Главная страница
Навигация по странице:

  • 2. Основные этапы развития генетики.

  • 3. Особенности развития генетики в России после Октябрьской революции и до наших дней.

  • 4. Методы генетических исследований.

  • Гибридологический метод (

  • 5. Материальные основы наследственности. Доказательства главной роли ДНК в передаче наследственной информации.

  • 6. Клеточный цикл. Митоз как механизм бесполого размножения эукариот.

  • 7. Особенности размножения и передачи генетической информации у бактерий и вирусов. Сексдукция, трансформация, трансдукция.

  • 8. Эукариотические микроорганизмы как объекты генетики, особенности передачи у них генетической информации (тетрадный анализ, конверсия генов, парасексуальный цикл).

  • 9. Цитологические основы полового размножения.

  • Мейоз

  • Профаза I

  • Метафаза I

  • Анафаза II

  • генетика экзамен. 1. Генетика как наука. Предмет и задачи генетики


    Скачать 194.24 Kb.
    Название1. Генетика как наука. Предмет и задачи генетики
    Анкоргенетика экзамен.docx
    Дата30.01.2017
    Размер194.24 Kb.
    Формат файлаdocx
    Имя файлагенетика экзамен.docx
    ТипДокументы
    #1166
    страница1 из 8
      1   2   3   4   5   6   7   8

    1. Генетика как наука. Предмет и задачи генетики.

    Г.-наука о насл. и изменчивости орг. Генетика- дисциплина, изучающая мех. и зак. Насл. и изменчивости организмов, методы управления этими процессами. Она призвана раскрыть законы воспроизведения живого по поколениям, появление у ор-в новых свойств, законы индивид. Разв. особи и мат. основы истор.преобр. орг. в процессе эвол. 1две задачи решают теория гена и теория мутаций. Выяснение сущности воспроизведения для конкретного разнообразия форм жизни требует изучения наследственности у представителей, находящихся на разных ступенях эволюционного развития. Объектами генетики являются вирусы, бактерии, грибы, растения, животные и человек. На фоне видовой и другой специфики в явлениях наследственности для всех живых существ обнаруживаются общие законы. Их существование показывает единство органического мира.

    Задачи генетики→исследования: 1) мех-в хранения и передачи генетической инф. от род. форм к дочерним; 2) мех. реализации этой инф. в виде призн. и свойств организмов в процессе их индивид. развития под контролем генов и влиянием условий внешней среды; 3) типов, причин и мех. изменчивости всех живых существ; 4) взаимосвязи процессов наследственности, изменчивости и отбора как движущих факторов эволюции органического мира.

    основа для решения практ. задач: 1) выбор ↑ эфф. типов гибридизации и способов отбора; 2) управление развитием насл. призн. 3) иск. получение наследственно изм. форм живых орг; 4) разработка мероприятий по защите живой природы от вредных мутагенных воздействий разл. факторов вн. среды и методов борьбы с насл. болезнями чел., вредителями с\х 5) разработка методов ген. инженерии с целью получения ↑эфф. продуцентов биологически активных соединений.

    методы совр. биологии:, цитогенетический, биохимический, генеалогический, близнецовый, мутационный и др. гибридологический→ гибридиз. (скрещивании) орг., отлич. др\ др по одному или неск. признакам, с посл. анализом потомства. →позволяет анализировать закономерности наследования и изменчивости отд. признаков и свойств организма при половом размножении, а также изменчивость генов и их комбинирование.
    2. Основные этапы развития генетики.

    1900 независимо Корренс, Герман и де Фриз открыли и сформулировали законы наследования признаков, когда была переиздана работа Г. Менделя «Опыты над растительными гибридами». эпоха Классической Г (1900-1930), эпоха неоклассицизма (1930-1953) и эпоха синтетической Г в 1953 году. 1 эт. →язык генетики, разр. методики иссл., были обосн. фундам. положения, открыты осн. законы. В эпоху неоклассицизма →вмеш. в мех-м изменчивости, дальн. изуч. гена и хромосом, разр. теория иск. мутагенеза→от теор. дисц. к прикладной. Новый этап →благодаря расшифровке стр. ДНК в 1953 г. Дж. Уотсоном и Ф.Криком. →мол уровень иссл. →расшифр. стр-у гена , опред. мат. основы и мех. насл. и изм. Г. научилась влиять на эти процессы, направлять их в нужное русло.

    Осн. зак. Г.→ Менд. при × разл. рас гороха (1865). Оценен в1900→голл. учёный Х. де Фриз, нем. — К. Корренс и австр. — Э. Чермак вторично открыли зак. насл.приз, уст. Мен. С этого t → бурное разв. →принцип дискретности в явл.наслед. и организации ген. мат.→ упор на изуч.закон. насл. → метод гибрид.анализа→ точной статист. х-ка распределения отд. призн. в популяции потомков, полученных от × спец. подобранных особей. Уже в 1е 10летие развития Г. →изучения поведения хромосом в процессах кл.деления (Митоз), созревания пол. кл. (Мейоз) и оплодотворения →цитогенетика, связавшая законом. насл. призн. с поведением хр. в мейозе и обосновавшая хромосомную теорию насл. и теорию гена как мат. ед. насл. Хромос. теория объяснила явл. расщ., независ. насл.призн. →осн. д\понимания ≥биологических явлений. «ген», введ. в 1909 дат. В. Иогансеном→ насл.задаток признака. ↑вклад Т. Х. Моргана (1911) → «гены локализуются в хромосоме в специфической линейной последовательности и, далее, что основу сцепления составляет близость двух генов на хромосоме» Открытие мутагенного действия ренгеновых лучей (Надсон и Филиппов, 1925; ам.Мёллер, 1927). →Радиационная Г. Работы по рад. и хим. мутагенезу →изучению тонкой структуры гена→практ.значение → новых насл. изм. форм растений и микроорганизмов. Важное место в развитии теории гена заняли работы советских генетиков. А. С. Серебровским была поставлена проблема сложного строения гена. В дальнейшем (1929—31) им и его сотрудниками, особенно Н. П. Дубининым, была экспериментально доказана делимость гена и разработана теория его строения из субъединиц.
    3. Особенности развития генетики в России после Октябрьской революции и до наших дней.

    После рев. и гражд. войны 1917—1922 гг. → стрем. развитие науки. К концу 1930-х годов в СССР → сеть научно-иссл. институтов и опытных станций, а также вузовских кафедр Генетики. Лидеры→Н. И. Вавилов, Н. К. Кольцов, А. С. Серебровский, С. С. Четвериков и др. В СССР издавали переводы трудов иностранных генетиков, в том числе Т. Х. Моргана, Г. Мёллера, ряд генетиков участвовали в междун. пр.научного обмена. Г. Мёллер (мут. действие рентг. лучей) работал в СССР (1934—1937), сов. Генетики работали за границей.

    20-е годы ученик Вавилова Г.Д.Карпеченко, работая в ВИРе, создал метод хромосомной инженерии→показал возможность преодоления бесплодия отд. гибридов за счет удвоения наборов хромосом обоих родителей→впервые гибриды м\у капустой и редькой (Рафанобрассика)

    Открытие мутагенного действия ренгеновых лучей (Надсон и Филиппов, 1925; ам.Мёллер, 1927). →Радиационная Г. Работы по рад. и хим. мутагенезу →изучению тонкой структуры гена→практ.значение → новых насл. изм. форм растений и микроорганизмов. Важное место в развитии теории гена заняли работы советских генетиков. А. С. Серебровским была поставлена проблема сложного строения гена. В дальнейшем (1929—31) им и его сотрудниками, особенно Н. П. Дубининым, была экспериментально доказана делимость гена и разработана теория его строения из субъединиц.

    В 1930-е гг→раскол→деят. Т. Д. Лысенко и И. И. Презента →ряд дискуссий (наиболее крупные — в 1936 и 1939 г.), направленных на борьбу с подходом Лысенко.

    На рубеже 1930—1940-х гг. →Большой терр. ↑сотр. аппарата ЦК ВКП (б), курировавших генетику, и ряд видных генетиков были арестованы, расстреляны или погибли в тюрьмах (Н. И. Вавилов,Левицкий Карпеченко). После войны дебаты возобновились с новой силой. В 1948 году на августовской сессии ВАСХНИЛ Т. Д. Лысенко, пользуясь поддержкой И. В. Сталина, объявил генетику лженаукой→(«ветвистая пшеница») и др. →период гонений на Г (Лысенковщина) до снятия Н. С. Хрущева в 1964 году. Письмо 300→1955. 1957 Институт цитологии и генетики А\городок. Николай Петрович Дубинин→Беляков→Шумный.

    Лично Т. Д. Лысенко и его сторонники получили контроль над институтами отделения биологии АН СССР, ВАСХНИЛ и вузовскими кафедрами. Уч. д\школ и вузов, с позиций «Мичуринской биологии».

    Сходные с лысенковщиной явления наблюдались и в других науках. Наиболее известные кампании прошли в цитологии (в связи с учением О. Б. Лепешинской о живом веществе), физиологии (борьба К. М. Быкова и его сторонников за «наследие» И. П. Павлова) и микробиологии (теории Г. М. Бошьяна).

    После открытия и расшифровки структуры ДНК, физической базы генов (1953 г.), с середины 1960-х г. → восст. Г. Министр просвещения РСФСР инициировал широкую дискуссию между лысенковцами и генетиками.

    В 1960 году Нобелевский комитет сообщил советским властям о выдвижени кандидатуры Рапопорта (совместно с Шарлоттой Ауэрбах) на Нобелевскую премию за открытие химического мутагенеза.

    4. Методы генетических исследований. Специфические методы Г:

    1. Гибридологический метод (Менд.). Основные черты метода:а)Мендель учитывал не весь многообразный комплекс признаков у родителей и их потомков, а выделял и анализировал наследование по отдельным признакам (одному или нескольким); б) точный колич. учет насл. кажд. призн. в ряду последующих поколений. в) иссл. хар-р потомства кажд. гибрида в отдельности.

    2. Генеалогический метод. В основу метода положено составление и анализ родословных.

    Неспецифические методы генетики: 1. Близнецовый м. →для оценки соотносительной роли наследственности и влияния среды в развитии признака. 2. Цитогенетический м. → изуч. хромосом с пом. микроскопа. 3. Мутационный м. Метод обнаружения мутаций в зависимости от особенностей объект» — главным образом способа размножения организма. 4. Рекомбинационный метод. Основан на частоте рекомбинаций между отдельными ларами генов, представленных в одной хромосоме. Позволяет составлять карты хромосом, на которых указывается относительное расположение различных генов. 5. Метод селективных проб (биохимический). С помощью него устанавливают последовательность аминокислот в полипептидной цепи и таким образом определяют генные мутации.

    Общие методы:1. Физ. ( микроскопия, ультроцентрифугирование…) 2. Мат. ( исп-ся для статистической обработки данных и построения матем-х моделей) 3. Хим. ( исп-ся для изучения строения и ф-ций н\к и белков)

    Гибридологический метод (метод скрещивания).Разработан Г. Менделем и является основным в генетических исследованиях. С помощью скрещивания можно установить: 1) доминантен или рецессивен исследуемый признак (и соответствующий ему ген); 2) генотип организма; 3) взаимодействие генов и характер этого взаимодействия; 4) явление сцепления генов; 5) расстояние между генами; 6) сцепление генов с полом.

    Цитогенетический метод. Этот метод заключается в изучении количества, формы и размеров хромосом у животных и растений. Он очень ценен для выявления причин ряда заболеваний у человека. Иногда причиной болезни служат хромосомные мутации — утрата части хромосомы, нарушение ее строения. Если во время мейоза гомологичные хромосомы не расходятся, то при оплодотворении в зиготе .оказываются три гомологичные хромосомы вместо двух — так называемая трисо-мия. Нарушение генного баланса ведет к серьезным последствиям. Например, присутствие в хромосомном наборе человека трех хромосом 21-й пары (трисомия по 21-й паре хромосом) вызывает сильные изменения всего облика — монголоидное лицо, неправильную форму ушей, малый рост, кроткие руки, умственное недоразвитие (болезнь Дауна). Нерасхождение половых хромосом (кариотипы МУ, XXYY, XXX и др.) также сопровождается аномалиями строения тела и, как правило, нарушением умственной деятельности. С помощью цито-генетического метода установлены причины и многих других заболеваний человека.

    Генеалогический метод (метод родословных). Заключается в изучении наследования какого-либо признака у человека в ряде поколений у возможно большего числа родственников. Для этого составляется родословная, в которой отмечаются члены семьи, имеющие изучаемый признак. Метод родословных позволяет установить доминантность • или рецессивность признака, сцепленность его с другими признаками или с полом. В настоящее время изучено наследование многих нормальных и патологических признаков у человека.

    Близнецовый метод. Иногда оплодотворенная яйцеклетка человека дает начало двум (в очень редких случаях — трем, четырем) эмбрионам. Это происходит вследствие разделения бластомеров на ранних этапах развития. Поскольку дробление зиготы осуществляется путем митоза, из разделившихся бластомеров развиваются однояйцевые близнецы, имеющие одинаковый генотип. Все различия между близнецами обусловлены исключительно влиянием внешней среды. Поэтому изучение проявления признаков у однояйцевых близнецов, особенно если они росли в неодинаковых условиях, позволяет с большой достоверностью оценить роль внешней среды в реализации действия генов.

    Широкое применение в генетике человека находит популяционно-статистический метод, который основан на отслеживании (мониторинге) наследственных признаков (в первую очередь наследственных болезней) в больших группах населения в одном или нескольких поколениях. Метод позволяет определять частоту генов, в том числе «вредных», в различных популяциях; темпы мутационного процесса; величину генетического груза; изучать роль окружающей среды в возникновении наследственных аномалий, выявлять полиморфизм популяций по нормальным признакам

    5. Материальные основы наследственности. Доказательства главной роли ДНК в передаче наследственной информации.

    Материальными основами наследственности являются хромосомы с € в них генами.  Участок ДНК, кодирующий синтез одного белка →ген. Генетическая информация реализуется в процессах транскрипции и трансляции. В одной молекуле ДНК расположены сотни и тысячи генов.   Одна молекула ДНК вместе с белками, принимая определенную пространственную форму, образует хромосому. Количество хромосом благодаря митозу в организме постоянно.  Половые клетки, кроме митоза, подвергаются мейозу. В результате из 1 материнской клетки → 4 дочерние, с вдвое меньшим набором хромосом. При слиянии двух половых клеток (оплодотворении) →двойной набор хромосом.

    Хромосомы и гены – материальные основы наследственности, хранения и передачи наследственной информации. Постоянство формы, размеров и числа хромосом, хромосомный набор – главный признак вида.

    С ДНК связаны осн процессы организмов – наследственность и изменчивость.

    Опыт Гриффитса с пневмококками повторяли в пробирке.Через определенное время часть бескапсульных бактерий приобрели капсулу и вирулентность. Эксперименты in vitro полностью исключали участие в феномене трансформации каких-либо систем макроорганизмов. 
    Задача О. Эвери с сотрудниками → какое в-во способствует трансформации. Методика определения была выбрана относительно простая. Лизированные клетки капсульного штамма разделялись на различные химические составляющие. Каждый компонент испытывался на наличие трансформирующих свойств. Путем такого отбора удалось получить вещество, обладающее высокой трансформирующей активностью. Это была дезоксирибонуклеиновая кислота - ДНК.
    Более наглядно роль ДНК в передаче наследственной информации была установлена в 1952 г. американскими вирусологами А. Д. Херши и М. Чейзом при изучении разложения фага Т2 (вируса бактерий). Опыт состоял в том, что белки, входящие в протеиновую оболочку вириона, были помечены радиоизотопной меткой - S 35 (сера), а ДНК - радиоактивным фосфором - Р32. В дальнейшем вирус культивировался в клетках бактерий. После этого дочерние вирионы - потомство фага - подвергались радиометрическому анализу на распределение радиоактивных меток. Исследования показали, что новое поколение фаговых частиц содержало только фосфор - Р32. Исследователи сделали справедливый вывод о том, что именно ДНК, а не белок передается от родителей к потомству. 
    в 1952 г. Зайндером и Ледербергом открыта трансдукция →перенос генетического материала фагами от одних бактерий к другим. Ученые показали, что в процессе трансдукции активное участие принимает ДНК.

    Также было обнаружено, что чистая нуклеиновая кислота вируса табачной мозаики может заразить растение, вызывая типичную картину заболевания. Более того, удалось искусственно создать вегетативные "гибриды" из вирусов, в которых белковый футляр принадлежал одному виду, а нуклеиновая кислота - другому. В таких случаях генетическая информация "гибридов" всегда в точности соответствовала тому виду вирусов, чья нуклеиновая кислота входила в состав "гибрида".


    6. Клеточный цикл. Митоз как механизм бесполого размножения эукариот.

    Функция воспроизведения и передачи генетической информации обеспечивается в ходе клеточного цикла. Клеточный цикл - совокупность явлений между двумя последовательными делениями клетки или между ее образованием и гибелью. КЦ € митотическое деление и интерфазу. Интерфаза обычно занимает не менее 90% всего времени клеточного цикла и €: пресинтетическип или постмитотический (G1), синтетический (S) и постсинтетический или премитотический (G2).

    G1 →накопление белка, РНК, активно Fют гены.

    S→ синтезируется ДНК и происходит ауторепродукция (самоудвоение) хромосом, что приводит к возникновению второй хроматиды.

    G2→продолжается синтез ДНК и белков, накапливается энергия.

    Вслед за интерфазой начинается деление клетки — митоз: профазу, метафазу, анафазу, телофазу. В профазе хромосомы представляют собой клубок длинных тонких хроматиновых нитей. К концу этой фазы длина их уменьшается за счет спирализации примерно в 25 раз,разрушается ядрышко. Нити веретена прикрепляются к центриолям, которые в этот период уже разделились и находятся на противоположных полюсах клетки. Завершается профаза разрушением ядерной оболочки клетки.

    В метафазе утолщенные спирализованные хромосомы перемещаются в экваториальную плоскость клетки (метафазная пластинка) Началом анафазы считают момент разделения удвоенных хромосом на хроматиды, которые затем расходятся к противоположным полюсам клетки.

    Во время телофазы сестринские хроматиды достигают противоположных полюсов и деспирализуются. Так формируются два дочерних ядра. Наряду с делением материнского ядра происходит деление цитоплазмы, образование оболочек клеток.

    Основное биологическое значение митоза состоит в точном распределении хромосом между двумя дочерними клетками; тем самым сохраняются преемственность хромосомного набора в ряду клеточных поколений и полноценность генетической информации каждой клетки, что необходимо для осуществления общих и специфических функций живого организма.

    7. Особенности размножения и передачи генетической информации у бактерий и вирусов. Сексдукция, трансформация, трансдукция.
    Бактерии размножаются бесполым способом — делением «материнской клетки» надвое. Перед делением происходит репликация ДНК.

    Редко у бактерий м.б половой процесс, при котором происходит рекомбинация генетического материала. У бактерий никогда не образуются гаметы, не происходит слияние содержимого клеток, а имеет место передача ДНК от клетки-донора к клетке-реципиенту. Различают три способа передачи ДНК: конъюгация, трансформация, трансдукция.

    Сексдукция

    Половой процесс у бактерий, основу которого составляет перенос генетического материала F-фактором при конъюгации; при С. F-плазмида может переносить до 50% бактериальной хромосомы; частный случай переноса генов во время конъюгации от одной бактериальной клетки — донорской («мужской») к другой — реципиентной («женской»). С. осуществляется половым фактором, выделившимся в автономное состояние из бактериальной хромосомы вместе с её фрагментом. При С. в реципиентную клетку с фрагментом хромосомы переходит и половой фактор, тогда как при обычной конъюгации включенный в хромосому половой фактор переходит в реципиентную клетку крайне редко. В результате С. клетки приобретают свойства донорских («мужских») клеток, т. е. способность в дальнейшем осуществлять при конъюгации как С., так и перенос бактериальной хромосомы. В остальном С. сходна с обычным конъюгационным переносом: клетки становятся Диплоидами по генам, содержащимся в перенесённом фрагменте, приобретая присущие диплоидам особенности взаимодействия между гомологичными генами. Стабильность таких частичных диплоидов зависит от величины перенесённого фрагмента хромосомы: с увеличением протяжённости фрагмента повышается вероятность рекомбинации между ним и гомологичным участком хромосомы, что обычно приводит к восстановлению гаплоидного состояния клетки. С. имеет сходство со специфической трансдукцией, отличаясь от неё тем, что осуществляется с помощью перешедшего в автономное состояние полового фактора, а не при посредстве умеренного фага, вышедшего из состава хромосомы бактерии.
    Трансформация в генетике, внесение в клетку генетической информации при помощи изолированной дезоксирибонуклеиновой кислоты (ДНК). Т. приводит к появлению у трансформированной клетки (трансформанта) и её потомства новых признаков, характерных для объекта — источника ДНК. Явление Т. было открыто в 1928 английским учёным Ф. Гриффитом, наблюдавшим наследуемое восстановление синтеза капсульного полисахарида у пневмококков при заражении мышей смесью убитых нагреванием капсулированных бактерий и клеток, лишённых капсулы. Организм мыши в этих экспериментах играл роль своеобразного детектора, так как приобретение капсульного полисахарида сообщало клеткам, лишённым капсулы, способность вызывать смертельный для животного инфекционный процесс. В последующих экспериментах было установлено, что Т. имеет место и в том случае, когда вместо убитых клеток к лишённым капсулы пневмококкам добавляли экстракт из разрушенных капсулированных бактерий. В 1944 Освальд Эйвери с сотрудниками установил, что фактором, обеспечивающим Т., являются молекулы ДНК. Эта работа — первое исследование, доказавшее роль ДНК как носителя наследственной информации.
    Трансдукция

    опосредуемый бактериофагом (фагом) перенос ДНК от одной бактерии к другой. Часть бактериальной ДНК соединяется с фагом. При уничтожении бактери и хозяина фаг инфицирует другую бактерию и переносит к ней ДНК от предыдущего хозяина; она может соединиться с ДНК своего нового хозяина.
    Конъюгация — однонаправленный перенос F-плазмиды от клетки-донора в клетку-реципиента, контактирующих друг с другом. При этом бактерии соединяются друг с другом особыми F-пилями (F-фимбриями), по каналам которых фрагменты ДНК и переносятся. Конъюгацию можно разбить на следующие этапы: 1) раскручивание F-плазмиды, 2) проникновение одной из цепей F-плазмиды в клетку-реципиента через F-пилю, 3) синтез комплементарной цепи на матрице одноцепочечной ДНК (происходит как в клетке-доноре (F+), так и в клетке-реципиенте (F-)).
    Трансформация — однонаправленный перенос фрагментов ДНК от клетки-донора к клетке-реципиенту, не контактирующих друг с другом. При этом клетка-донор или «выделяет» из себя небольшой фрагмент ДНК, или ДНК попадает в окружающую среду после гибели этой клетки. В любом случае ДНК активно поглощается клеткой-реципиентом и встраивается в собственную «хромосому».

    Вирусы

    Вирусы состоят из нуклеиновой кислоты (ДНК или РНК) и белков, образующих оболочку вокруг этой нуклеиновой кислоты, т.е. представляют собой нуклеопротеидный комплекс. В состав некоторых вирусов входят липиды и углеводы. Вирусы содержат всегда один тип нуклеиновой кислоты — либо ДНК, либо РНК. Причем каждая из нуклеиновых кислот может быть как одноцепочечной, так и двухцепочечной, как линейной, так и кольцевой.
    Капсид — оболочка вируса, образована белковыми субъединицами, уложенными определенным образом. Капсид защищает нуклеиновую кислоту вируса от различных воздействий, обеспечивает осаждение вируса на поверхности клетки-хозяина. Суперкапсид характерен для сложноорганизованных вирусов (ВИЧ, вирусы гриппа, герпеса). Возникает во время выхода вируса из клетки-хозяина и представляет собой модифицированный участок ядерной или наружной цитоплазматической мембраны клетки-хозяина.
    Если вирус находится внутри клетки-хозяина, то он существует в форме нуклеиновой кислоты. Если вирус находится вне клетки-хозяина, то он представляет собой нуклеопротеидный комплекс, и эта свободная форма существования называется вирионом. Вирусы обладают высокой специфичностью, т.е. они могут использовать для своей жизнедеятельности строго определенный круг хозяев.
    Вирусы, паразитирующие в бактериальных клетках, называются бактериофагами. Бактериофаг состоит из головки, хвостика и хвостовых отростков, с помощью которых он осаждается на оболочке бактерий. В головке содержится ДНК или РНК. Фаг частично растворяет клеточную стенку и мембрану бактерии и за счет сократительной реакции хвостика «впрыскивает» свою нуклеиновую кислоту в ее клетку.

    Только паразитируя в клетке-хозяине, вирус может репродуцироваться, воспроизводить себе подобных.

    В цикле репродукции вируса можно выделить следующие стадии.

    1Осаждение на поверхности клетки-хозяина.

    2Проникновение вируса в клетку-хозяина (могут попасть в клетку-хозяина путем: а) «инъекции», б) растворения оболочки клетки вирусными ферментами, в) эндоцитоза; попав внутрь клетки вирус переводит ее белок-синтезирующий аппарат под собственный контроль).

    3Встраивание вирусной ДНК в ДНК клетки-хозяина (у РНК-содержащих вирусов перед этим происходит обратная транскрипция — синтез ДНК на матрице РНК).

    4Транскрипция вирусной РНК.

    5Синтез вирусных белков.

    6Синтез вирусных нуклеиновых кислот.

    7Самосборка и выход из клетки дочерних вирусов. Затем клетка либо погибает, либо продолжает существовать и производить новые поколения вирусных частиц.

    8. Эукариотические микроорганизмы как объекты генетики, особенности передачи у них генетической информации (тетрадный анализ, конверсия генов, парасексуальный цикл).

    Тетрадный анализ, метод генетического анализа низших эукариотных организмов, основанный на одновременном изучении генотипов всех четырёх гаплоидных продуктов мейоза отдельной диплоидной клетки. У некоторых грибов, водорослей, мхов после мейотического деления образуются тетрады (четвёрки спор), остающиеся внутри оболочки родительской клетки. Изолируя в ходе Т. а. споры каждой отдельной тетрады, можно не только устанавливать генотип исходных диплоидных клеток, но и следить за поведением отдельных генов, центромер и целых хромосом в мейозе. С помощью Т. а. у мхов было впервые доказано, что менделевское расщепление генов— результат мейоза и представляет собой биологическую, а не статистическую закономерность. Предпосылкой для использования Т. а. в современной генетике служит то, что любая пара аллельных генов даёт в тетрадах расщепление 2:2. В некоторых экспериментах наблюдаются отклонения от подобного расщепления. В тех случаях, когда эти отклонения очень редки, обнаружить и изучить их можно практически только с помощью Т. а.  У дрожжей рода Saccharomyces встречаются клетки, дающие красные и белые колонии. Эти альтернативные признаки определяются одной аллельной парой гена окраски А – белый цвет, а – красный. При слиянии гаплоидных гамет образуется диплоидная зигота F1. Она вскоре приступает к мейозу, в результате чего в одном аске  образуется тетрада гаплоидных спор. Разрезав аск и вынув каждую спору отдельно переносят их на субстрат, где они размножаются. Каждая из 4-х гаплоидных клеток начинает делиться и образуются 4 колонии. Две из них оказываются белыми и две красными, т.е. наблюдается расщепление, точно соответствующее 1А : 1а.

    Генная конверсия — это процесс нереципрокного переноса информации из одной хроматиды в другую. Хорошим модельным объектом служат некоторые виды низших грибов, например, Ascomycetes, продукты мейоза которых остаются в одной крупной клетке-сумке, называемой аском, располагаясь в линейном порядке. У гетерозиготного штамма (Аа) следовало бы ожидать распределение аллелей в 8 спорах аска 4А:4а, рекомбинация может лишь поменять местами споры с разными аллелями.

    — рекомбинации между отдельными частями генов, замена некоторой нуклеотидной последовательности ДНК гомологичной ей последовательностью нуклеотидов. Процесс Г.к. обычно инициируется формированием гибридной ДНК между двумя частично комплементарными цепями. В настоящее время используется следующая классификация Г.к.: а) Г.к. между сестринскими хромосомами по гомологичному локусу; б) Г.к. между различными локусами в одной или разных хромосомах. Конверсия такого типа имеет широкое распространение в различных мультигенных семействах( Группа родственных структурных генов, образующих кластер либо диспергированных по геному, возникших в результате ряда последовательных дупликаций гена-предшественника; характерные примеры - М.с. генов рРНК, иммуноглобулинов, гистонов (например, в геноме мышей 15-20 генов, кодирующих гистоны Н2А) . Само явление впервые описано Г. Книпом у нейроспоры в 1928 г. Сначала термин «Г.к.» применяли только к нарушению стандартного менделевского расщепления 2А : 2а в тетрадах аскоспор у грибов-аскомицетов. В дальнейшем его распространили на все процессы, в которых происходит превращение одного аллеля в другой путем коррекции рекомбинационного гетеродуплекса.

    Таким образом, термин генная конверсия означает замену некоторой последовательности ДНКгомологичной ей последовательностью . Процесс генной конверсии обычно инициируется формированием гибридной ДНК между двумя частично комплементарными цепями. Как правило, они обычно принадлежат двум двуцепочечным молекулам ДНК 

    в процессе мейотического кроссинговера есть стадия, на которой разнонаправленные нити ДНКгомологичных хромосом образуют гетеродуплекс - гибридную двунитча- тую ДНК. Если в гетеродуплексе есть сайты с нарушенной комплемен- тарностью оснований ДНК, то в них возможна репарация с использова- нием в качестве матрицы одного из гомологов. Именно репарация не- комплементарных оснований в пределах гетеродуплекса является мате- риальным механизмом генетической конверсии.

    Если некомплементарный сайт по каким-то причинам не репариро- вался,то уже в первом постмейотическом S-периоде каждая из частично некомплементарных нитей ДНК достроит вторую нить и образовавшиеся дочерние клетки окажутся генетически различными. Дочерняя клетка, которая в качестве матрицы использовала мутантную нить ДНК,окажется мутантной, а клетка, которая получила в качестве матрицы неповреж- денную нить ДНК, окажется нормальной. Это явление получило название постмейотической сегрегации. Посмейотическая сегрегация не изменяет соотношение между мутантными и немутантными гаметами, поскольку не происходит репарация гетеродуплекса, однако изменяет распределение мутантных и немутантных гамет в аске или приводит к мозаицизму потомства.
    ПАРАСЕКСУАЛЬНЫЙ ПРОЦЕСС аналог полового процесса →слияние вегетативных клеток, содержащих генетически разнородные ядра (образование гетерокариона), возникновение гетерозиготных диплоидов за счёт слияния ядер в гетерокарионах и последующего митотич. расщепления диплоидов (появление гаплоидных или диплоидных рекомбинантов). Способность к ПП →парасексуальность. В основе появления гаплоидных рекомбинантов лежит процесс гаплоидизации (обнаружен у аскомицетов) — последовательная потеря по одной хромосоме из калсдой пары гомологов в результате нерасхождения хромосом в митозе. Так как при гаплоидизации не происходит конъюгации гомологичных хромосом и, следовательно, кроссинговера, все гены одной хромосомы обнаруживают полное сцепление, а гены разных хромосом рекомбинируют независимо. Эту особенность используют для локализации генов в группах сцепления. Митотическая (соматическая) рекомбинация, свойственная, видимо, всем эукариотам, приводит к гомозиготизации генов, расположенных дистально от точки перекреста по отношению к центромере. Это позволяет определять сцепление между генами одного плеча хромосомы. П. п. широко используют для локализации генов даже у организмов, обладающих половым процессом, а у нек-рых агамных организмов (напр., у несовершенных грибов) — это единств, возможность проведения генетич. анализа. Значительно расширилась область применения П. п. благодаря достижениям клеточной инженерии: метод слияния протопластов позволяет искусственно получать гибридные клетки организмов, к-рые в норме никогда не скрещиваются. При этом возможно получение не только межвидовых, но и межродовых гибридов.

    Парасексуальный цикл — это процесс объединения и последующей рекомбинации генов на основе событий, происходящих в митозе, а не в мейозе, без участия оплодотворения половым путем.


    9. Цитологические основы полового размножения. Половым размножением называют возникновение и развитие потомства из оплодотворенной яйцеклетки – зиготы, т.е. слившихся женской и мужской половых клеток.

    ЦИТОЛОГ-Е ОСОБ-ТИ ПОЛОВЫХ ХРОМОСОМ:

    1. Вполовых хромосомах ↑гетерохроматина, чем в аутосомах. 2. Репродукция половых хром-м и аутосом происходит не 1t.

    3. У гомогаметного пола 1из Х-хр нах-ся в сверх спирализованном сост, в интерфазе. 4. У гом. пола одна из Х-хр может репродуцироваться позже чем др.5. У гетерог. пола У-хр гораздо меньше чем Х-хр.

    Пол. раз.→генотип потомков →в рез. перекомбинации генов, € обоим род. ↑возможности организмов в приспособлении к меняющимся условиям среды. Существует несколько форм полового размножения.

    Половое размножение происходит при участии половых клеток – гамет, чаще всего оплодотворение. Цитологические основы полового размножения – мейоз и оплодотворение →получение организмами нового поколения эволюционно сложившегося, сбалансированного по дозам генов наслед. материала, на основе которого развивается организм →формируются определенные видовые характеристики и вид существует долго. НО у разных особей аллели различны тк мутации и комбинативная изменчивость!! (перекомбинации родительских аллелей особи в ее гаметах)

    Мейоз (или редукционное деление клетки) — деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом — образованием специализированных половых клеток, или гамет, из недифференцированных стволовых.

    Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

    • Профаза I — профаза первого деления очень сложная и состоит из 5 стадий:

    • Фаза лептотены или лептонемы — упаковка хромосом.

    • Зиготена или зигонема — конъюгация (соединение) гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами.

    • Пахитена или пахинема — кроссинговер (перекрест), обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой.

    • Диплотена или диплонема — происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой.

    • Диакинез — ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.

    • Метафаза I — бивалентные хромосомы выстраиваются вдоль экватора клетки.

    • Анафаза I — микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.

    • Телофаза I — хромосомы деспирализуются и появляется ядерная оболочка.

    Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

    • Профаза II — происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления.

    • Метафаза II — унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.

    • Анафаза II — униваленты делятся и хроматиды расходятся к полюсам.

    • Телофаза II — хромосомы деспирализуются и появляется ядерная оболочка.

    В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и два так называемых редукционных тельца (абортивные дериваты первого и второго делений).
      1   2   3   4   5   6   7   8


    написать администратору сайта