Тест по теории вероятностей. Федеральное агентство по образованию Государственное образовательное учреждение
Скачать 0.58 Mb.
|
Федеральное агентство по образованиюГосударственное образовательное учреждениевысшего профессионального образованияПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТТеория вероятностейИндивидуальные задания
Пермь 2007 Разбор типовых задач Задача 1. В партии из 10 деталей две бракованные. Найти вероятность того, что среди выбранных на удачу четырех деталей окажется одна бракованная. Решение: Пространство элементарных исходов представляет собой в этом случае множество всевозможных упорядоченных наборов из четырех любых деталей. Общее число таких элементарных исходов равно . Пусть событие А состоит в том, что в выборку попадут три годных детали и одна бракованная. Три годные детали из восьми можно взять способами. Следовательно, число благоприятствующих исходов равно . Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов . Задача 2. В квадрат с вершинами (0;0), (0;1), (1;0), (1;1) наудачу брошена точка . Пусть и – координаты этой точки. Найти вероятность того, что сумма координат этой точки не превзойдет 0,5. Решение: В прямоугольной системе координат область – квадрат со стороной 1, а область – определяется неравенством . Область – квадрат, поэтому мера равна 1. Область – прямоугольный треугольник, катеты которого равны по 0,5. Таким образом, . Задача 3. По каналу связи передаются три сообщения, каждое из которых может быть передано правильно или частично искажено. Вероятность того, что сообщение передано правильно – 0,8. Считая, что сообщение искажается или передается правильно не зависит от количества передач и от результата предыдущей связи найти вероятности следующих событий: { все три сообщения переданы верно} { одно из трех сообщений искажено} { хотя бы одно из трех сообщений искажено} Решение: Обозначим через событие, состоящее в том, что -ое сообщение передано верно. Событие . Применяя теорему умножения для независимых событий и учитывая, что , вычислим . Событие можно выразить через события , и следующим образом: . Применяя теорему сложения несовместных событий и теорему умножения, найдем вероятность этого события: . Событие . Теорему сложения для несовместных событий применить нельзя, так как события , и совместны. Вероятность события удобно вычислять через вероятность противоположного события . Вычислим . Задача 4. Монета подброшена 5 раз. Какова вероятность, что герб появится не более 2 раз? Решение: В этой задаче . По формуле Бернулли находим вероятность события . . Задача 5. Производится 400 выстрелов по мишени. Вероятность попадания при одном выстреле равна 0,8. Найти: а) наивероятнейшее число попаданий; б) вероятность 320 попаданий в мишень; в) вероятность того, что число попаданий в мишень будет не менее 300 и не более 350. Решение: а) найдем наивероятнейшее число попаданий в мишень из неравенства . По условию задачи . Тогда получим , значит, . б) при больших ( ) имеет место приближенное равенство (локальная теорема Лапласа): . в) при больших ( ) имеет место приближенное равенство (интегральная теорема Лапласа): . На основании этой формулы получим: . Задача 6. Вероятность того, что деталь нестандартна, равна =0,1. Сколько деталей надо отобрать, чтобы с вероятностью, равной 0,9544,можно было бы утверждать, что относительная частота появления нестандартной детали отклонится от вероятности не более, чем на 0,03? Решение: По условию ; . Для решения воспользуемся формулой: . В силу условия задачи . По таблице находим . Отсюда или . Задача 7. Определить надежность схемы, если Pi – надежность i – го элемента Решение. Для работы схемы необходимо, чтобы одновременно происходили следующие события: А={работал хотя бы один из элементов }; В={работал хотя бы один из элементов }; С={работал элемент }; D={работал элемент }; Е={ работал хотя бы один из элементов }; Вычислим вероятности этих событий: Р(А)= ; Р(В)= ; Р(С)= ; Р(D)= ; Р(Е)= . События А, В, С, D, Е – независимы, по теореме умножения вероятностей получим: Р=[ ][ ] [ ]. Решение остальных заданий варианта базируется на одних и тех же свойствах и теоремах, а поэтому решаются аналогично.1 Вариант №1 Ребенок играет с четырьмя буквами разрезной азбуки А, А, М, М. Какова вероятность того, что при случайном расположении букв в ряд он получит слово «МАМА»? Бросают два игральных кубика. Найти вероятность того, что произведение выпавших очков четное. В квадрат с вершинами в точках (0,0), (0,1), (1,1), (1,0) наудачу брошена точка (х,у). Найдите вероятность того, что координаты этой точки удовлетворяют неравенству у<2х. Имеется пять билетов стоимостью по одному рублю, три билета по три рубля и два билета по пять рублей. Наугад берутся три билета. Определить вероятность того, что а) все три билета стоят вместе семь рублей, б) все три билета стоимостью по одному рублю. Из урны, содержащей 5 белых шаров и 5 черных, наудачу достают 6 штук. Найти вероятность того, что среди вынутых шаров окажется одинаковое число черных и белых (шары отличаются только цветом). Двадцать экзаменационных билетов содержат по два вопроса, которые не повторяются. Экзаменующийся выучил 35 вопросов. Определить вероятность того, что экзамен будет сдан, если для этого нужно ответить на два вопроса билета или на один вопрос билета и один дополнительный вопрос из другого билета. Из урны, содержащей 5 шаров с номерами от 1 до 5, последовательно извлекаются два шара, причем первый шар возвращается, если номер не равен единице. Определить вероятность того, что шар с номером два будет извлечен при втором извлечении. В каждой из двух урн находятся 5 белых шаров и 10 черных. Из первой урны во вторую наудачу переложили один шар, а затем из второй урны наугад вынули один шар. Найти вероятность того, что шар, вынутый из второй урны, окажется белым. Число грузовых машин, проезжающих по шоссе, на котором стоит бензоколонка, относится к числу легковых как 3:2. Вероятность того, что будет заправляться грузовая машина, равна 0,1; для легковой машины эта вероятность равна 0,2. К бензоколонке подъехала для заправки машина. Найти вероятность того, что это грузовая машина. В семье пять детей. Найти вероятность того, что среди этих детей: а) два мальчика, б) не более двух мальчиков, в) более двух мальчиков, г) не менее двух и не более трех мальчиков. Принять вероятность рождения мальчика равной 0,51. Вероятность получения бракованной детали равна 0,01. Какова вероятность того, что среди 400 деталей бракованных окажется: а) 3 детали; б) хотя бы одна. При передаче сообщения на расстояние вероятность искажения одного знака равна 0,01. Какова вероятность того, что при передаче сообщения из 300 знаков: а) не будет ни одного искажения, б) будет два искажения, в) будет хотя бы одно искажение? Определить надежность схемы, если Pi – надежность i – го элемента Вариант №2 Числа 1,2,3,4,5 написаны на пяти карточках. Наугад последовательно выбираются три карточки и располагаются в порядке появления слева направо. Найти вероятность того, что полученное при этом трехзначное число будет четным. Бросают два игральных кубика. Найти вероятность того, что произведение выпавших очков равно 8. На отрезок АВ длиной 12 см наугад ставят точку М. Найдите вероятность того, что площадь квадрата, построенного на отрезке АМ, будет между 36 см2 и 81 см2. В лотерее N билетов, из которых M выигрышных. Участник купил k билетов. Какова вероятность того, что он ни по одному билету не выиграет? В ящике 10 деталей, среди которых 5 бракованных. Наудачу достают 3 детали. Найти вероятность следующих событий: а) все детали окажутся годными; б) две детали окажутся годными и одна бракованная. Какова вероятность, что наудачу выбранное пятизначное число содержит только нечетные цифры? Из ящика, где 12 деталей 1 категории и 20 деталей второй категории, наудачу без возвращения извлекли 2 детали. Найти вероятность того, что вторая деталь 1 категории. В каждой из двух урн имеются по 7 белых и 3 черных шара. Из первой урны во вторую наудачу переложены два шара. После этого из второй урны наудачу достают один шар. Какова вероятность что он окажется белый? Две перфораторщицы набили на перфораторах по одному комплекту перфокарт. Вероятность того, что первая перфораторщица допустит ошибку, равна 0,05; для второй перфораторщицы эта вероятность равна 0,1. При сверке перфокарт была обнаружена ошибка. Найти вероятность того, что ошиблась первая перфораторщица. Предполагается ,что оба перфоратора были исправны. Монету подбрасывают 100 раз. Найти наивероятнейшее число появлений герба и вероятность такого результата. Вероятность поражения мишени при одном выстреле равна 0,8. Найти вероятность того, что при 100 выстрелах мишень будет поражена ровно 75 раз. Пусть вероятность нарушения герметичности банки консервов равна 0,0005.Найти вероятность того, что среди 2000 банок две окажутся с нарушением герметичности. Определить надежность схемы, если Pi – надежность i – го элемента |