биохимия экзамен. 1. Белки элементный и аминокислотный состав. Физиологическая роль белков. Первичная структура белков и ее информационная роль. Конформация белка этапы формирования, особенности влияния условий среды. Конформационная лабильность белков
Скачать 6.55 Mb.
|
Роль макроэргов АТФ, ГТФ в биосинтезе белка. Роль АТФ: Используется в стадии активации аминокислот Аминокислота+АТФ+тРНК+Н2О = аминоацил-тРНК+АМФ+ФФн используется для раскручивания вторичной структуры иРНК в процессе трансляции; Роль ГТФ: смыкание субъединиц рибосом (в стадии инициации) присоединение аминоацил тРНК к аминоацильному центру рибосомы (в стадии элонгации) механизм транслокации, т.е. перемещения рибосомы на три нуклеотида вдоль иРНК (в стадии элонгации) размыкание субъединиц рибосомы (в стадии терминации) мРНК. Содержит информацию о структуре синтезируемого белка и используется в качестве матрицы. тРНК называют " адапторные молекулы", так как к акцепторному концу этих молекул может быть присоединена определённая аминокислота, а с помощью антикодона они узнают специфический кодон на мРНК. В процессе синтеза белка на рибосоме связывание антикодонов тРНК с кодонами мРНК происходит по принципу комплементарности и антипараллельности. Аминоацил-тРНК синтетазы (аминоацил-тРНК лигазы, или АРС-азы) В цитозоле клеток 20 различных аминокислот присоединяются α-карбоксильной группой к 3'-гидроксильному акцепторному концу соответствующих тРНК с образованием сложноэфирной связи. Эти реакции катализирует семейство ферментов, носящее название аминоацил-тРНК синтетаз (аа-тРНК-синтетаз). Каждый член этого семейства узнаёт только одну определённую аминокислоту и те тРНК, которые способны связываться с этой аминокислотой. Для каждой аминокислоты существует свой фермент - своя аминоацил тРНК синтетаза: для глутамата - глутамил-тРНК синтетаза, гистидина - гистидил-тРНК синтетаза и т.д. Чрезвычайно высокая специфичность аа-тРНК синтетаз в связывании аминокислоты с соответствующими тРНК лежит в основе точности трансляции генетической информации. В активном центре этих ферментов есть 4 специфических участка для узнавания: аминокислоты, тРНК, АТФ и четвёртый - для присоединения молекулы Н2О, которая участвует в гидролизе неправильных аминоациладенилатов. За счёт существования в активном центре этих ферментов корректирующего механизма, обеспечивающего немедленное удаление ошибочно присоединённого аминокислотного остатка, достигается поразительно высокая точность работы: на 1300 связанных с тРНК аминокислот встречается только одна ошибка. Рибосомы - принципы организации, строение, состав. Рибосомы, внутриклеточные частицы, осуществляющие биосинтез белка, состоят из двух различных субчастиц, каждая из которых построена из рибосомной РНК и многих белков. Рибосомы и их субчастицы обычно классифицируют в соответствии с коэффициентами седиментации. Коэффициент седиментации полной эукариотической рибосомы составляет около 80 единиц Сведберга (80S), а коэффициент седиментации ее субчастиц составляет 40S и 60S. Меньшая 40S-субчастица состоит из одной молекулы 18S-рРНК и 30-40 белковых молекул. Большая 60S-субчастица содержит три типа рРНК с коэффициентами седиментации 5S, 5,8S и 28S и 40-50 белков. В присутствии мРНК субчастицы объединяются с образованием полной рибосомы, молекула мРНК проходит через щель на малой субчастице, причем эта щель ориентирована как раз в промежуток между двумя субчастицами. тРНК также связываются вблизи этого участка. В процессе функционирования (т. е. синтеза белка) рибосома осуществляет несколько функций: 1) специфическое связывание и удержание компонентов белоксинтезирующей системы[информационная, или матричная, РНК (иРНК); аминоацил-тРНК; пептидил-тРНК; гуанозинтрифосфат (ГТФ); белковые факторы трансляции еEF; 2) каталитические функции (образование пептидной связи, гидролиз ГТФ): 3) функции механического перемещения субстратов (иРНК, тРНК), или транслокации. Функции связывания (удержания) компонентов и катализа распределены между двумя рибосомными субчастицами: малая рибосомная субъединица: 1. связывая мРНК, служит первичным акцептором генетической информации для белоксинтезирующего аппарата; 2. с участием факторов инициации обеспечивает узнавание инициирующего участка на иРНК путем сканирования цепи мРНК [у эукариот]; 3. обеспечивает кодон-антикодоновое взаимодействие инициирующего кодона иРНК с антикодоном инициирующей тРНК; большая субчастица исполняет биохимическую часть функций: содержит каталитический участок для синтеза пептидной связи, а также центр, участвующий в гидролизе ГТФ; кроме того, в процессе биосинтеза белка она удерживает на себе растущую цепь белка в виде пептидил-тРНК. Рибосома имеет 2 центра связывания: Р-центр (пептидильный) и А-центр (аминоацильный) У эукариотов различают рибосомы 2 типов: "свободные", обнаруживаемые в цитоплазме клеток, и связанные с эндоплазматическим ретикулумом (ЭР). Рибосомы, ассоциированные с ЭР, ответственны за синтез белков "на экспорт", которые выходят в плазму крови и участвуют в обновлении белков ЭР, мембраны аппарата Гольджи, митохондрий или лизосом. 48.Рибосомальный этап синтеза белка:механизм инициации, сборка инициирующего комплекса;фаза элонгации;фаза терминации.Посттрансляционная модификация полипептидов (процессинг). Синтез полипептидной цепи на рибосоме События на рибосоме включают этапы: инициации, элонгации и терминации. 1. Инициация Инициация трансляции представляет собой событие, в ходе которого происходит образование комплекса, включающего Мет-тРНКiМет, мРНК и рибосому, где тРНКiМет - инициирующая метиониновая тРНК. В этом процессе участвуют не менее 10 факторов инициации, которые обозначают как elF (от англ. eukaryoticinitiationfactors) с указанием номера и буквы. Первоначально 40S субъединица рибосомы соединяется с фактором инициации, который препятствует ее связыванию с 60S субъединицей, но стимулирует объединение с тройным комплексом, включающим Мет-тРНКiМет, eIF-2 и ГТФ. Затем этот теперь уже более сложный комплекс связывается с 5'-концом мРНК при участии нескольких elF. Один из факторов инициации (eIF-4F) узнаёт и присоединяется к участку "кэп" на молекуле мРНК, поэтому он получил название кэпсвязывающего белка. Прикрепившись к мРНК, 40S субъединица начинает скользить по некодирующей части мРНК до тех пор, пока не достигнет инициирующего кодона AUG кодирующей нуклеотидной последовательности. Скольжение 40S субъединицы по мРНК сопровождается гидролизом АТФ, энергия которого затрачивается на преодоление участков спирализации в нетранслируемой части мРНК. Достигнув начала кодирующей последовательности мРНК, 40S субъединица останавливается и связывается с другими факторами инициации, ускоряющими присоединение 60S субъединицы и образование 80S рибосомы за счёт гидролиза ГТФ до ГДФ и неорганического фосфата. При этом формируются А- и Р-центры рибосомы, причём в Р-центре оказывается AUG-кодон мРНК с присоединённым к нему Мет-тРНКiМет. В клетках есть 2 различающиеся по структуре тРНК, узнающие кодон AUG. Инициирующий кодон узнаёт тРНКiМет, а триплеты мРНК, кодирующие включение метионина во внутренние участки белка, прочитываются другой тЗРКМет 2. Элонгация По завершении инициации рибосома располагается на мРНК таким образом, что в Р-центре находится инициирующий кодон AUG с присоединённой к нему Мет-тРНКшМет, а в А- центре - триплет, кодирующий включение первой аминокислоты синтезируемого белка. Далее начинается самый продолжительный этап белкового синтеза - элонгация, в ходе которого рибосома с помощью аа-тРНК последовательно "читает" мРНК в виде триплетов нуклеотидов, следующих за инициирующим кодоном в направлении от 5' к 3'-концу, наращивая полипептидную цепочку за счёт последовательного присоединения аминокислот. Включение каждой аминокислоты в белок происходит в 3 стадии, в ходе которых: • аа-тРНК каждой входящей в белок аминокислоты связывается с А-центром рибосомы; • пептид от пептидил-тРНК, находящейся в Р-центре, присоединяется к α-NH2-гpyппe аминоацильного остатка аа-тРНК А-центра с образованием новой пептидной связи; • удлинённая на один аминокислотный остаток пептидил-тРНК перемещается из А-центра в Р-центр в результате транслокации рибосомы. Образование пептидной связи происходит сразу же после отщепления комплекса EF-1 и ГДФ от рибосомы. Эта стадия процесса получила название реакции транспептидации Транслокация - третья стадия элонгации. К рибосоме присоединяется фактор элонгации EF-2 и за счёт энергии ГТФ продвигает рибосому по мРНК на один кодон к 3'-концу. В результате дипептидил-тРНК, которая не меняет своего положения относительно мРНК, из А-центра перемещается в Р-центр. Свободная от метионина тРНКiМет покидает рибосому, а в область А-центра попадает следующий кодон . По завершении третьей стадии элонгации рибосома в Р-центре имеет дипептидил-тРНК, а в А-центр попадает триплет, кодирующий включение в полипептидную цепь второй аминокислоты. Начинается следующий цикл стадии элонгации, в ходе которого на рибосоме снова проходят вышеописанные события. Повторение таких циклов по числу смысловых кодонов мРНК завершает весь этап элонгации. 3. Терминация Терминация трансляции наступает в том случае, когда в А-центр рибосомы попадает один из стоп-кодонов: UAG, UAA или UGA. Вместо этого к рибосоме присоединяются 2 белковых высвобождающих фактора RF (от англ, releasingfactor) или фактора терминации. Один из них с помощью пептидилтрансферазного центра катализирует гидролитическое отщепление синтезированного пептида от тРНК. Другой за счёт энергии гидролиза ГТФ вызывает диссоциацию рибосомы на субъединицы. Таким образом, матричная природа процесса трансляции проявляется в том, что последовательность поступления аминоацил-тРНК в рибосому для синтеза белка строго детерминирована мРНК, т.е. порядок расположения кодонов вдоль цепи мРНК однозначно задаёт структуру синтезируемого белка. Рибосома сканирует цепь мРНК в виде триплетов и последовательно отбирает из окружающей среды "нужные" аа-тРНК, Малая и большая субъединицы рибосомы в процессе трансляции выполняют разные функции: малая субъединица присоединяет мРНК и декодирует информацию с помощью тРНК и механизма транслокации, а большая субъединица ответственна за образование пептидных связей. Посттрансляционные модификации полипептидной цепи Они включают удаление части полипептидной цепи, ковалентное присоединение одного или нескольких низкомолекулярных лигандов, приобретение белком нативной конформации. Многие модификации осуществляются в ЭР. Здесь происходят фоддинг полипептидных цепей и формирование уникальной третичной или четвертичной структуры белков. Причём для поддержания нативной конформации молекул огромное значение имеет правильное формирование дисульфидных связей. Частичный протеолиз Многие белки, секретируемые из клеток, первоначально синтезируются в виде молекул-предшественников, функционально неактивных. Удаление части полипептидной цепи специфическими эндопротеазами приводит к образованию активных молекул. Некоторые белки-предшественники расщепляются в ЭР или аппарате Гольджи, другие - после секреции. Так, неактивные предшественники секретируемых ферментов - зимогены - образуют активный фермент после расщепления по определённым участкам молекулы: зимоген панкреатической железы трипсиноген превращается в активный трипсин после секреции в тонкий кишечник. Ковалентные модификации Структурные белки и ферменты могут активироваться или инактивироваться в результате присоединения различных химических групп: фосфатных, ацильных, метальных, олигосахаридных и некоторых других. Фосфорилирование белков осуществляется по гидроксильным группам серина, треонина и, реже, тирозина ферментами из группы протеинкиназ, тогда как дефосфорилирование катализируют гидролитические ферменты фосфопротеинфосфатазы. Гликозилирование. Белки, входящие в состав плазматических мембран или секретирующиеся из клеток, подвергаются гликозилированию. Углеводные цепи присоединяются то гидроксильным группам серина или треонина (О-гликозилирование) либо аспарагина (N-гликозилирование). Последовательное наращивание углеводного фрагмента происходит в ЭР и аппарате Гольджи. Многочисленным модификациям подвергаются боковые радикалы некоторых аминокислот: в тиреоглобулине йодируются остатки тирозина; в факторах свёртывания крови карбоксилируются остатки глутамата; в ЭР фибробластов гидроксилируются остатки пролина и лизина в цепях тропоколлагена. 49. Регуляция биосинтеза белка на уровне транскрипции (индукция и репрессия) напримерах лактозного и гистидинового оперона.Генетический код. Молекулярные болезни, классификация Механизм, регулирующий синтез ферментов, называется репрессией. Это — подавление синтеза их под влиянием избыточного количества продукта реакции, который, накопившись в системе и действуя в цепи отрицательной обратной связи, служит сигналом о прекращении синтеза ферментов, которые теперь клетке не нужны. Усиление биосинтеза ферментов иначе называют индукцией. Биосинтез белка — процесс, который поддается регулированию. Принципы такой регуляции впервые были сформулированы в работах Жакоба и Моно Регуляция биосинтеза белка у ПРОКАРИОТ: 1. Регуляция происходит только на уровне транскрипции. Первичные транскрипты генов у них транслируются до завершения транскрипции. 2. Неоднородность ГЕНОМОВ. В геноме есть структурные гены и есть регуляторные области, которые могут включать регуляторные элементы и регуляторные гены. Структурные гены кодируют синтез структурных и функциональных белков. Регуляторные элементы не кодируют синтез белков вообще, но влияют на процесс транскрипции. Регуляторными элементами являются: - ПРОМОТОР - место прикрепления к ДНК РНК-ПОЛИМЕРАЗЫ, ОПЕРАТОР - место взаимодействия регуляторных белков с ДНК. Регуляторные гены кодируют синтез регуляторных белков. К ним относится белок -РЕПРЕССОР, который может блокировать считывание информации, связываясь с оператором. Фрагмент ДНК, подверженный транскрипции называется ОПЕРОН (ПРОМОТОР, ОПЕРАТОР, структурный ген). За пределами ОПЕРОНА находятся гены-регуляторы, кодирующие синтез белка - РЕПРЕССОРА. Регуляция биосинтеза белков у ПРОКАРИОТ протекает альтернативно путём репрессии и индукции. ПРИМЕР: ЛАКТОЗНЫЙ ОПЕРОН. В микробной клетке лактоза с помощью лактазы расщепляется до галактозы и глюкозы. Лактозный ОПЕРОН регулирует синтез лактазы. Если в среде присутствует лактоза, то БЕЛОК-РЕПРЕССОР вытесняется из связи с оператором и гены лактазы транскрибируются. Лактоза выступает индуктором. Гистидиновый оперон. В отсутствие гистидина белок-репрессор не имеет сродства к оператору, РНК-полимераза присоединяется к промотору, и происходит транскрипция 10 структурных генов, кодирующих строение ферментов, участвующих в синтезе гистидина; в присутствии гистидина в среде комплекс белка-репрессора с Гис, связывается с оператором, препятствует присоединению РНК-полимеразы к промотору и останавливает транскрипцию. Генетический код. Необходимость кодирования структуры белков в линейной последовательности нуклеотидов мРНК и ДНК продиктована тем, что в ходе трансляции: нет соответствия между числом мономеров в матрице мРНК и продукте - синтезируемом белке; отсутствует структурное сходство между мономерами РНК и белка. Это исключает комплементарное взаимодействие между матрицей и. Отсюда становится ясным, что должен существовать "словарь", позволяющий выяснить, какая последовательность нуклеотидов мРНК обеспечивает включение в белок аминокислот в заданной последовательности. Этот "словарь" получил название генетического, биологического, нуклеотидного, или аминокислотного кода. Молекулярные болезни. Причина возникновения — генные мутации. Механизм развития заболевания: изменение нуклеотидной последовательности ДНК —> изменение мРНК —> изменение белка (структурного или белка-фермента) —> появление патологических признаков —> болезнь. Энзимопатии могут возникать при нарушении всех видов обмена (см. словарь терминов): • углеводного — галактоземия, фруктозурия, полисахаридоз, муковисцидозы; • аминокислотного — фенилкетонурия, алкаптонурия, тирозиноз; • липидного — болезнь Тея-Сакса, гиперхолестеринемия; • пуринового и пиримидинового — синдром Леша-Нихана; • нуклеинового — прогерия; • минерального — болезнь Вильсона-Коновалова (гепато-церебральная дегенерация), гипофосфатемия (витамин-D- резистентный рахит). 50.Переваривание белков. Характеристика протеолитических ферментов, работающих в желудке. Роль соляной кислоты в переваривании белков. Характеристика протеолитических ферментов, работающих в тонком кишечнике. Схема активации протеолитических ферментов поджелудочной железы. Специфичность действия протеаз. Защита клеток желудочно-кишечного тракта от действия протеаз Характеристика протеолитических ферментов. Основными компонентами желудочного сока являются: соляная кислота, секретируемая обкладочными (париетальными) клетками, слизь и бикарбонаты (продукция добавочных клеток), внутренний фактор Кастла (секретируется обкладочными клетками) и ферменты. Важнейшие протеолитические ферменты желудочного сока: пепсин, гастриксин (пепсин С), и химозин (реннин). Предшественник пепсина (профермент) пепсиноген, а также проферменты гастриксина и химозина продуцируются главными клетками слизистой оболочки желудка, и, в дальнейшем активируются соляной кислотой. Роль соляной кислоты. В желудке имеются все условия для переваривания белков. Во-первых, в желудочном соке содержится активный фермент пепсин. Во-вторых, благодаря наличию в желудочном соке свободной соляной кислоты для действия пепсина создается оптимальная среда (рН 1,5–2,5). Следует особо указать на существенную роль соляной кислоты в переваривании белков: она переводит неактивный пепсиноген в активный пепсин, создает оптимальную среду для действия пепсина; в присутствии соляной кислоты происходят набухание белков, частичная денатурация и, возможно, гидролиз сложных белков. Кроме того, соляная кислота стимулирует выработку секретина в двенадцатиперстной кишке, ускоряет всасывание железа и оказывает бактерицидное действие. Желудок. Превращение пепсиногена в пепсин происходит в результате отщепления с N-концевого участка пепсиногена несколько пептидов. Активация пепсина идёт в несколько стадий и катализируется соляной кислотой желудочного сока и самим пепсином. Пепсин обеспечивает расщепление белков, предшествующее их гидролизу и облегчающую его. Гастриксин по своим функциям и эволюции в желудке близок к пепсину. Химозин расщепляет белки молока до нерастворимого белка казеина, который, в дальнейшем, расщепляется пепсином. Тонкий кишечник. Трипсин специфичен к пептидным связям, образованным с участием карбоксильных групп лизина и аргинина. может осуществлять аутокатализ, т.е. превращение последующих молекул трипсиногена в трипсин, также он активирует остальные протеолитические ферменты панкреатического сока. Химотрипсин. Образуется из химотрипсиногена при участии трипсина и промежуточных, уже активных, форм химотрипсина, которые выстригают два дипептида из цепи профермента. Три образованных фрагмента удерживаются друг с другом посредством дисульфидных связей. Эластаза активируется в просвете кишечника трипсином из проэластазы. Гидролизует связи, образованные карбоксильными группами малых аминокислот аланина, пролина, глицина. Карбоксипептидазы являются экзопептидазами, т.е. гидролизуют пептидные связи с С-конца пептидной цепи. Различают два типа карбоксипептидаз – карбоксипептидазы А и карбоксипептидазы В. Карбоксипептидазы А отщепляют с С-конца остатки алифатических и ароматических аминокислот, карбоксипептидазы В – остатки лизина и аргинина. Аминопептидазы. Являясь экзопептидазами, аминопептидазы отщепляют N-концевые аминокислоты. Дипептидазы гидролизуют дипептиды, в изобилии образующиеся в кишечнике при работе других ферментов. Малое количество дипептидов и пептидов пиноцитозом попадают в энтероциты и здесь гидролизуются лизосомальными протеазами. |