Главная страница
Навигация по странице:

  • . В основе современной биологии лежат пять фундаментальных принципов: клеточная теория, эволюция, генетика, гомеостаз и энергия

  • 2. Человек как объект биологии. Значение биологического и социального наследования человека для медицины (

  • 3. Определение понятия "жизнь", свойства живого. 1.1.

  • 4. Химический состав живых организмов

  • Иерархия клеточной организации – смотри лекцию (+учебник стр 27)

  • Биологическое значение воды Вода как растворитель

  • 6. Эволюционно - обусловленные уровни организации жизни.

  • Биология клетки. Размножение организмов


    Скачать 15.49 Mb.
    НазваниеБиология клетки. Размножение организмов
    Анкорkollokvium_biologia.rtf
    Дата04.03.2017
    Размер15.49 Mb.
    Формат файлаrtf
    Имя файлаkollokvium_biologia.rtf
    ТипДокументы
    #3390
    страница1 из 8
      1   2   3   4   5   6   7   8



    Коллоквиум 1
    Тема: "Биология клетки. Размножение организмов."
    1. Биология как наука. Значение биологических знаний для врача.
    1.1. Термин «биология» введен Ж.Б.Ламарком и Тревиранусом в 1802 году (bios-хизнь).

    Биология – наука о жизни, о формах живого, о закономерностях существования и развития органического мира. Объект исследования биологии – живые организмы. Изучаются строение, функции, связи с другими организмами и окружающей средой (в т. ч. неживой природой). Открытия в биологии конца ХХ века сравнимы с открытиями космоса.

    Биоломгия (греч. вйплпгЯб — вЯпт, биос, «жизнь»; льгпт, логос, «учение», «наука») — наука о жизни (живой природе), одна из естественных наук, предметом которой являются живые существа и их взаимодействие с окружающей средой. Биология изучает все аспекты жизни, в частности, структуру, функционирование, рост, происхождение, эволюцию и распределение живых организмов на Земле. Классифицирует и описывает живые существа, происхождение их видов, взаимодействие между собой и с окружающей средой.

    Как особая наука биология выделилась из естественных наук в XIX веке, когда учёные обнаружили, что живые организмы обладают некоторыми общими для всех характеристиками. термин "биология" был предложен в 1802 году. В основе современной биологии лежат пять фундаментальных принципов: клеточная теория, эволюция, генетика, гомеостаз и энергия. В наше время биология — стандартный предмет в средних и высших учебных заведениях всего мира. Ежегодно публикуется более миллиона статей и книг по биологии, медицине и биомедицине.

    В биологии выделяют следующие уровни организации:

    Клеточный, субклеточный и молекулярный уровень: клетки содержат внутриклеточные структуры, которые строятся из молекул.

    Организменный и органно-тканевой уровень: у многоклеточных организмов клетки составляют ткани и органы. Органы же в свою очередь взаимодействуют в рамках целого организма.

    Популяционный уровень: особи одного и того же вида обитающие на части ареала образуют популяцию.

    Видовой уровень: свободно скрещивающиеся друг с другом особи обладающие морфологическим, физиологическим, биохимическим сходством и занимающие определённый ареал (район распространения) формируют вид.

    Биогеоценотический и биосферный уровень: на однородном участке земной поверхности складываются биогеоценозы, которые, в свою очередь, образуют, биосферу.

    Большинство биологических наук является дисциплинами с более узкой специализацией. Традиционно они группируются по типам исследуемых организмов: ботаника изучает растения, зоология — животных, микробиология — одноклеточные микроорганизмы. Области внутри биологии далее делятся либо по масштабам исследования, либо по применяемым методам: биохимия изучает химические основы жизни, молекулярная биология — сложные взаимодействия между биологическими молекулами, клеточная биология и цитология — основные строительные блоки многоклеточных организмов, клетки, гистология и анатомия — строение тканей и организма из отдельных органов и тканей, физиология — физические и химические функции органов и тканей, этология — поведение живых существ, экология — взаимозависимость различных организмов и их среды.

    Передачу наследственной информации изучает генетика. Развитие организма в онтогенезе изучается биологией развития. Зарождение и историческое развитие живой природы — палеобиология и эволюционная биология.

    На границах со смежными науками возникают: биомедицина, биофизика (изучение живых объектов физическими методами), биометрия и т. д. В связи с практическими потребностями человека возникают такие направления как космическая биология, социобиология, физиология труда, бионика.
    1.2. Раскрытие этих тем поможет студентам понять существо жизненных процессов и правильно оценить возможности лечебного действия лекар­ственных веществ на организм человека.

    Предмет "Биология" в фармацевтических вузах (факультетах) сов­местно с другими дисциплинами призван в конечном счете сформировать специалиста, способного решать общебиологические, медицинские и фар­мацевтические задачи, связанные с проблемой "Человек и лекарства".
    1.Уметь интерпретировать универсальные биологические явления, основные свойства живого (наследственность, изменчивость, раздражимость, обмен веществ и т. д.) в применении к человеку.

    2.Знать эволюционные связи (филогенез органов, возникновение пороков развития).

    3.Анализировать закономерности и механизмы нормального онтогенеза и интерпретировать их в отношении к человеку.

    4.Владеть основами медико-биологического исследования человека.

    5.Интерпретировать явления паразитизма.


    2. Человек как объект биологии. Значение биологического и социального наследования человека для медицины (смотри учебник стр.9 абзац «Современная теория эволюции …»)
    3. Определение понятия "жизнь", свойства живого.
    1.1. Жизнь - это макромолекулярная открытая система, которой свойственна иерархическая организация, способность к самовозобновлению, обмен веществ и тонко регуляторный процесс.
    1.2. Свойства живой материи.

    Свойства живого:

    • 1. Самовозобновление, которое связано с постоянным обменом вещества и энергии, и в основе которого лежит способность хранить и использовать биологическую информацию в виде уникальных информационных молекул: белков и нуклеиновых кислот.

    • 2. Самовоспроизведение, которое обеспечивает преемственность между поколениями биологических систем

    • 3. Саморегуляция, которая основана на потоке вещества, энергии и информации

    • 4. Большинство химических процессов в организме находятся не в динамичном состоянии

    • 5. Живые организмы способны к росту

    Признаки живого:

    • 1. Обмен веществом и энергией

    • 2. Обмен веществ – особый способ взаимодействия живых организмов со средой

    • 3. Обмен веществ требует постоянного притока некоторых веществ и энергии из вне и выделения некоторых продуктов диссимиляции во внешнюю среду. Организм является открытой системой

    • 4. Раздражимость – заключается в передаче информации от внешней среды к организму; на основе раздражимости осуществляется Саморегуляция и гомеостаз

    • 5. Репродукция – воспроизведение себе подобных

    • 6. Наследственность – поток информации между поколениями в результате чего обеспечивается преемственность

    • 7. Изменчивость – появление новых признаков в процессе репродукции; основа эволюции

    • 8. Онтогенез – индивидуальное развитие, реализация индивидуальной программы

    • 9. Филогенез – историческое развитие, эволюционное развитие осуществляется в результате наследственной изменчивости, естественного отбора и борьбы за существование

    • 10. Организмы включены в процесс эволюции


    4. Химический состав живых организмов

    Основу живого составляют два класса химических соединений - белки и нуклеиновые кислоты . Причем в живых организмах, в отличие от неживого вещества, эти соединения характеризуются так называемой хиральной чистотой. В частности, белки построены только на основе левовращающих (поляризующих свет влево) аминокислот , а нуклеиновые кислоты состоят исключительно из правовращающих сахаров . Эта хиральная чистота сложилась на самых начальных этапах эволюции живого вещества. Считается, что минимальное время глобального перехода от полного хаоса к хиральной чистоте составляет от 1 до 10 млн. лет. Следовательно, в этом смысле зарождение жизни могло произойти на Земле относительно мгновенно за отрезок времени, в 5 тыс. раз меньший предполагаемого возраста планеты.

    Белки ответственны прежде всего за обмен веществ и энергии в живой системе, т.е. за все реакции синтеза и распада, осуществляющиеся в любом организме от рождения и до смерти. Нуклеиновые кислоты обеспечивают способность живых систем к самовоспроизведению. Они - основа матрицы, удивительного "изобретения" природы. Матрица представляет своего рода чертеж, т. е. полный набор информации, на основе которого синтезируются видоспецифические молекулы белка.

    Помимо белков и нуклеиновых кислот, в состав живых организмов входят липиды (жиры) , углеводы и очень часто аскорбиновая кислота .

    В живых системах найдены многие химические элементы, присутствующие в окружающей среде, однако необходимы для жизни лишь около 20 из них. Эти элементы получили название биогенных. В среднем около 70% массы организмов составляет кислород , 18% - углерод , 10% - водород (вещества-органогены). Далее идут азот , фосфор , калий , кальций , сера , магний , натрий , хлор ,железо . Эти так называемые универсальные биогенные элементы, присутствующие в клетках всех организмов, нередко называютмакроэлементами .

    Часть элементов содержится в организмах в крайне низких концентрациях (не выше тысячной доли процента), но они также необходимы для нормальной жизнедеятельности. Это биогенные микроэлементы . Их функции и роль весьма разнообразны. Многие микроэлементы входят в состав ряда ферментов , витаминов , дыхательных пигментов , некоторые влияют на рост, скорость развития, размножение и т. д.

    Присутствие в клетках целого ряда элементов зависит не только от особенностей организма, но и от состава среды, пищи, экологических условий, в частности от растворимости и концентрации солей в почвенном растворе. Резкая недостаточность или избыточность биогенных элементов приводит к ненормальному развитию организма или даже к его гибели. Добавки биогенных элементов в почву для создания их оптимальных концентраций широко используются в сельском хозяйстве.

    Минеральные элементы, называемые также биоэлементами, в организме человека играют важную роль:
    • являются строительным материалом (кальций, фосфор, железо);
    • регулируют многие биохимические процессы в ходе обмена веществ (калий, натрий, йод, хлор, медь, марганец, селен и другие);
    • принимают участие в процессе свертывания крови (кальций);
    • поддерживают водный баланс организма (натрий, калий);
    • влияют на сохранение кислотно-щелочного равновесия;
    • входят в состав ферментов (энзимов).

    Биоэлементы подразделяются на две группы:
    • Макроэлементы, присутствующие в больших количествах в пище (до нескольких процентов сухой массы) и необходимые организму в конкретных весовых количествах для правильного его функционирования.
    • Микроэлементы, необходимые организму в следовых количествах (порядка от 10-2 до 10-11% живой массы организма). Они очень важны для метаболических процессов и выработки гормонов и энзимов.
    ( дополнительно еще материал) Все живые организмы избирательно относятся к окружающей среде. Состав химических элементов живых систем отличаются от химических элементов земной коры. В земной коре O,Si,Al,Na,Fe,K,в живых организмах H,O,C,N. Всех других элементов менее 1%. В любом живом организме можно найти все элементы окружающей среды, правда, в разном количестве. Однако это не означает, что они необходимы. Необходимы 20 химических элементов – тех, без которых живая система обойтись не может. В зависимости от окружающей среды и обмена веществ набор этих веществ разный. Некоторые химические элементы входят в состав всех живых организмов (универсальные химические элементы) H,C,N,O.Na,Mg,P,S,Ca,K,Cl,Fe,Cu,Mn,Zn,B,V,Si,Co,Mo. Кремнийвходит в состав мукополисахаридов соединительной ткани.

    В состав живых организмов входят 4 элемента, которые удивительно подошли для выполнения функций живого: О,С,Н,N. Они обладают общим свойством: они легко образуют ковалентные связи посредством спаривания электронов. Атомы С обладают свойством: могут соединяться в длинные цепи и кольца, с которыми могут связываться другие химические элементы. Соединений С очень много. Ближе всего к углероду кремний, но С образует СО2, который широко распространен в природе и доступен всем, а оксид кремния - элемент песка (нерастворим).

    Макромолекулы – нуклеиновые кислоты, белки, полипептиды, липиды, полисахариды – полимеры, образованные мономерами, соединенными ковалентными связями. Любой живой организм на 90% состоит из 6 химических элементов – С,О,Н,Р,N,S – биоэлементы (биогенные элементы).

    Клетка


    Органеллы -

    Ядро, митохондрии, хлоропласты

    Надмолекулярные комплексы

    Ферментные комплексы, рибосомы,

    сократительные системы

    Макромолекулы

    Полисахариды НК АК и др.

    Строительные структуры

    моносахариды простые кислоты

    Предшественники

    биоэлементы, вода



    Все живые организмы используют общие материалы для жизнедеятельности. Используются около 120 (20 аминокислот, 5 азотистых оснований, 4 класса липидов, малых молекул – простых кислот, воды, фосфатов – 70). Это продукты химической эволюции (органические соединения живых систем и компоненты неживой материи).
    Иерархия клеточной организации – смотри лекцию (+учебник стр 27)
    5. Биологическая роль воды

    Без воды жизнь на нашей планете не могла бы существовать. Вода важна для живых организмов по двум причинам. Во-первых, она является необходимым компонентом живых клеток, и, во-вторых, для многих организмов она служит еще и средой обитания. Именно поэтому следует сказать несколько слов о ее химических и физических свойствах.

    Свойства эти довольно необычны и обусловлены главным образом малыми размерами молекул воды, их полярностью и способностью соединяться друг с другом водородными связями. Под полярностью подразумевают неравномерное распределение зарядов в молекуле. У воды один конец молекулы («полюс») несет небольшой положительный заряд, а другой — отрицательный. Такую молекулу называют диполем. У атома кислорода способность притягивать электроны выражена сильнее, чем у водородных атомов, поэтому атом кислорода в молекуле воды стремится оттянуть к себе электроны двух водородных атомов. Электроны заряжены отрицательно, в связи с чем атом кислорода приобретает небольшой отрицательный заряд, а водородные атомы — положительный.

    В результате между молекулами воды возникает слабое электростатическое взаимодействие и, поскольку противоположные заряды притягиваются, молекулы как бы «склеиваются». Эти взаимодействия, более слабые, чем обычные ионные или ковалентные связи, называются водородными связями. Водородные связи постоянно образуются, распадаются и вновь возникают в толще воды. И хотя это слабые связи, но их совокупный эффект обусловливает многие необычные физические свойства воды. Учитывая данную особенность воды, мы можем теперь перейти к рассмотрению тех ее свойств, которые важны с биологической точки зрения.



    Водородные связи между молекулами воды. А. Две молекулы воды, соединенные водородной связью-6+ — очень маленький положительный заряд; 6

    — очень маленький отрицательный заряд. Б. Сеть из молекул воды, удерживаемых вместе водородными связями. Такие структуры постоянно образуются, распадаются и вновь возникают в воде, находящейся в жидком состоянии.

    Биологическое значение воды

    Вода как растворительВода — превосходный растворитель для полярных веществ. К ним относятся ионные соединения, такие как соли, содержащие заряженные частицы (ионы), и некоторые неионные соединения, например сахара, в молекуле которых присутствуют полярные (слабо заряженные) группы (у Сахаров это несущая небольшой отрицательный заряд гидроксильная группа, —ОН). Когда вещество растворяется в воде, молекулы воды окружают ионы и полярные группы, отделяя ионы или молекулы друг от друга.

    В растворе молекулы или ионы получают возможность двигаться более свободно, так что реакционная способность вещества возрастает. По этой причине в клетке большая часть химических реакций протекает в водных растворах. Неполярные вещества, например липиды, отталкиваются водой и в ее присутствии обычно притягиваются друг к другу, иными словами, неполярные вещества гидрофобны (гидрофобный — водоотталкивающий). Подобные гидрофобные взаимодействия играют важную роль в формировании мембран, а также в определении трехмерной структуры многих белковых молекул, нуклеиновых кислот и других клеточных компонентов.

    Присущие воде свойства растворителя означают также, что вода служит средой для транспорта различных веществ. Эту роль она выполняет в крови, в лимфатической и экскреторной системах, в пищеварительном тракте и во флоэме и ксилеме растений.

    6. Эволюционно - обусловленные уровни организации жизни.
    Любая живая система, как бы сложно она ни была организована, состоит из биологических макромолекул: нуклеиновых кислот, белков, полисахаридов, а также других важных органических веществ. С этого уровня начинаются разнообразные процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и др.
    Клетки многоклеточных организмов образуют ткани - системы сходных по строению и функциям клеток и связанных с ними межклеточных веществ. Ткани интегрируются в более крупные функциональные единицы, называемые органами. Внутренние органы характерны для животных; здесь они входят в состав систем органов (дыхательной, нервной и пр.). Например, система органов пищеварения - полость рта, глотка, пищевод, желудок, двенадцатиперстная кишка, тонкая кишка, толстая кишка, заднепроходное отверстие. Подобная специализация, с одной стороны, улучшает работу организма в целом, а с другой - требует повышения степени координации и интеграции различных тканей и органов.
    Клетка - структурная и функциональная единица, а также единица развития всех живых организмов, обитающих на Земле. На клеточном уровне сопрягаются передача информации и превращение веществ и энергии.
    Элементарной единицей организменного уровня служит особь, которая рассматривается в развитии - от момента зарождения до прекращения существования - как живая система. Возникают системы органов, специализированных для выполнения различных функций.
    Совокупность организмов одного и того же вида, объединенная общим местом обитания, в которой создается популяция - надорганизменная система. В этой системе осуществляются элементарные эволюционные преобразования.

    Биогеоценоз - совокупность организмов разных видов и различной сложности организации с факторами среды их обитания. В процессе совместного исторического развития организмов разных систематических групп образуются динамичные, устойчивые сообщества.
    Биосфера - совокупность всех биогеоценозов, система, охватывающая все явления жизни на нашей планете. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов.
    1. Молекулярный

    Начальный уровень организации живого. Предмет исследования – молекулы нуклеиновых кислот, белков, углеводов, липидов и других биологических молекул, т.е. молекул, находящихся в клетке.
    2. Клеточный

    Изучение клеток, выступающих в роли самостоятельных организмов (бактерии, простейшие и некоторые другие организмы) и клеток, составляющих многоклеточные организмы.
    3. Тканевый

    Клетки, имеющие общее происхождение и выполняющие сходные функции, образуют ткани. Выделяют несколько типов животных и растительных тканей, обладающих различными свойствами.
    4. Органный

    У организмов, начиная с кишечнополостных, формируются органы (системы органов), часто из тканей различных типов.
    5. Организменный

    Этот уровень представлен одноклеточными и многоклеточными организмами.
    6. Популяционно-видовой

    Организмы одного и того же вида, совместно обитающие в определенных ареалах, составляют популяцию. Сейчас на Земле насчитывают около 500 тыс. видов растений и около 1,5 млн. видов животных.
    7. Биогеоценотический

    Представлен совокупностью организмов разных видов, в той или иной степени зависящих друг от друга.
    8. Биосферный

    Высшая форма организации живого. Включает все биогеоценозы, связанные общим обменом веществ и превращением энергии.
      1   2   3   4   5   6   7   8


    написать администратору сайта