РП 7 класс геометрия. раб.прогр 7 класс геометрия 70ч. Пояснительная записка Рабочая программа основного общего образования по геометрии составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам освоения основной общеобразовательной программы основного общего образования,
Скачать 62.35 Kb.
|
Пояснительная записка Рабочая программа основного общего образования по геометрии составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам освоения основной общеобразовательной программы основного общего образования, представленных в Федеральном государственном образовательном стандарте основного общего образования по предмету. В ней также учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования. Овладение учащимися системой геометрических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования. Практическая значимость школьного курса геометрии обусловлена тем, что её объектом являются пространственные формы и количественные отношения действительного мира. Геометрическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе. Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно-научного цикла, в частности к физике. Развитие логического мышления учащихся при обучении геометрии способствует также усвоению предметов гуманитарного цикла. Практические умения и навыки геометрического характера необходимы для трудовой деятельности и профессиональной подготовки школьников. Развитие у учащихся правильных представлений о сущности и происхождении геометрических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте геометрии в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, а также формированию качеств мышления, необходимых для адаптации в современном информационном обществе. Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, геометрия развивает нравственные черты личности (настойчивость, целеустремленность, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументировано отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения. Геометрия существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников. При обучении геометрии формируются умения и навыки умственного труда – планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе обучения геометрии школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки четкого, аккуратного и грамотного выполнения математических записей. Важнейшей задачей школьного курса геометрии является развитие логического мышления учащихся. Сами объекты геометрических умозаключений и принятые в геометрии правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить четкие определения, развивают логическую интуицию, кратко и наглядно вскрывают механизм логических построений и учат их применению. Тем самым геометрия занимает ведущее место в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, способствуя восприятию геометрических форм, усвоению понятия симметрии, геометрия вносит значительный вклад в эстетическое воспитание учащихся. Её изучение развивает воображение школьников, существенно обогащает и развивает их пространственные представления. Структура документа Рабочая программа содержит следующие разделы: пояснительную записку; общую характеристику курса геометрии в 7 классе; место курса в учебном плане; личностные, метапредметные и предметные результаты освоения содержания курса; основное содержание курса; планируемые результаты изучения курса геометрии в 7 классе; учебно-тематический план с примерным распределением учебных часов по разделам курса; ресурсное обеспечение учебной программы. Общая характеристика курса геометрии в 7 классе Математическое образование в основной школе складывается из следующих содержательных компонентов (блоков): «Арифметика», «Алгебра», «Геометрия», «Элементы логики, комбинаторики, статистики и теории вероятностей». Геометрия – один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитее логического мышления, в формирование понятия доказательства. Таким образом, в ходе освоения содержания курса учащиеся п о л у ч а ю т в о з м о ж н о с т ь: развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру; научиться применять формально-оперативные алгебраические умения к решению геометрических задач; развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами и их свойствами; развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства; сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений. Цели Изучение математики на ступени основного общего образования направлено на достижение следующих ц е л е й: овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования; интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей; формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов; воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса. Цели изучения курса геометрии: развивать пространственное мышление и математическую культуру; учить ясно и точно излагать свои мысли; формировать качества личности необходимые человеку в повседневной жизни: умение преодолевать трудности, доводить начатое дело до конца; помочь приобрести опыт исследовательской работы. В курсе геометрии 7-го класса условно можно выделить следующие содержательные линии: «Наглядная геометрия», «Геометрические фигуры», «Измерение геометрических величин», «Логика и множества», «Геометрия в историческом развитии». Материал, относящийся к линии «Наглядная геометрия» (элементы наглядной стереометрии) способствует развитию пространственных представлений учащихся в рамках изучения планиметрии. Содержание разделов «Геометрические фигуры» и «Измерение геометрических величин» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей математической модели для описания окружающего мира. Систематическое изучение свойств геометрических фигур позволит развить логическое мышление и показать применение этих свойств при решении задач вычислительного и конструктивного характера, а также практических. Особенностью линии «Логика и множества» является то, что представленный здесь материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи. Линия «Геометрия в историческом развитии» предназначена для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. Место предмета в федеральном базисном учебном плане Согласно федеральному базисному учебному (образовательному) плану для образовательных учреждений Российской Федерации на изучение геометрии в 7 классе отводится не менее 50 годовых часов из расчета 2 часов в неделю. Рабочая программа рассчитана на 68 учебных часов (2 часа в неделю). Личностные, метапредметные и предметные результаты освоения содержания курса Программа обеспечивает достижение следующих результатов: личностные: формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов; формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики; формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности; умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры; критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта; креативность мышления, инициатива, находчивость, активность при решении геометрических задач; умение контролировать процесс и результат учебной математической деятельности; способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений; метапредметные: умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач; умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы; умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения; осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовых связей; умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы; умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач; умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способу работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; слушать партнера; формулировать, аргументировать и отстаивать свое мнение; формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности); первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, о средстве моделирования явлений и процессов; умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни; умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации; умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации; умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки; умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач; понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом; умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем; умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера; предметные: овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления; умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений; овладение навыками устных, письменных, инструментальных вычислений; овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений; усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне – о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач; умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров геометрических фигур (треугольника); умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использование при необходимости справочных материалов, калькулятора, компьютера. Основное содержание курса Наглядная геометрия. Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Геометрические фигуры. Геометрические фигуры и тела. Равенство в геометрии. Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Прямой угол. Острые и тупые углы. Вертикальные и смежные углы. Биссектриса угла. Параллельные и пересекающиеся прямые. Перпендикулярные прямые. Утверждение о свойстве двух прямых, перпендикулярных к третьей. Теорема о перпендикуляре к прямой. Признаки параллельных прямых. Треугольник. Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника. Окружность и круг. Центр, радиус, диаметр, хорда. Геометрические преобразования. Понятие о равенстве фигур. Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трем сторонам; построение перпендикуляра к прямой; построение биссектрисы угла. Решение задач на вычисление, доказательство и построение с использованием свойств изученных фигур (треугольника). Измерение геометрических величин. Длина отрезка. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Периметр треугольника. Градусная мера угла. Решение задач на вычисление и доказательство с использование изученных формул. Теоретико-множественные понятия. Множество. Элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Подмножество. Объединение и пересечение множеств. Элементы логики. Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример. Понятие о равносильности, следовании, употребление логических связок если…, то…, в том и только в том случае, логические связки и, или. Геометрия в историческом развитии. Возникновение геометрии из практики. От землемерия к геометрии. «Начала» Евклида. История пятого постулата. Планируемые результаты изучения курса геометрии в 7 классе В результате изучения математики ученик должен знать/понимать: существо понятия математического доказательства; примеры доказательств; существо понятия алгоритма; примеры алгоритмов; как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач; как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания; как потребности практики привели математическую науку к необходимости расширения понятия числа; каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики; смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации; Геометрия уметь: пользоваться языком геометрии для описания предметов окружающего мира; распознавать геометрические фигуры, различать их взаимное расположение; изображать геометрические фигуры; выполнять чертежи по условию задач; распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их; в простейших случаях строить сечения и развертки пространственных тел; находить стороны, углы и периметры треугольников, длины ломаных; решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический аппарат; проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования; решать простейшие планиметрические задачи в пространстве; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: описания реальных ситуаций на языке геометрии; расчетов, включающих простейшие формулы; решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства); построений геометрическими инструментами (линейка, угольник, циркуль, транспортир). В результате изучения курса геометрии в 7 классе ученик: «Наглядная геометрия» научится: распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры (точка, прямая, отрезок, луч, угол, треугольник, окружность, шар, сфера, параллелепипед, пирамида и др.); распознавать виды углов, виды треугольников; определять по чертежу фигуры её параметры (длина отрезка, градусная мера угла, элементы треугольника, периметр треугольника и т.д.); распознавать развертки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса; получит возможность использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: углубления и развития представлений о плоских и пространственных геометрических фигурах (точка, прямая, отрезок, луч, угол, треугольник, окружность, шар, сфера, параллелепипед, призма и др.); применения понятия развертки для выполнения практических расчетов. «Геометрические фигуры» научится: пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения; распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации; находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до , применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, сравнение); решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств; решать простейшие задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки; решать простейшие планиметрические задачи в пространстве; получит возможность использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: овладения методами решения задач на вычисления и доказательства: методом от противного, методом перебора вариантов; приобретения опыта применения алгебраического аппарата при решении геометрических задач; овладения традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование; приобретения опыта исследования свойств планиметрических фигур с помощью компьютерных программ. «Измерение геометрических величин» научится: использовать свойства измерения длин и углов при решении задач на нахождение длины отрезка и градусной меры угла; вычислять длины линейных элементов треугольника и их углы; вычислять периметры треугольников; решать задачи на доказательство с использованием признаков равенства треугольников и признаков параллельности прямых; решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства); получит возможность использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: вычисления градусных мер углов треугольника и периметров треугольников; приобретения опыта применения алгебраического аппарата при решении задач на вычисление. Календарно-тематическое планирование по геометрии для 7 класса
|