биохимия экзамен. 1. Белки элементный и аминокислотный состав. Физиологическая роль белков. Первичная структура белков и ее информационная роль. Конформация белка этапы формирования, особенности влияния условий среды. Конформационная лабильность белков
Скачать 6.55 Mb.
|
Специфичность действия протеаз. Трипсин преимущественно гидролизует пептидные связи, образованные карбоксильными группами аргинина и лизина. Химотрипсины наиболее активны в отношении пептидных связей, образованных карбоксильными группами ароматических аминокислот (Фен, Тир, Три). Карбоксипептидазы А и В - цинксодержащие ферменты, отщепляют С-концевые остатки аминокислот. Причём карбоксипептидаза А отщепляет преимущественно аминокислоты, содержащие ароматические или гидрофобные радикалы, а карбоксипептидаза В - остатки аргинина и лизина. Защита клеток. Эпителиальные клетки защищены от действия пищеварительных ферментов тем, что, во-первых, как упоминалось выше, эти ферменты синтезируются в виде проферментов и активируются, попадая в просвет кишечника, т. е. место синтеза и место действия пищеварительных ферментов разнесены, во-вторых, в клетках поджелудочной железы обнаружен белок, ингибирующий трипсин, связывая активную протеазу в прочный комплекс (в случае преждевременной активации), в-третьих, слизистая оболочка желудка и кишечника покрыта слоем вязкого слизистого геля, главной составной частью которого являются муцины 51.Всасывание продуктов гидролиза белка. Возрастная характеристика процессов переваривания белков и всасывания аминокислот Продукты гидролиза белков всасываются в пищеварительном тракте в основном в виде свободных аминокислот. Кинетика всасывания аминокислот в опытах in vivo и in vitro свидетельствует, что аминокислоты, подобно глюкозе, всасываются свободно с ионами Na+. Для лизина, цистеина и цистина, глицина и пролина, очевидно, существует более одной системы транспорта через стенку кишечника. Некоторые аминокислотыобладают способностью конкурентно тормозить всасывание других аминокислот, что свидетельствует о вероятном существовании общей переносящей системы или одного общего механизма. Так, в присутствии лизина тормозится всасывание аргинина, но не изменяется всасывание аланина, лейцина и глутамата. Сразу после рождения ребенка кислотность желудочного сока почти нейтральна и составляет примерно 6,0, после чего в течение 6-12 часов снижается до 1-2 единиц рН. Однако к концу первой недели жизни рН вновь повышается до 5,0-6,0 и сохраняется на высоком уровне продолжительное время, постепенно снижаясь до величины рН 3,0-4,0 к концу первого года жизни. Существенной особенностью грудного возраста является то, что кислотность желудочного сока обеспечивается в основном молочной кислотой, а не соляной. В возрасте 4-7 лет показатель общей кислотности не превышает 40 ммоль/л, величина рН в среднем составляет 2,5, в дальнейшем она снижается до величины взрослых 1,5-2,0. Из-за сниженной кислотности желудка в грудном возрасте (за исключением первых дней жизни) пепсин не играет существенной роли в переваривании белка и основным ферментом желудка грудных детей является реннин (химозин). Его активность обнаруживается еще в антенатальном периоде, являясь максимальной к моменту рождения и не меняясь до 10 дня жизни. В раннем грудном возрасте активность поджелудочной железы относительно низка, однако к концу первого года жизни секреция панкреатических ферментов возрастает от 2 до 10 раз, переваривание белков происходит практически полностью и к завершению грудного возраста всасывается до 98% поступивших аминокислот. 52.Тканевой распад белков. Маркеры «стареющих» белков Пул аминокислот в клетке. Пополнение пула аминокислот за счет эндогенного распада дефектных тканевых белков. .Роль убиквитина и процессов гликозилирования в «мечении» старых белков в клетке. Роль шаперонов. Внутриклеточные протеазы. За сутки в организме взрослого человека обновляется до 400 г белков. Скорость различна – от нескольких минут до 10 и более суток. Образовавшиеся при гидролизе белка аминокислоты всасываются стенками кишечника, поступают в кровь и разносятся по всему организму. Всосавшиеся аминокислоты в первую очередь используются в качестве строительного материала для синтеза специфических тканевых белков, ферментов и биологически активных соединений. Другая часть аминокислот вместе с образующимися в организме аминокислотами — продуктами расщепления тканевых белков подвергается различным превращениям с образованием конечных продуктов белкового обмена и освобождением энергии. Наиболее распространенными и важными реакциями, в которых участвуют аминокислоты, являются трансаминирование (переаминирование), окислительное дезаминирование и декарбоксилированиее. Распад тканевых белков (катаболизм) осуществляют особые тканевые протеолитические ферменты катепсины. Они разрушают дефектные, денатурированные белки. Обычно эти белки вначале соединяются с особым белком убиквинтином, после чего разрушаются катепсинами. Так пополняется пул. В целом роль убиквитина выглядит так. Между убиквитином и белком-субстратом образуется ковалентная связь, возникающая между ε-аминными группами остатков лизина белка и карбоксильной группой концевого остатка убиквитина. Образовавшиеся конъюгаты, которые содержат более чем одну молекулу убиквитина, могут быть деградированы протеиназами, в основном протеасомами. Узнавание белков, подлежащих протеолизу осуществляется так называемым убиктивиновым комплексом, способным взаимодействовать с отработанными или аномальными белками. АТФ расходуется как на стадии образования, так и на стадии деградации конъюгатов убиквитина с белком. Есть основания полагать, что убиквитин вызывает значительные конформационные изменения субстратного белка, что делает этот белок чувствительным к протеолизу. Связывание белка с убиквитином служит сигналом для «узнавания» этого белка протеиназами, что обеспечивает механизм избирательной деградации внутриклеточных белков. К основным первичным и вторичным сигналам для присоединения убиквитина могут быть отнесены следующие: конформация N-терминальной области пептида, в частности наличие «дестабилизирующей» N-концевой или другой свободной -аминогруппы («N-концевое правило») или специфически расположенный лизин субстрата; определенные короткие мотивы в последовательности аминокислотных остатков (а не трехмерная структура целой молекулы белка); нарушения вторичной структуры белка (неправильное свертывание) полипептидной цепи; повреждение боковых цепей остатков аминокислот, в том числе их окисление (например окисление остатков метионина); избыточное гликозилирование белков и пептидов. Роль шаперонов. Формирование трёхмерной структуры белков - важнейший биологический процесс, так как от пространственной структуры белков зависит их биологическая функция. Процесс сворачивания полипептидной цепи в правильную пространственную структуру получил название "фолдинг белков". В клетке концентрация белков настолько высока, что существует большая вероятность взаимодействия белков с несформированной конформацией. На их поверхности располагаются гидрофобные радикалы, склонные к объединению. Поэтому для многих белков, имеющих высокую молекулярную массу и сложную пространственную структуру, фолдинг протекает при участии специальной группы белков, которые называют "шапероны" (от франц. shaperon - няня). При синтезе белков N-концевая область полипептида синтезируется раньше, чем С-концевая область. Для формирования конформации белка нужна его полная аминокислотная последовательность. Поэтому в период синтеза белка на рибосоме защиту реакционно-способных радикалов (особенно гидрофобных) осуществляют Ш-70. Ш-70 - высококонсервативный класс белков, который присутствует во всех отделах клетки. Фолдинг многих высокомолекулярных белков, имеющих сложную конформацию (например, доменное строение), осуществляется в специальном пространстве, сформированном Ш-60. Ш-60 образуют 2 кольца, каждое из которых состоит из 7 субъединиц, соединённых друг с другом. Шапероны, участвующие в защите клеточных белков от денатурирующих воздействий относят к белкам теплового шока (БТШ) и в литературе часто обозначают как HSP (от англ, heat shock protein). При действии различных стрессовых факторов (высокая температура, гипоксия, инфекция, УФО, изменение рН среды, изменение моляр-ности среды, действие токсичных химических веществ, тяжёлых металлов и т.д.) в клетках усиливается синтез БТШ. Имея высокое сродство к гидрофобным участкам частично денатурированных белков, они могут препятствовать их полной денатурации и восстанавливать нативную конформацию белков. Катепсины – это и есть внутриклеточные протеазы. 53.Физиологическая роль углеводов в организме. Пищевые источники и потребность организма в углеводах. Переваривание углеводов в желудочно-кишечном тракте. Судьба всосавшихся моносахаридов. Наследственные нарушения обмена полисахаридов и дисахаридов. Углеводы — это обширный, наиболее распространенный на Земле класс органических соединений, входящих в состав всех организмов. Углеводы и их производные служат структурным и пластическим материалом поставщика энергии и регулируют ряд биохимических процессов. Роль. По классификации ВОЗ углеводы делятся на усвояемые организмом человека и неусвояемые. Неусвояемые углеводы: образуют труппу так называемых балластных веществ — пищевые волокна, играющие огромную роль в поддержании нормальной регуляции пищеварения. Взаимодействуя с другими веществами пищи, углеводы влияют на доступность их организму и на потребность организма в этих веществах, например белоксберегающее действие углеводов. Углеводы снижают потребность организма человека в белках, препятствуя использованию аминокислот в качестве энергетического материала и усиливая посредством инсулина использование аминокислот для синтеза белка. В продукты питания входят три группы углеводов: моносахариды (глюкоза, фруктоза), олигосахариды (дисахариды и трисахариды) и полисахариды (крахмал, гликоген, клетчатка, пектиновые вещества). В организме человека глюкоза используется преимущественно скелетными мышцами, в них она окисляется. При этом выделяется определенное количество энергии или депонируется в виде гликогена. Некоторое количество глюкозы усваивается и сердечной мышцей, а также мозговой тканью, но значительного накопления глюкозы в виде гликогена в них не происходит. Запасы гликогена, депонированные в различных органах организма человека, расходуются на удовлетворение биологических потребностей тех тканей, в которых он депонирован, и только гликоген печени, превращаясь в глюкозу, используется для нужд всего организма и поддерживает постоянство концентрации сахара в крови. Основные источники углеводов - преимущественно растительные продукты (мучные изделия, крупы, сладости), а сами они служат основным источником энергии в организме человека. При физической работе они расходуются в первую очередь, и только по истощении их запасов в обмен веществ включаются жиры. Потребность. Взрослый человек при физическом труде средней тяжести в сутки должен получать 344-440 г усвояемых углеводов. Переваривание углеводов в ротовой полости и желудке. Когда пища пережевывается, она смешивается со слюной, которая содержит пищеварительный фермент птиалин (амилазу), секретирующийся в основном околоушными железами. Этот фермент гидролизует крахмал на дисахарид мальтозу и другие небольшие глюкозные полимеры, содержащие от 3 до 9 молекул глюкозы. Однако в ротовой полости пища находится короткое время, и, вероятно, до акта глотания гидролизуется не более 5% крахмала. Тем не менее, переваривание крахмала иногда продолжается в теле и дне желудка еще в течение 1 ч до тех пор, пока пища не начнет перемешиваться с желудочным секретом. Затем активность амилазы слюны блокируется соляной кислотой желудочного секрета, т.к. амилаза как фермент в принципе не активна при снижении рН среды ниже 4,0. Несмотря на это, в среднем до 30-40% крахмала гидролизуется в мальтозу прежде, чем пища и сопутствующая ей слюна полностью перемешаются с желудочными секретами. Переваривание углеводов в тонком кишечнике. Переваривание панкреатической амилазой. Секрет поджелудочной железы, как и слюна, содержит большое количество амилазы, т.е. он почти полностью схож в своих функциях с ос-амилазой слюны, но в несколько раз эффективнее. Таким образом, не более чем через 15-30 мин после того, как химус из желудка попадет в двенадцатиперстную кишку и смешается с соком поджелудочной железы, фактически все углеводы оказываются переваренными. В результате прежде чем углеводы выйдут за пределы двенадцатиперстной кишки или верхнего отдела тощей кишки, они почти полностью превращаются в мальтозу и/или в другие очень небольшие полимеры глюкозы. Гидролиз дисахаридов и небольших полимеров глюкозы в моносахариды ферментами кишечного эпителия. Энтероциты, выстилающие ворсинки тонкого кишечника, содержат четыре фермента (лактазу, сахаразу, мальтазу и декстриназу), способных расщеплять дисахариды лактозу, сахарозу и мальтозу, а также другие небольшие глюкозные полимеры на их конечные моносахариды. Лактоза расщепляется на молекулу галактозы и молекулу глюкозы. Сахароза расщепляется на молекулу фруктозы и молекулу глюкозы. Мальтоза и другие небольшие глюкозные полимеры расщепляются на многочисленные молекулы глюкозы. Таким образом, конечными продуктами переваривания углеводов являются моносахариды. Все они растворяются в воде и мгновенно всасываются в портальный кровоток. В обычной пище, в которой из всех углеводов больше всего крахмала, более 80% конечного продукта переваривания углеводов составляет глюкоза, а галактоза и фруктоза — редко более 10%. Моносахариды в первую очередь являются источниками энергии. Большинство из них, как и другие углеводы, в 1 грамме вещества содержат примерно 4 килокалории. Наследственные нарушения. Непереносимость дисахаридов -наследственная или приобретённая недостаточность активности дисахаридаз, обусловливающая нарушения расщепления и всасывание дисахаридов; вызывает непереносимость лактозы, сахарозы и/или мальтозы; проявляется расстройствами пищеварения и питания в виде хронической ферментативной диспепсии. Гликогенозы- заболевания, обусловленные дефектом ферментов, участвующих в распаде гликогена. Они проявляются или необычной структурой гликогена, или его избыточным накоплением в печени, сердечной или скелетных мышцах, почках, лёгких и других органах. В таблице 7-3 описаны некоторые типы гликогенозов, различающихся характером и локализацией ферментного дефекта. Болезнь Гирке (тип I) Причина этого заболевания - наследственный дефект глюкозо-6-фосфатазы - фермента, обеспечивающего выход глюкозы в кровоток после её высвобождения из гликогена клеток печени. Гипогликемия - следствие нарушения реакции образования свободной глюкозы из глюкозо-6-фосфата. Кроме того, вследствие дефекта глюкозо-6-фосфатазы происходит накопление в клетках печени субстрата - глюкозо-6-фосфата, который вовлекается в процесс катаболизма, где он превращается в пируват и лактат. В крови повышается количество лактата, поэтому возможен ацидоз. Агликогенозы (гликогеноз 0 по классификации) - заболевание, возникающее в результате дефекта гликогенсинтазы. В печени и других тканях больных наблюдают очень низкое содержание гликогена. Это проявляется резко выраженной гипогликемией в постабсорбтивном периоде 54.Глюкоза как важнейший метаболит углеводного обмена: общая схема источников и путей использования глюкозы в организме. Гликоген как резервный полисахарид. Глюкостатическая функция печени: Синтез гликогена из глюкозы (гликогеногенез); Амилолитический и фосфоролитический пути распада гликогена. Гликогенозы н агликогенозы |