цифрами (С1, С2 .... С9).

    Существуют два взаимосвязанных пути активации комплемента: классический и альтернативный. В результате формируется мембраноатакующий комплекс, который способен пенетрировать (формирование поры) клеточную мембрану и вызывать лизис микроорганизмов.
      1   2   3   4   5


    написать администратору сайта