1. Гипоталамус
Скачать 1.9 Mb.
|
Клиническое значение. Гипохромные анемии — это чаще железодефицитные анемии, обусловленные длительными хроническими кровопотерями. В данном случае гипохромия эритроцитов обусловлена дефицитом железа. Гипохромия эритроцитов имеет место при анемии беременных, инфекциях, опухолях. При талассемии и отравлениях свинцом гипохромные анемии обусловлены не дефицитом железа, а нарушением синтеза гемоглобина. Наиболее частой причиной гиперхромной анемии является дефицит витамина В12, фолиевой кислоты. Нормохромные анемии наблюдаются чаще при гемолитических анемиях, острой кровопотере, апластической анемии. Однако цветовой показатель зависит не только от насыщения эритроцитов гемоглобином, но и от величины эритроцитов. Поэтому морфологические понятия о гипо-, нормо- и гиперхромной окраске эритроцитов не всегда совпадают с данными цветового показателя. Макроцитарная анемия с нормо- и гипохромными эритроцитами может иметь цветовой показатель выше единицы, и наоборот, нормохромная микроцитарная анемия дает всегда цветовой показатель ниже. Поэтому при различных анемиях важно знать, с одной стороны, как изменилось общее содержание гемоглобина в эритроцитах, и с другой,— их объем и насыщенность гемоглобином. БИЛЕТ№40 1 Передача возбуждения на вегетативный ганглий. медиаторы постсинапитического. У позвоночных животных в автономной нервной системе имеется три вида синаптической передачи: электрическая, химическая и смешанная. Органом с типичными электрическими синапсами является цилиарный ганглий птиц, лежащий в глубине глазницы у основания глазного яблока. Передача возбуждения здесь осуществляется практически без задержки в обоих направлениях. К редко встречающимся можно отнести и передачу через смешанные синапсы, в которых одновременно соседствуют структуры электрических и химических синапсов. Этот вид также характерен для цилиарного ганглия птиц. Основным же способом передачи возбуждения в автономной нервной системе является химический. Он осуществляется по определенным закономерностям, среди которых выделяют два принципа. Первый (принцип Дейла) заключается в том, что нейрон со всеми отростками выделяет один медиатор. Как стало теперь известно, наряду с основным в этом нейроне могут присутствовать также другие передатчики и участвующие в их синтезе вещества. Согласно второму принципу, действие каждого медиатора на нейрон или эффектор зависит от природы рецептора постсинаптической мембраны. В автономной нервной системе насчитывают более десяти видов нервных клеток, которые продуцируют в качестве основных разные медиаторы: ацетилхолин, норадреналин, серотонин и другие биогенные амины, аминокислоты, АТФ. В зависимости от того, какой основной медиатор выделяется окончаниями аксонов автономных нейронов, эти клетки принято называть холинергическими, адренергическими, серотоиинергическими, пуринергическими и т. д. нейронами. Каждый из медиаторов выполняет передаточную функцию, как правило, в определенных звеньях дуги автономного рефлекса. Так, ацетилхолин выделяется в окончаниях всех преганглионарных симпатических и парасимпатических нейронов, а также большинства постганглионарных парасимпатических окончаний. Кроме того, часть постганглионарных симпатических волокон, иннервирующих потовые железы и, по-видимому, вазодилататоры скелетных мышц, также осуществляют передачу с помощью ацетилхолина. В свою очередь норадреналин является медиатором в постганглионарных симпатических окончаниях (за исключением нервов потовых желез и симпатических вазодилататоров) — сосудов сердца, печени, селезенки. Медиатор, освобождающийся в пресинаптических терминалах под влиянием приходящих нервных импульсов, взаимодействует со специфическим белком-рецептором постсинаптической мембраны и образует с ним комплексное соединение. Белок, с которым взаимодействует ацетилхолин, носит название холинорецептора, адреналин или норадреналин — адренорецептора и т. д. Местом локализации рецепторов различных медиаторов является не только постсинаптическая мембрана. Обнаружено существование и специальных пресинаптических рецепторов, которые участвуют в механизме обратной связи регуляции медиаторного процесса в синапсе. Помимо холино-, адрено-, пуринорецепторов, в периферической части автономной нервной системы имеются рецепторы пептидов, дофамина, простагландинов. Все виды рецепторов, вначале обнаруженные в периферической части автономной нервной системы, были найдены затем в пре- и постсинаптических мембранах ядерных структур ЦНС. Характерной реакцией автономной нервной системы является резкое повышение ее чувствительности к медиаторам после денервации органов. Например, после ваготомии орган обладает повышенной чувствительностью к ацетилхолину, соответственно после симпатэктомии — к норадреналину. Полагают, что в основе этого явления лежит резкое возрастание числа соответствующих рецепторов постсинаптической мембраны, а также снижение содержания или активности ферментов, расщепляющих медиатор (ацетилхолин-эстераза, моноаминоксидаза и др.). В автономной нервной системе, помимо обычных эффекторных нейронов, существуют еще специальные клетки, соответствующиепостганглионарным структурам и выполняющие их функцию. Передача возбуждения к ним осуществляется обычным химическим путем, а отвечают они эндокринным способом. Эти клетки получили название трансдукторов. Их аксоны не формируют синаптических контактов с эффекторными органами, а свободно заканчиваются вокруг сосудов, с которыми образуют так называемые гемальные органы. К трансдукторам относят следующие клетки: 1) хромаффинные клетки мозгового слоя надпочечников, которые на холинергический передатчик преганглионарного симпатического окончания отвечают выделением адреналина и норадреналина; 2) юкста-гломерулярные клетки почки, которые отвечают на адренергический передатчик постганглионарного симпатического волокна выделением в кровяное русло ренина; 3) нейроны гипоталамических супраоптического и паравентрикулярного ядер, реагирующие на синаптический приток разной природы выделением вазопрессина и окситоцина; 4) нейроны ядер гипоталамуса. Действие основных классических меадиаторов может быть воспроизведено с помощью фармакологических препаратов. Например, никотин вызывает эффект, подобный эффекту ацетилхолина, при действии на постсинаптическую мембрану постганглионарного нейрона, в то время как сложные эфиры холина и токсин мухомора мускарин — на постсинаптическую мембрану эффекторной клетки висцерального органа. Следовательно, никотин вмешивается в межнейронную передачу в автономном ганглии, мускарин — в нейро-эффекторную передачу в исполнительном органе. На этом основании считают, что имеется соответственно два типа холинорецепторов: никотиновые (Н-холинорецепторы) и мускариновые (М-холинорецепторы). В зависимости от чувствительности к различным катехоламинам адренорецепторы делят на α-адренорецепторы и β-адренорецепторы. Их существование установлено посредством фармакологических препаратов, избирательно действующих на определенный вид адренорецепторов. В ряде висцеральных органов, реагирующих на катехоламины, находятся оба вида адренорецепторов, но результаты их возбуждения бывают, как правило, противоположными. Например, в кровеносных сосудах скелетных мышц имеются α- и β-адренорецепторы. Возбуждение α-адренорецепторов приводит к сужению, а β-адренорецепторов — к расширению артериол. Оба вида адренорецепторов обнаружены и в стенке кишки, однако реакция органа при возбуждении каждого из видов будет однозначно характеризоваться торможением активности гладких мышечных клеток. В сердце и бронхах нет α-адренорецепторов и медиатор взаимодействует только с β-адренорецепторами, что сопровождается усилением сердечных сокращений и расширением бронхов. В связи с тем что норадреналин вызывает наибольшее возбуждение β-адренорецепторов сердечной мышцы и слабую реакцию бронхов, трахеи, сосудов, первые стали называть β1-адренорецепторами, вторые — β2-адренорецепторами. При действии на мембрану гладкой мышечной клетки адреналин и норадреналин активируют находящуюся в клеточной мембране аденилатциклазу. При наличии ионов Mg2+ этот фермент катализирует образование в клетке цАМФ (циклического 3' ,5' -аденозинмонофосфата) из АТФ. Последний продукт в свою очередь вызывает ряд физиологических эффектов, активируя энергетический обмен, стимулируя сердечную деятельность. Особенностью адренергического нейрона является то, что он обладает чрезвычайно длинными тонкими аксонами, которые разветвляются в органах и образуют густые сплетения. Общая длина таких аксонных терминалей может достигать 30 см. По ходу терминалей имеются многочисленные расширения — варикозы, в которых синтезируется, запасается и выделяется медиатор. С приходом импульса норадреналин одновременно выделяется из многочисленных расширений, действуя сразу на большую площадь гладкомышечной ткани. Таким образом, деполяризация мышечных клеток сопровождается одновременным сокращением всего органа. Различные лекарственные средства, оказывающие на эффекторный орган действие, аналогичное действию постганглионарного волокна (симпатического, парасимпатического и т.п.), получили название миметиков (адрено-, холиномиметики). Наряду с этим имеются и вещества, избирательно блокирующие функцию рецепторов постсинаптической мембраны. Они названы ганглиоблокаторами. Например, аммониевые соединения избирательно выключают Н-холинорецепторы, а атропин и скополамин — М-холинорецепторы. Классические медиаторы выполняют не только функцию передатчиков возбуждения, но обладают и общебиологическим действием. К ацетилхолину наиболее чувствительна сердечнососудистая система, он вызывает и усиленную моторику пищеварительного тракта, активируя одновременно деятельность пищеварительных желез, сокращает мускулатуру бронхов и понижает бронхиальную секрецию. Под влиянием норадреналина происходит повышение систолического и диастолического давления без изменения сердечного ритма, усиливаются сердечные сокращения, снижается секреция желудка и кишки, расслабляется гладкая мускулатура кишки и т. д. Более разнообразным диапазоном действий характеризуется адреналин. Посредством одновременной стимуляции ино-, хроно- и дромотропной функций адреналин повышает сердечный выброс. Адреналин оказывает расширяющее и антиспазматическое действие на мускулатуру бронхов, тормозит моторику пищеварительного тракта, расслабляет стенки органов, но тормозит деятельность сфинктеров, секрецию желез пищеварительного тракта. В тканях всех видов животных обнаружен серотонин (5-окситриптамин). В мозге он содержится преимущественно в структурах, имеющих отношение к регуляции висцеральных функций, на периферии продуцируется энтерохромаффинными клетками кишки. Серотонин является одним из основных медиаторов метасимпатической части автономной нервной системы, участвующей преимущественно в нейроэффекторной передаче, и выполняет также медиаториую функцию в центральных образованиях. Известно три типа серотонинергических рецепторов — Д, М, Т. Рецепторы Д-типа локализованы в основном в гладких мышцах и блокируются диэтиламидом лизергиновой кислоты. Взаимодействие серотонина с этими рецепторами сопровождается мышечным сокращением. Рецепторы М-типа характерны для большинства автономных ганглиев; блокируются морфином. Связываясь с этими рецепторами, передатчик вызывает ганглиостимулирующий эффект. Рецепторы Т-типа, обнаруженные в сердечной и легочной рефлексогенных зонах, блокируются тиопендолом. Действуя на эти рецепторы, серотонин участвует в осуществлении коронарных и легочных хеморефлексов. Серотонин способен оказывать прямое действие на гладкую мускулатуру. В сосудистой системе оно проявляется в виде констрикторных или дилататорных реакций. При прямом действии сокращается мускулатура бронхов, при рефлекторном — изменяются дыхательный ритм и легочная вентиляция. Особенно чувствительна к серотонину пищеварительная система. На введение серотонина она реагирует начальной спастической реакцией, переходящей в ритмические сокращения с повышенным тонусом и завершающейся торможением активности. Для многих висцеральных органов характерной является пуринергическая передача, названная так вследствие того, что при стимуляции пресинаптических терминален выделяются аденозин и инозин — пуриновые продукты распада. Медиатором же в этом случае является А Т Ф. Местом его локализации служат пресинаптические терминалы эффекторных нейронов метасимпатической части автономной нервной системы. Выделившийся в синаптическую щель АТФ взаимодействует с пуринорецепторами постсинаптической мембраны двух типов. Пуринорецепторы первого типа более чувствительны к аденозину, второго — к АТФ. Действие медиатора направлено преимущественно на гладкую мускулатуру и проявляется в виде ее релаксации. В механизме кишечной пропульсии пуринергические нейроны являются главной антагонистической тормозной системой по отношению к возбуждающей холинергической системе. Пуринергические нейроны участвуют в осуществлении нисходящего торможения, в механизме рецептивной релаксин желудка, расслабления пищеводного и анального сфинктеров. Сокращения кишечника, возникающие вслед за пуринергически вызванным расслаблением, обеспечивают соответствующий механизм прохождения пищевого комка. В числе медиаторов может быть гистамин. Он широко распространен в различных органах и тканях, особенно в пищеварительном тракте, легких, коже. Среди структур автономной нервной системы наибольшее количество гистамина содержится в постганглионарных симпатических волокнах. На основании ответных реакций в некоторых тканях обнаружены и специфические гистаминовые (Н-рецепторы) рецепторы: Н1- и Н2-рецепторы. Классическим действием гистамина является повышение капиллярной проницаемости и сокращение гладкой мускулатуры. В свободном состоянии гистамин снижает кровяное давление, уменьшает частоту сердечных сокращений, стимулирует симпатические ганглии. На межнейронную передачу возбуждения в ганглиях автономной нервной системы тормозное влияние оказывает ГАМК. Как медиатор она может принимать участие в возникновении пресинаптического торможения. Большие концентрации различных пептидов, особенно субстанции Р, в тканях пищеварительного тракта, гипоталамуса, задних корешков спинного мозга, а также эффекты стимуляции последних и другие показатели послужили основанием считать субстанцию Р медиатором чувствительных нервных клеток. Помимо классических медиаторов и «кандидатов» в медиаторы, в регуляции деятельности исполнительных органов участвует еще большое число биологически активных веществ — местных гормонов. Они регулируют тонус, оказывают корригирующее влияние на деятельность автономной нервной системы, им принадлежит существенная роль в координации нейрогуморальной передачи, в механизмах выделения и действия медиаторов. В комплексе активных факторов видное место занимают простагландины, которых много содержится в волокнах блуждающего нерва. Отсюда они выделяются спонтанно либо под влиянием стимуляции. Существует несколько классов простагландинов: Е, G, А, В. Их основное действие — возбуждение гладких мышц, угнетение желудочной секреции, релаксация мускулатуры бронхов. На сердечно-сосудистую систему они оказывают разнонаправленное действие: простагландины класса А и Е вызывают вазодилатацию и гипотензию, класса G — вазоконстрикцию и гипертензию. Синапсы ВНС имеют в целом такое же строение, что и центральные. Однако отмечается значительное разнообразие хеморецепторов постсинаптических мембран. Передача нервных импульсов с преганглионарных волокон на нейроны всех вегетативных ганглиев осуществляется Н-холинергическими синапсами, т.е. синапсами на постсинаптической мембране которых расположены никотинчувствительные холинорецепторы. Постганглионарные холинергические волокна образуют на клетках исполнительных органов (желез, ГМК органов пищеварения, сосудов и т.д.) М-холинергические синапсы. Их постсинаптическая мембрана содержит мускаринчувствительные рецепторы (блокатор-атропин). И в тех и других синапсах передача возбуждения осуществляется ацетилхолином. М-холинергические синапсы оказывают возбуждающее влияние на гладкие мышцы пищеварительного канала, мочевыводящей системы (кроме сфинктеров), железы ЖКТ. Однако они уменьшают возбудимость, проводимость и сократимость сердечной мышцы и вызывают расслабление некоторых сосудов головы и таза. Постганглионарные симпатические волокна образуют 2 типа адренергических синапсов на эффекторах – a-адренергические и b-адренергические. Постсинаптическая мембрана первых содержит a1-и a2 – адренорецепторы. При воздействии НА на a1-адренорецепторы происходит сужение артерий и артериол внутренних органов и кожи, сокращение мышц матки, сфинктеров ЖКТ, но одновременно расслабление других гладких мышц пищеварительного канала. Постсинаптические b-адренорецепторы также делятся на b1 – и b2 – типы. b1-адренорецепторы расположены в клетках сердечной мышцы. При действии на них НА повышается возбудимость, проводимость и сократимость кардиомиоцитов. Активация b2-адренорецепторов приводит к расширению сосудов легких, сердца и скелетных мышц, расслаблению гладких мышц бронхов, мочевого пузыря, торможению моторики органов пищеварения. Кроме того, обнаружены постганглионарные волокна, которые образуют на клетках внутренних органов гистаминергические, серотонинергические, пуринергические (АТФ) синапсы. 2. учение Павлова о 1 и 2 сигнальной системах. Сигнальная система — система условно- и безусловнорефлекторных связей высшей нервной системы животных (включая человека) и окружающего мира. Различаютпервую и вторую сигнальные системы. Термин введен академиком И. П. Павловым. Первая сигнальная система развита практически у всех животных, тогда как вторая система присутствует только у человека и, возможно, у некоторых китообразных. Это связано с тем, что только человек способен формировать отвлечённый от обстоятельств образ. После произнесения слова «лимон» человек может представить, какой он кислый и как обычно морщатся, когда едят его, то есть произнесение слова вызывает в памяти образ (срабатывает вторая сигнальная система); если при этом началось повышенное отделение слюны, то это работа первой сигнальной системы. Является предметом изучения физиологии высшей нервной деятельности человека. Вторая сигнальная система — специальный тип высшей нервной деятельности человека, система «сигналов сигналов», идущих от общей (но не одинаковой) с животными первой сигнальной системы — ощущений, представлений, относящихся к окружающему миру. Речь, как вторая сигнальная система, как семиотическая система значимостей — это «идущие в кору от речевых органов есть вторые сигналы, сигналы сигналов. Они представляют собой отвлечение от действительности и допускают обобщение, что и составляет наше личное, специально человеческое, высшее мышление, создающее сперва общечеловеческий эмпиризм, а, наконец, и науку — орудие высшей ориентировки человека в окружающем мире и в самом себе». И. П. Павлов (1932). Мозг животного отвечает лишь на непосредственные зрительные, звуковые и другие раздражения или их следы; возникающие ощущения составляют первую сигнальную систему действительности.[1] В процессе эволюции животного мира на этапе становления и начального развития вида Homo sapiens произошло качественное видоизменение системы сигнализации, обеспечивающее активное и коллективное адаптивное приспособительное поведение, создавшее многообразные, принятые в группе системы сигнализации и языки: слово, по выражению И. П. Павлова, становится «сигналом сигналов». Появление второй сигнальной системы — возникновение речи и языков, сигнальных систем человека с сородичами, где условные (произвольные) сигналы индивида приобретают определенные, принятые группой значения и значимости, преобразуются в знаки языка в прямом смысле этого слова — это один из важнейших результатов многомиллионнолетней эволюции социальной жизни рода Homo, передающиеся через речевую деятельность из поколения в поколение. В изучении В. с. с. вначале преобладало накопление фактов, характеризующих значение обобщающей функции словесных сигналов, а затем — вскрытие нервных механизмов действия слова. Установлено, что процесс обобщения словом развивается как результат выработки системы условных связей (см. Условные рефлексы); при этом имеет значение не только количество связей, но и их характер: связи, выработанные во время деятельности ребёнка, облегчают процесс обобщения. При воздействии словесных сигналов наблюдаются стойкие изменения возбудимости, большая сила, частота и длительность электрических разрядов в нервных клетках определённых пунктов коры мозга. Развитие В. с. с. — результат деятельности всей коры больших полушарий; связать этот процесс с функцией какого-то ограниченного отдела мозга невозможно. В исследованиях В.с.с. в лаборатории высшей нейродинамики и психологии высших когнитивных процессов Е. И. Бойко [1]показана плодотворность учения И. П. Павлова о динамических временных связях В.с.с.[3] В развитие идей И. П. Павлова и Е. А. Бойко в школе Е. А. Бойко разработана общая когнитивистская модель целостного рече-мысле-языкового процесса, найдены решения сложнейших теоретических проблем психологии в ее взаимосвязях с лингвистикой, такие как вопросы соотношения языка и речи в процессах речепроизводства и речепонимания; характер связей речи с мыслью, речи с личностью говорящего; особенности развития детской речи и др. Здесь разработаны новые методы анализа публичных выступлений (интент-анализ), позволяющий в известной мере реконструировать «картину мира» говорящего — его целевые и предметные направленности, их динамику, особенности в конфликтной ситуации, в свободных условиях общения, в публичных выступлениях и др. Существенным резервом для дальнейших исследований остаются проблемы типологии колоссальных индивидуальных различий во взаимосвязях общего и специального типов ВНД, неокортекса и эмоционально-волевой и непроизвольной регуляции деятельности и общения, пока что слабо представленных как в физиологии ВНД, так и в психолингвистических исследованиях и в антропологической лингвистике. 3 утрата функций почкой при старении. Искусственная почка Почки в процессе старения подвергаются изменениям в соответствии со сдвигами в системе кровообращения. Вследствие склеротических изменений в сосудах, значительные зоны почек в старости оказываются ишеминизированными, и у 80-летнего человека от 30 до 40% нефронов склерозированы. У стариков объем гломеруллярной фильтрации, плазменный почечный кровоток, концентрационная способность почек снижаются почти до 50%. Например, уменьшение эффективного почечного кровотока после 40 лет выражается следующим образом: эффективный почечный кровоток =8406,44 • число лет; уменьшение клубочковой фильтрации после 40 лет: клубочковая фильтрация =153,2-0,96число лет. Однако, порог плазменной концентрации глюкозы для экскреции в почках может даже повышаться, так что у пожилых с диабетом глюкозурия может быть недостаточно выражена. Лекарственные вещества, которые у молодых экскретируются с мочой, могут накапливаться в организме стариков из-за недостаточности экскреторной функции почек. Из 185 продуктов метаболизма, определяемых в моче человека, не менее 60 изменяют концентрацию при старении. Многие старики страдают от никтурии (выделение ночью большой части суточного количества мочи), что соотносится с вышеотмеченной недостаточностью концентрационной способности почек. Уменьшение способности почек концентрировать мочу связано с тем, что склерозирование артерий и сосудов клубочков в корковом слое почек сопровождается усилением кровотока в мозговом слое, в прямых артериолах и образуемой ими сети капилляров. Нарастание кровотока в мозговом веществе почек усиливает вымывание осмотически активных веществ из интерстициального пространства мозгового вещества, снижая реабсорбцию воды и эффективность противоточно-поворотной системы. Уменьшение способности почек задерживать воду в организме компенсируется усиливающейся секрецией АДГ гипоталамо-гипофизарной системой. Повышенная секреция АДГ связана с возрастающей чувствительностью осморецепторов к осмотически активным веществам в крови и тканевой жидкости у человека после 50 лет. Благодаря указанным компенсаторным механизмам, внутрисосудистый и внеклеточный объемы жидкостей организма и их состав у пожилых изменены мало. 4. анализ электрокардиограммы Одним из наиболее распространенных методов диагностики заболеваний сердечно-сосудистой системы является метод анализа электрокардиограммы. Правильная диагностика заболеваний сердечно-сосудистой системы по электрокардиограмме возможна при условии твердого знания физиологической характеристики "нормальной" электрокардиограммы. Поиск патологических изменений в электрокардиограмме возможен путем сравнения изучаемой электрокардиограммы с патологически измененными зубцами и интервалами в соответствующих руководствах. Но такой способ во многом механический и не позволяет проводить дифференциальную диагностику заболевания целенаправленно. Единственно правильной основой анализа электрокардиограммы является понимание происхождения, направленности и формы зубцов электрокардиограммы в каждом отведении. Анализ соответствия направления электрической и анатомической осей сердца позволяет определить не только наличие, но и место патологии, что затем подтверждается целенаправленным анализом усиленных отведений. АЛГОРИТМ АНАЛИЗА ЭКГ ЭКГ - СХЕМА I 1. ЭКГ - Электрокардиограмма - кривая, отражающая направление распространения возбуждения по сердцу. 2. Функции миокарда, состояние которых можно определить по ЭКГ - возбудимость, проводимость, автоматия. -Возбудимость - способность сердечной мышцы отвечать на раздражения. В нормальных физиологических условиях сердечная мышца во время электрической систолы сердца в течение 0,27 сек. находится в состоянии абсолютной рефрактерности. Это исключает очередное возбуждение сердца - экстрасистолы. В условиях измененной сердечной мышцы возбудимость ее повышается и возможно возникновение экстрасистолы. Если экстрасистолы отсутствуют, говорят о нормальной функции возбудимости. Если регистрируются экстрасистолы, следует говорить о нарушении функции возбудимости. -Проводимость - скорость проведения возбуждения по разным отделам сердца. В норме РQ= от 0,12 до 0,18 с. При брадикардии допускается PQ= 0,20 сек, QRS =0,08 - 0,1 сек. У детей интервал PQ = 0,11 - 0,14 сек., QRS = 0,04 - 0,06 сек. -Автоматия - способность сердца самостоятельно возбуждаться без каких-либо экстракардиальных воздействий. О функции автоматии судят на основании водителя ритма. Ритм свыше 40 импульсов в I минуту и изменяется при физической нагрузке - водитель ритма синусовый узел Кисс-Фляка. Ритм 40 и менее, но не изменяется при физической нагрузке - водитель ритма - атриовентрикулярный узел Ашофф-Товара. 3. Тип ЭКГ - Положение электрической оси сердца - суммарный вектор ЭДС сердца, определяется по стандартным отведениям. - Нормограмма - нормальный тип ЭКГ. Направление электрической оси сердца по отношению к горизонтальной плоскости составляет от 40 до 700. При этом RII > R I > RIII (то есть амплитуда зубца R во II отведении больше зубца R в I отведении и больше зубца R в III отведении) и амплитуды зубцов R больше зубцов Q и S. Нормограмма считается физиологической, если сохранены все функции, и направление ведущих зубцов соответствует стандартам. - Правограмма - правый тип ЭКГ. Направление электрической оси сердца относительно горизонтальной плоскости составляет от 70 до 900 при этом RIII > RI, RI = SI, или SI > RI. Правограмма считается физиологической, если все функции миокарда сохранены и направление ведущих зубцов ЭКГ соответствует стандартам. - Левограмма - левый тип ЭКГ. Направление электрической оси сердца по отношению к горизонтальной плоскости составляет от 0 до 300 при этом R I > RIII , RIII = SIII или SIII >RIII. Левограмма считается физиологической, если сохранены все функции миокарда и направление ведущих зубцов ЭКГ соответствует стандартам. 4. Позиция сердца - направление анатомической оси сердца в грудной клетке определяется по усиленным отведениям от конечностей. - Срединная позиция - анатомическая ось занимает положение от 40 до 700 по отношению к горизонтальной плоскости, при этом зубцы: R AVL = R AVF ; R AVL > S AVL ; R AVL > S AVF . - Вертикальная позиция - вертикальное положение анатомической оси сердца - анатомическая ось занимает положение от 70 до 900 по отношению к горизонтальной плоскости, при этом зубцы: R AVF > R AVL ; (висячее сердце) R AVL = S AVL или S AVL > R AVL. - Горизонтальная позиция - горизонтальное положение анатомической оси сердца - анатомическая ось занимает положение от 0 до 300 по отношению к горизонтальной плоскости при этом зубцы: R AVL > R AVF ; R AVF = S AVF или S AVF > R AVF 5. Переходная зона регистрируется в грудных отведениях V 3, V 4, когда амплитуда зубца R = амплитуде зубца S, т.е. проекция активного электрода лежит на уровне межжелудочковой перегородки. В норме направление электрической и анатомической осей сердца должно совпадать. Если ТИП ЭКГ (электрическая ось) не соответствует позиции сердца(анатомической оси), то определяют направление отклонения электрической оси от анатомической, это возможно за счет гипертрофии левой или правой половины сердца. ТИП ЭКГ (электрическая ось сердца) R II > R I > R III - НОРМОГРАММА R II > R I , R I = S I , S I > R I - ПРАВОГРАММА R I > R III , R III = S III , S III > R III - ЛЕВОГРАММА ПОЗИЦИИ СЕРДЦА: СРЕДИННАЯ- R avl = R avf ВЕРТИКАЛЬНАЯ - R avf > R avl ; R avl = S avl ; S avl > R avl . ГОРИЗОНТАЛЬНАЯ - R avl > R avf ; R avf = S avf ; S avf > R avf . Измерение зубцов производится в тех отведениях, где зубцы и интервалы лучше всего выражены. Следует отметить, что при скорости записи 50 мм/сек цена одного мм на ЭКГ равна 0,02 сек. Измерить: 1. Продолжительность интервалов (RR, PQ, QRS, Q - T ) 2. Продолжительность зубца Р. 3. Определить положение интервала S-Т. 4. Определить соотношение направления зубцов Т и комплекса QRS. 5. Соотношение зубцов RI, RII, RIII. 6. Соотношение зубцов RI-SI, RIII-SIII. На основании анализа ЭКГ определить: 1. Ритм работы сердца, Ритм = (60 сек.) : (R-R сек.) Ритм может быть – по происхождению - синусовый, атриовентрикулярный. По правильности - правильный, аритмия. Аритмия устанавливается в том случае, если интервалы R-R отличаются друг от друга более чем на 0,25 сек (10%). 2. Тип ЭКГ (положение электрической оси сердца) по I, II, III стандартным отведениям. 3. Позиция сердца в грудной клетке (положение анатомической оси сердца) по усиленным отведениям avR, avL, avF. 4. Определить соответствует ли тип ЭКГ позиции сердца в грудной клетке. Правограмма должна соответствовать вертикальной позиции сердца в грудной клетке, левограмма должна соответствовать горизонтальной позиции сердца в грудной клетке. Нормограмма должна соответствовать срединной позиции сердца в грудной клетке. 5. Положение переходной зоны (R = S) в грудных отведениях. 6. Правило нарастания амплитуды зубца Т в грудных отведениях. 7. Отсутствие зубца Q в грудных отведениях до переходной зоны и наличие его после переходной зоны. 8. Изоэлектричность сегмента ST. Билет № 41 1. Значение вегетативной нервной системы в деятельности организма. Адаптационно-трофическое значение вегетативной нервной системы организма. Анатомически вегетативная нервная система представлена ядерными образованиями, лежащими в головном и спинном мозге, нервными ганглиями и нервными сплетениями, иннервирующими гладкую мускулатуру всех органов, сердце и железы. Главная функция вегетативной нервной системы состоит в поддержании постоянства внутренней среды, или гомеостаза, при различных воздействиях на организм. Эта функция осуществляется за счет процесса возникновения, проведения, восприятия и переработки информации в результате возбуждения рецепторов внутренних органов (интероцепция). В то же время В. н. с. регулирует деятельность органов и систем, не участвующих непосредственно в поддержании гомеостаза (например, половых органов, внутриглазных мышц и др.), а также способствует обеспечению субъективных ощущений, различных психических функций. Адаптационно-трофическое значение ВНС организма. Л.А Орбели провёл исследование функционального значения симпатической иннервации для скелетных мышц, что позволило ему сформулировать учение об адаптационно-трофическом влиянии симпатической части ВНС. В этом влиянии было выделено 2 компонента: влияния адаптационные и влияния трофические. Под адаптационными понимаются влияния симпатической части ВНС, в результате которых происходит приспособление органов к выполнению тех или иных функциональных нагрузок. Сдвиги наступают благодаря тому, что симпатические влияния оказывают на органы трофическое действие, которое выражается в изменении скорости протекания метаболических процессов. Адаптационно-трофическое влияние автономной нервной системы модулирует функциональную активность того или иного органа- рецепцию, проведение возбуждения, медиацию, сокращение, секрецию и др. и приспосабливает его к потребностям организма. 2.Пищеварение в двенадцатиперстной кишке и т.д. В двенадцатиперстной кишке происходит интенсивное переваривание пищевой кашицы. Здесь пища подвергается действию сока поджелудочной железы, желчи и кишечного сока. Под влиянием этих соков белки, жиры и углеводы перевариваются так, что могут быть усвоены организмом. Чистый поджелудочный сок - бесцветная прозрачная жидкость щелочной реакции Фермент трипсин, расщепляющий белки, вырабатывается клетками железы в неактивной форме. Под влиянием фермента кишечного сока энтерокиназы трипсин активируется и расщепляет белки до аминокислот. Активность фермента поджелудочного сока липазы усиливается под влиянием желчи, вырабатываемой в печени и поступающей в двенадцатиперстную кишку. Под влиянием липазы жиры расщепляются до глицерина и жирных кислот. В поджелудочном соке есть ферменты амилаза и мальтаза. Амилаза расщепляет крахмал до дисахаридов, а мальтаза превращает дисахариды в моносахариды типа глюкозы. Все ферменты поджелудочного сока действуют в щелочной среде; в кислой среде их действие быстро прекращается. У человека рН содержимого 12-перстной кишки колеблется в пределах 4-8,5. В двенадцатиперстную кишку поступает и желчь, которая вырабатывается клетками печени. И хотя в составе желчи нет ферментов, которые расщепляли бы пищевые вещества, роль желчи в пищеварении огромна. Во-первых, она переводит в активное состояние липазу, вырабатывающуюся клетками поджелудочной железы; во-вторых, желчь эмульгирует жиры, превращая их во взвесь мелких капелек (эмульгированные жиры легче перевариваются); в-третьих, желчь активно влияет на процессы всасывания в тонкой кишке; в-четвертых, желчь способствует усилению отделения сока поджелудочной железы. Слизистая оболочка тонкой кишки содержит многочисленные железы (до 1000 на 1 мм2), вырабатывающие пищеварительный кишечный сок. В состав его входят многочисленные ферменты, действующие на все пищевые вещества (белки, жиры и углеводы) и на продукты их неполного расщепления, образующиеся в желудке. 3.Гуморальная регуляция кальция в организме Гуморальная регуляция уровня кальция в крови осуществляется паратгормоном(околощитовидная железа) и кальцитонином (гормон щитовидной железы). Паратгормон обеспечивает увеличение уровня кальция в крови. Органами-мишенями для него служат кости и почки. В костной ткани паратирин усиливает функцию остеокластов, что способствует деминерализации кости и повышению уровня кальция и фосфора в плазме. В канальцевом аппарате почек паратгормон стимулирует реабсобрцию кальция и тормозит реабсобцию фосфатов, что приводит к гиперкальциемии и фосфатурии. Паратирин усиливает синтез кальцитриола, который усиливает образование кальцийсвязывающего белка в стенке кишечника, что способствует обратному всасыванию кальция. Кальцитонин (тиреокальцитонин) снижает уровень кальция в крови. Он действует на костную систему, почки и кишечник, вызывая эффекты противоположные паратгормону. В костной ткани кальцитонин усиливает активность остеобластов и процессы минерализации. В почках и кишечнике угнетает раебсорбцию кальция и стимулирует всасывание фосфатов. 4.Резус-фактор К.Ландштейнером и А.Винером в 1940 г. в эритроцитах обезьяны макаки-резуса был обнаружен антиген, который они назвали резус-фактором. Этот антиген находится и в крови 85% людей белой расы. Кровь, содержащая резус-фактор, называется резус-положительной (Rh+). Кровь, в которой резус-фактор отсутствует, называется резус-отрицательной (Rh-). Резус-фактор передается по наследству. В настоящее время известно, что система резус включает много антигенов. Наиболее активными в антигенном отношении являются антиген D, затем следуют С, Е, d, с, е. Резус-конфликт - иммунологическая несовместимость по резус-фактору крови резус-отрицательной матери и резус-положительного плода, характеризующаяся сенсибилизацией материнского организма. Причиной резус-конфликта является трансплацентарное проникновение эритроцитов плода, несущих положительный резус-фактор в кровоток резус-отрицательной матери. Резус-конфликт может вызывать внутриутробную гибель плода, невынашивание беременности, мертворождение и гемолитическую болезнь новорожденного. Билет 42 1.Условные рефлексы – их роль, условия возникновения. Условные рефлексы (У.Р.) - это индивидуально приобретённые в процессе жизнедеятельности реакции организма на раздражение. Создатель учения об условных рефлексах И.П. Павлов называл их временной связью раздражителя с ответной реакцией, которая образуется в организме при определённых условиях. Свойства условных рефлексов: 1. Формируются в течение всей жизни в результате взаимодействия индивида с внешней средой. 2. Не отличаются постоянством и без подкрепления могут исчезать 3. Не имеют постоянного рецептивного поля 4. Не имеют постоянной рефлекторной дуги 5. Для возникновения условнорефлекторной реакции не требуется действие специфического раздражителя. Пример условного рефлекса - выработка слюноотделения у собаки на звонок. Условные рефлексы образуются только при определённом сочетании свойств раздражителя и внешних условий. Для выработки условного рефлекса используется сочетание индифферентного или условного раздражителя и подкрепляющего безусловного. Индифферентным называется такой раздражитель, который в естественных условиях не может вызвать данную рефлекторную реакцию, а безусловным - специфический раздражитель, который всегда вызывает возникновение этого рефлекса. Для выработки условных рефлексов необходимы следующие условия: 1.Действие условного раздражителя должно предшествовать воздействию безусловного. 2.Необходимо многократное сочетание условного и безусловного раздражителей. 3.Индифферентный и безусловный раздражители должны иметь сверхпороговую силу. 4.В момент выработки условного рефлекса должны отсутствовать посторонние внешние раздражения. 5.Ц.Н.С. должна быть в нормальном функциональном состоянии. Все условные рефлексы в зависимости от возникающего поведения делятся на классические и инструментальные. 1.Классические это такие, которые вырабатываемые в соответствии с вышеприведёнными условиями Пример - слюноотделение, выработанное на звонок. 2.Инструментальные - это рефлексы, способствующие достижению или избеганию раздражителя. Например, при включении звонка, предшествующего безусловнорефлекторному болевому раздражению, собака совершает комплекс движений, чтобы освободиться от электродов. При звонке, предшествующем пище виляет хвостом, облизывается, тянется к чашке и т.д. По афферентному звену условнорефлекторной дуги, т.е. рецепторам выделяют экстерорецептивные и интерорецептивные условные рефлексы. Экстерорецептивные возникают в ответ на раздражение внешних рецепторов и служат для связи организма с внешней средой. Интерорецептивные - на раздражение рецепторов внутренней среды. Они необходимы для поддержания постоянства внутренней среды. По эфферентному звену условнорефлекторной дуги выделяют двигательные и вегетативные условные рефлексы. Пример двигательного - отдёргивание лапы собакой на звук метроном, если последний предшествует болевому раздражения лапы. Пример вегетативного - слюноотделение на звонок у собаки. Отдельно выделяются условные рефлексы высших порядков. Это условные рефлексы, которые вырабатываются не путём подкрепления условного раздражителя безусловным, а при подкреплении одного условного раздражителя другим. В частности, на сочетание зажигания лампы с дачей пищи вырабатывается условный слюноотделительный рефлекс I - го порядка. Если после этого подкреплять звонок зажиганием лампы, то выработается условнорефлекторное слюноотделение на звонок. Это будет рефлексом II - го порядка. У собаки можно выработать условные рефлексы лишь IV - го порядка, а у человека до XX - го порядка. Условные рефлексы высших порядков нестойкие и быстро угасают. У млекопитающих и человека основная роль в формировании условных рефлексов принадлежит коре. При их выработке от периферических рецепторов, воспринимающих условный и безусловный раздражители, нервные импульсы по восходящим путям поступают в подкороковые центры, а затем те зоны коры, где находится представительство данных рецепторов. В нейронах этих 2-х участков коры возникают биопотенциалы, Они совпадают по времени, частоте и фазе. По межкортикальным путям происходит циркуляция, т.е. реверберация нервных импульсов. В результатет синаптической потенциации активизируются синаптические связи, расположенные между нейронами той и другой зоны коры. Улучшение проведения закрепляется, возникает временная или условнорефлекторная связь (схема дуги усл. слюноотделительного рефлекса). 2. Функции печени в пищеварении. Поступление желчи в двенадцатиперстную кишку, и ее роль. Из всех органов печень играет ведущую роль в обмене белков, жиров, углеводов, витаминов, гормонов и других веществ. Ее основные функции:
В печени образуется важнейший пищеварительный сок - желчь. Желчь вырабатывается гепатоцитами путем активного и пассивного транспорта в них воды, холестерина, билирубина, катионов. В гепатоцитах из холестерина образуются первичные желчные кислоты - холевая и дезоксихолевая. Из билирубина и глюкуроновой кислоты синтезируется водорастворимый комплекс. Они поступают в желчные капилляры и протоки, где желчные кислоты соединяются с глицином и таурином. В результате образуются гликохолевая и таурохолевая кислоты. Гидрокарбонат натрия образуется с помощью тех же механизмов, что и в поджелудочной железе. Желчь вырабатывается печенью постоянно. В сутки ее образуется около 1 литра. Гепатоцитами выделяется первичная или печеночная желчь. Это жидкость золотисто-желтого цвета щелочной реакции. Ее рН = 7,4 - 8,6. Она состоит из 97,5% воды и 2,5% сухого остатка. В сухом остатке содержатся:
Поскольку вне пищеварения сфинктер Одди, расположенный в устье общего желчного протока, закрыт, выделяющаяся желчь накапливается в желчном пузыре. Здесь из нее реабсорбируется вода, а содержание основных органических компонентов и муцина возрастает в 5-10 раз. Поэтому пузырная желчь содержит 92% воды и 8% сухого остатка. Она более темная, густая и вязкая, чем печеночная. Благодаря этой концентрации пузырь может накапливать желчь в течение 12 часов. Во время пищеварения открывается сфинктер Одди и сфинктер Люткенса в шейке пузыря. Желчь выходит в двенадцатиперстную кишку. Значение желчи:
Регуляция желчеобразования и желчевыделения в основном осуществляется гуморальными механизмами, хотя некоторую роль играют и нервные. Самым мощным стимулятором желчеобразования в печени являются желчные кислоты, всасывающиеся в кровь из кишечника. Его также усиливает секретин, который способствует увеличению содержания в желчи гидрокарбоната натрия. Блуждающий нерв стимулирует выработку желчи, симпатические тормозят. При поступлении химуса в двенадцатиперстную кишку начинается выделение I-клетками ее слизистой холецистокинина-панкреозимина. Особенно этот процесс стимулируют жиры, яичный желток и сульфат магния. ХЦК-ПЗ усиливает сокращения гладких мышц пузыря, желчных протоков, но расслабляет сфинктеры Люткенса и Одди. Желчь выбрасывается в кишку. Рефлекторные механизмы играют небольшую роль. Химус раздражает хеморецепторы тонкого кишечника. Импульсы от них поступают в пищеварительный центр продолговатого мозга. От него они по вагусу к желчевыводящим путям. Сфинктеры расслабляются, а гладкие мышцы пузыря сокращается. Это способствует желчевыведению. В эксперименте желчеобразование и желчевыведение исследуются в хронических опытах путем наложения фистулы общего желчного протока или пузыря. В клинике для исследования желчевыделения используют дуоденальное зондирование, рентгенографию с введением в кровь рентгеноконтрастного вещества билитраста, ультразвуковые методы. Белковообразовательную функцию печени, ее вклад в жировой, углеводный, пигментный обмены изучают путем исследования различных показателей крови. Например определяют содержание общего белка, протромбина, антитромбина, билирубина, ферментов. Наиболее тяжелыми заболеваниями являются гепатиты и цирроз печени. Чаще всего гепатиты являются следствием инфекции (инфекционные гепатиты А, В, С) и воздействия токсических продуктов (алкоголь). При гепатитах поражаются гепатоциты и нарушаются все функции печени. Цирроз это исход гепатитов. Самым частым нарушением желчевыделения является желчно-каменная болезнь. Основная масса желчных камней образована холестерином, так как желчь таких больных перенасыщена ими. 3. Искусственная гипотермия, суть применения. Гипотермия – состояние, при котором температура тела ниже 35 (снижается АД, ЧСС, обмен веществ) В последующие годы искусственно создаваемая гипотермия (до 34-38) применяется в хирургии при операциях на сердце, печень, продолговатый мозг; в клинике для продления жизнеспособности организма или мозга человека при проведении реанимационных мероприятий 4. Метод определения осмотической резистентности эритроцитов. В клинической и научной практике широко используются такие понятия как изотонические, гипотонические и гипертонические растворы. Изотонические растворы : 0,85% хлористого натрия («физиологический»), 1,1% хлористого калия, 1,3% раствор бикарбоната натрия, 5,5% глюкозы и т.д. Эритроциты, как известно, в изотоническом растворе не изменяют свой объем, в гипертоническом – уменьшают его, а в гипотоническом – увеличивают пропорционально степени гипотонии, вплоть до разрыва эритроцита (гемолиза). Явления осмотического гемолиза эритроцитов используется в клинической и научной практике с целью определения качественных характеристик эритроцитов (метод определения осмотической резистентности эритроцитов). Различают минимальную и максимальную резистентность. Минимальная резистентность эритроцитов определяется максимальной концентрацией гипотонического (менее 0,85%) раствора хлорида натрия (в серии постепенно уменьшающихся концентраций), при которой начинается гемолиз наименее устойчивых эритроцитов, находящихся в растворе 3 ч. Максимальная резистентность эритроцитов определяется максимальной концентрацией гипотонического раствора хлорида натрия, вызывающего в течение 3 ч гемолиз всех эритроцитов. |