Главная страница
Навигация по странице:

  • Коэффициенты отражения и поглощения Поглощение (абсорбция) света

  • 7. Основные механизмы поглощения в полупроводниках.

  • Поглощение на свободных носителях

  • 11. Обратная решетка и сфера Эвальда.

  • ОБРА́ТНАЯ РЕШЕТКА

  • Ответы по Методам Исследования. 1. двухзондовый метод


    Скачать 4.56 Mb.
    Название1. двухзондовый метод
    АнкорОтветы по Методам Исследования.docx
    Дата06.03.2018
    Размер4.56 Mb.
    Формат файлаdocx
    Имя файлаОтветы по Методам Исследования.docx
    ТипДокументы
    #16303
    страница2 из 6
    1   2   3   4   5   6

    6. Оптика полупроводников

    Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули, электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости. Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот , где Eg — ширина запрещённой зоны, — постоянная Планка. Эта частота определяет фундаментальный край поглощения для полупроводника. Для полупроводников, которые зачастую применяются в электронике (кремний, германий, арсенид галлия) она лежит в инфракрасной области спектра.
    Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора, в частности закон сохранения импульса. Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона 2π / λ, где λ — длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников. Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется, называются прямыми или вертикальными. Импульс конечного состояния может значительно отличаться от импульса начального состояния, если в процессе поглощения фотона участвует ещё одна, третья частица, например, фонон. Такие переходы тоже возможны, хотя и менее вероятны. Они называются непрямыми переходами.
    Таким образом, прямозонные полупроводники, такие как арсенид галлия, начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике.
    Непрямозонные полупроводники, например, кремний, поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и, следовательно, от температуры. Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.
    При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда, а, следовательно, фотопроводимость. При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов, электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решетки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры, создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.

    Коэффициенты отражения и поглощения

    Поглощение (абсорбция) света

    Поглощением (абсорбцией) света называется явление потери энергии световой волной, проходящей через вещество.

    Свет поглощается в тех случаях, когда проходящая волна затрачивает энергию на различные процессы. Среди них: преобразование энергии волны во внутреннюю энергию – при нагревании вещества; затраты энергии на вторичное излучение в другом диапазоне частот (фотолюминесценция); затраты энергии на ионизацию – при фотохимических реакциях и т.п. При поглощении света колебания затухают и амплитуда электрической составляющей уменьшается по мере распространения волны. Для плоской волны, распространяющейся вдоль оси x, имеем



    Здесь – амплитудное значение напряженности электрического поля волны в точках с координатой x; – амплитуда в точке с координатой x = 0; t – время, за которое волна распространилась на расстояние, равное x; β – коэффициент затухания колебаний; - коэффициент поглощения, зависящий от химической природы среды и от длины волны проходящего света.

    Интенсивность волны будет изменяться по закону Бугера (П. Бугер (1698 – 1758) – французский ученый):

    ,

    где – интенсивность волны на входе в среду.

    При , . Следовательно, коэффициент поглощения – физическая величина, численно равная обратному значению толщины слоя вещества, в котором интенсивность волны убывает в е = 2,72 раз.

    Зависимость коэффициента поглощения от длины волны определяет спектр поглощения материала. В веществе (например в газе) может присутствовать несколько сортов частиц, участвующих в колебаниях под действием распространяющейся электромагнитной волны. Если эти частицы слабо взаимодействуют, то коэффициент поглощения мал для широкого спектра частот, и лишь в узких областях он резко возрастает (рис. 10.7, а).




    а б

    Эти области соответствуют частотам собственных колебаний оптических электронов в атомах разных видов. Спектр поглощения таких веществ линейчатый и представляет собою темные полосы на радужной окраске спектра, если это видимая область. При увеличении давления газа полосы поглощения уширяются. В жидком состоянии они сливаются, и спектр поглощения принимает вид, показанный на рис. 10.7, б. Причиной уширения является усиление связи атомов (молекул) в среде.

    Коэффициент поглощения, зависящий от длины волны λ (или частоты ω), для различных веществ различен. Например, одноатомные газы и пары металлов (т.е. вещества, в которых атомы расположены на значительных расстояниях друг от друга и их можно считать изолированными) обладают близким к нулю коэффициентом поглощения, и лишь для очень узких спектральных областей (примерно м) наблюдаются резкие максимумы (так называемый линейчатый спектр поглощения). Коэффициент поглощения для диэлектриков невелик (примерно ), однако у них наблюдается селективное поглощение света в определенных интервалах длин волн, когда α резко возрастает и наблюдаются сравнительно широкие полосы поглощения (примерно м), т.е. диэлектрики имеют сплошной спектр поглощения. Коэффициент поглощения для металлов имеет большие значения (примерно ), и поэтому металлы практически непрозрачны для света. В металлах из-за наличия свободных электронов, движущихся под действием электрического поля световой волны, возникают быстропеременные токи, сопровождающиеся выделением джоулевой теплоты. Поэтому энергия световой волны быстро уменьшается, превращаясь во внутреннюю энергию металла. Чем выше проводимость металла, тем сильнее в нем поглощение света.




    На рис. 10.8 представлена типичная зависимость коэффициента поглощения α от частоты света ν и зависимость показателя преломления n от ν в области полосы поглощения. Из рисунка следует, что внутри полосы поглощения наблюдается аномальная дисперсия (n убывает с увеличением ν). Однако поглощение вещества должно быть значительным, чтобы повлиять на ход показателя преломления.

    Зависимостью коэффициента поглощения от частоты (длины волны) объясняется окрашенность поглощающих тел. Например, стекло, слабо поглощающее красные и оранжевые лучи и сильно поглощающее зеленые и синие, при освещении белым светом будет казаться красным. Если на такое стекло направить зеленый и синий свет, то из-за сильного поглощения света этих длин волн стекло будет казаться черным. Это явление используется для изготовления светофильтров, которые в зависимости от химического состава (стекла с присадками различных солей; пленки из пластмасс, содержащие красители; растворы красителей и т. д.) пропускают свет только определенных длин волн, поглощая остальные. Разнообразие пределов селективного (избирательного) поглощения у различных веществ объясняет разнообразие и богатство цветов и красок, наблюдающееся в окружающем мире.

    Спектральный анализ позволяет получить информацию о составе Солнца, поскольку определенный набор спектральных линий исключительно точно характеризует химический элемент. Так, с помощью наблюдений спектра Солнца был открыт гелий.

    Видимая часть солнечного излучения при изучении с помощью спектроанализирующих приборов оказывается неоднородной – в спектре наблюдаются линии поглощения, впервые описанные в 1814 году И. Фраунгофером.

    С помощью спектрального анализа узнали, что звезды состоят из тех же самых элементов, которые имеются и на Земле.

    Явление поглощения широко используется в абсорбционном спектральном анализе смеси газов, основанном на измерениях спектров частот и интенсивностей линий (полос) поглощения. Структура спектров поглощения определяется составом и строением молекул, поэтому изучение спектров поглощения является одним из основных методов количественного и качественного исследования веществ.

    7. Основные механизмы поглощения в полупроводниках.

    При воздействии на полупроводник светом могут быть реализованы следующие типы взаимодействия квантов света с носителями заряда: собственное поглощение, экситонное поглощение, поглощение на свободных носителях, примесное поглощение и двухфотонное поглощение. Значительное, а иногда и решающее влияние на процессы поглощения и испускания оказывают внешние условия: температура, механическое давление, электрическое и магнитное поля.

    В случае собственного поглощения происходит взаимодействие фотонов с электронами в валентной зоне, т. е. с собственными электронами атомов, составляющих кристаллическую решетку. Фотоны определенной энергии способны отдать свою энергию этим электронам, оторвать их от атомов и перевести электроны на более высокие энергетические уровни. В этом случае фотоны поглощаются в кристалле. При собственном поглощении переходы могут быть прямые, когда волновой вектор электрона остается неизменным, и электрон и оставляемая им дырка имеют одинаковые квазиимпульсы. Возможны также непрямые переходы с участием фононов, которым передается избыточный импульс. По краю собственного поглощения можно определить ширину запрещенной зоны полупроводника.

    В некоторых полупроводниках наблюдается экситонное поглощение. Опыты показывают, что полупроводниковые кристаллы с небольшой концентрацией дефектов, особенно при низких температурах, характеризуются большим коэффициентом поглощения для энергий квантов света, несколько меньших . Фотопроводимость при этом не возникает. Энергия внешнего излучения расходуется не на создание свободных электронов и дырок, а на образование особых квазичастиц – экситонов, которые могут блуждать по кристаллу. При столкновении с примесными центрами экситон может либо распасться и образовать электрон и дырку, либо рекомбинировать и перевести атом в невозбужденное состояние. В первом случае экситону необходима тепловая энергия, во втором — либо происходит излучение кванта энергии, либо энергия экситона переходит решетке полупроводника в виде теплоты.

    В физике полупроводников наибольшее распространение получила модель экситонов большого радиуса Ванье-Мотта. Экситон представляется как водородо-подобный атом, состоящий из положительно заряженной дырки и связанного с ней электрона. Между разноименно заряженными частицами действует сила кулоновского притяжения, ослабленная в раз, где – диэлектрическая постоянная кристалла. Обе частицы вращаются вокруг общего центра тяжести и одновременно перемещаются по кристаллу без переноса электрического заряда.

    Экситон полностью исчезает или аннигилирует, и вся его энергия (внутренняя и кинетическая) передается фотону, если нет взаимодействия с третьими частицами. Поэтому контур экситонных линий излучения воспроизводит максвелловское распределение экситонов по скоростям.

    Поглощение на свободных носителях имеет место, когда фотоны реагируют со свободными носителями заряда в разрешенных зонах. При этом энергия фотонов расходуется на перевод носителей заряда на более высокие уровни. Под действием электрического поля световой волны носители заряда совершают колебательные движения синхронно с полем и при столкновении с узлами решетки отдают накопленную энергию. Создание инверсной населенности не гарантирует получения активной среды, поскольку коэффициент поглощения свободными носителями может быть достаточно большим. Этот вид поглощения теоретически и экспериментально изучен достаточно подробно.

    Поскольку оптические переходы электронов и дырок в пределах одной зоны сопровождаются изменением их квазиимпульсов, а импульс фотона пренебрежимо мал, то такие процессы возможны только с участием третьих частиц. Носители взаимодействуют или, как говорят, рассеиваются на различных дефектах, что и обеспечивает изменение их импульса. Поглощение свободными носителями увеличивается с ростом температуры (концентрации фононов) и длины волны.

    В случае примесного поглощения света фотоны взаимодействуют с примесными атомами, ионизируя или возбуждая их. Взаимодействие фотонов с примесными атомами носит резонансный характер. Введением в кристалл примесей, особенно в больших количествах, можно заметно изменить его энергетический спектр, населенности энергетических состояний и вероятности оптических и неоптических переходов.

    Вблизи края собственного поглощения иногда наблюдается тонкая структура, обусловленная образованием донорно-акцепторных пар. Донорные и акцепторные примесные центры можно считать невзаимодействующими только в первом приближении. В принципе они испытывают кулоновское и ван-дер-ваальсово взаимодействия. Поскольку примесные атомы занимают в решетке вполне определенные места, то энергия электронно-дырочной пары принимает дискретный ряд значений, определяемых расстоянием между электроном и дыркой, что и проявляется в спектрах поглощения и еще более четко в спектрах люминесценции.

    В полупроводниковых кристаллах также имеет место поглощение света кристаллической решеткой. Оно проявляется в далекой ИК-области спектра и накладывается на другие виды поглощения.

    Двухфотонное поглощение. Вероятности двухфотонных переходов в системе частиц с дискретными уровнями энергии рассчитывались еще в 30-х гг. сразу же после возникновения квантовой механики. Эти вероятности получаются во втором приближении теории возмущений (рис. 2.).

    В случае примесного и собственного оптического поглощения происходит генерация неравновесных носителей заряда, которая сопровождается изменением электрических свойств полупроводника при освещении — наблюдается эффект фотопроводимости, используемый для создания широкого класса приборов. К неравновесным оптическим явлениям, характерным для полупроводниковых кристаллов и нашедших широкое применение в полупроводниковом приборостроении относится люминесценция.

    11. Обратная решетка и сфера Эвальда.

    Сегодня самым эффективным методом изучения взаимного расположения атомов является дифракция микрочастиц: фотонов, электронов, нейтронов.

    Для наблюдения дифракции необходимо, чтобы длина волны де-Бройля дифрагирующих частиц была меньше периодов кристаллической решетки. Этому условию удовлетворяют фотоны при энергии Е = 5-20 кэВ (рентгеновское и гамма- излучение), электроны при Е = 10-100 эВ, и нейтроны при Е = 0,01- 0,1 эВ (тепловые нейтроны с энергией порядка kT). При анализе этого и других явлений (движение электронов в потенциальном поле, рассеяние фотонов), связанных с периодическим расположением частиц, важную и полезную роль играет обратная решетка.

    ОБРА́ТНАЯ РЕШЕТКА, точечная трехмерная решетка в абстрактном обратном пространстве, где расстояния имеют размерность обратной длины. Обратная решетка, соответствующая любой прямой решетке, описывающей реальную структуру кристалла, строится следующим образом:

    1. Если обычная прямая решетка построена на векторах трансляций a,b,c, то оси обратной к ней решетки a*,b*,c* определяются как векторные произведения: a* = bc, b* = ca, c* = ab

    2. Осевые параметры обратной решетки a*,b*,c* равны обратным величинам межплоскостных расстояний плоских сеток прямой решетки, нормальных к этой оси.

    Т. е. вектор обратной решетки H*hkl нормален к каждой плоскости прямой решетки (hkl), а его длина определяется как величина, обратная межплоскостному расстоянию dhkl.

    Решетка с вектором H*hkl, построенная на базисных векторах a*,b*,c* называется обратной решеткой, векторы a*,b*,c* — координатными векторами обратной решетки.

    Каждой плоскости (hkl) прямой решетки отвечает в обратной решетке узел [[hkl]]*. Бесконечному семейству параллельных плоскостей hkl в пространстве прямой решетки соответствует в пространстве обратной решетки бесконечное семейство точек [[hkl]]* вдоль направления, нормального к этим плоскостям.

    Зоне плоскостей прямой решетки отвечает сетка из точек (узлов) обратной решетки, причем ось зоны прямой решетки нормальна к плоскости сетки обратной решетки. Прямой пространственной решетке из плоскостей hkl отвечает обратная трехмерная решетка из точек [[hkl]]*.

    Основные векторы a*,b*,c* обратной решетки определяются также скалярными произведениями:

    aa* = bb* = cc* = 1;

    a*b = a*c = b*c = b*a = c*b = c*a = 0

    Прямая и обратная решетка сопряжены взаимно, т. е. решетка, построенная на осях a,b,c, является обратной по отношению к решетке a*,b*,c*, а решетка, построенная на векторах a*,b*,c*, - обратной по отношению к решетке a,b,c.
    1   2   3   4   5   6


    написать администратору сайта