Главная страница

Гистология за 3 дня. 1. история развития гистологии. Развитие гистологии в россии в истории развития гистологии можно выделить три основных периода домикроскопический, микроскопический и современный


Скачать 304.84 Kb.
Название1. история развития гистологии. Развитие гистологии в россии в истории развития гистологии можно выделить три основных периода домикроскопический, микроскопический и современный
Дата23.12.2022
Размер304.84 Kb.
Формат файлаdocx
Имя файлаГистология за 3 дня.docx
ТипДокументы
#861314
страница13 из 30
1   ...   9   10   11   12   13   14   15   16   ...   30

Васкуляризация

. Все крупные и средние кровеносные сосуды имеют для своего питания собственную систему, носящую название «сосуды сосудов». Эти сосуды необходимы для питания самой стенки крупного сосуда. В артериях сосуды сосудов проникают до глубоких слоев средней оболочки. Внутренняя оболочка артерий получает питательные вещества непосредственно из крови, протекающей в данной артерии. В диффузии питательных веществ через внутреннюю оболочку артерий большую роль играют белково-мукополисахаридные комплексы, входящие в состав основного вещества стенок этих сосудов. Иннервация сосудами получается от вегетативной нервной системы. Нервные волокна этого отдела нервной системы, как правило, сопровождают сосуды и заканчиваются в их стенке. По строению нервы сосудов являются либо миелиновыми, либо безмиелиновыми. Чувствительные нервные окончания в капиллярах многообразны по форме. Артериоловенулярные анастомозы имеют сложные рецепторы, расположенные одновременно на анастомозе, артериоле и венуле. Конечные разветвления нервных волокон заканчиваются на гладких мышечных клетках маленькими утолщениями – нервно-мышечными синапсами. Эффекторы на артериях и венах однотипны. По ходу сосудов, особенно крупных, встречаются отдельные нервные клетки и небольшие ганглии симпатической природы. Регенерация. Кровеносные и лимфатические сосуды обладают высокой способностью к восстановлению как после травм, так и после различных патологических процессов, происходящих в организме. Восстановление дефектов сосудистой стенки после ее повреждения начинается с регенерации и роста ее эндотелия. Уже через 1 – 2 дня на месте бывшего повреждения наблюдается массовое амитотическое деление эндотелиальных клеток, а на 3 – 4-й день появляется митотический вид размножения эндотелиальных клеток. Мышечные пучки поврежденного сосуда, как правило, восстанавливаются более медленно и неполно по сравнению с другими тканевыми элементами сосуда. По скорости восстановления лимфатические сосуды несколько уступают кровеносным.

Сосудистые афференты

Изменения рО

2

, рСО

2

крови, концентрация Н+, молочной кислоты, пирувата и ряда других метаболитов оказывают как локальное воздействие на стенку сосудов, так и регистрируются встроенными в стенку сосудов хеморецепторами, а также барорецепторами, реагирующими на давление в просвете сосудов. Эти сигналы достигают центров регуляции кровообращения и дыхания. Ответы центральной нервной системы реализует двигательная вегетативная иннервация гладкомышечной клетки стенки сосудов и миокарда. Кроме того, существует мощная система гуморальных регуляторов гладкомышечных клеток стенки сосудов (вазоконстрикторы и вазодилататоры) и проницаемости эндотелия. Барорецепторы особенно многочисленны в дуге аорты и в стенке крупных вен, лежащих близко к сердцу. Эти нервные окончания образованы терминалями волокон, проходящих в составе блуждающего нерва. В рефлекторной регуляции кровообращения участвуют каротидный синус и каротидное тельце, а также подобные им образования дуги аорты, легочного ствола, правой подключичной артерии.

Строение и функции каротидного синуса

. Каротидный синус расположен вблизи бифуркации общей сонной артерии. Это расширение просвета внутренней сонной артерии тотчас у места ее ответвления от общей сонной артерии. В области расширения средняя оболочка истончена, а наружная, напротив, утолщена. Здесь, в наружной оболочке, присутствуют многочисленные барорецепторы. Если учесть, что средняя оболочка сосуда в пределах каротидного синуса относительно тонка, то легко представить, что нервные окончания в наружной оболочке высокочувствительны к любым изменениям артериального давления. Отсюда информация поступает в центры, регулирующие деятельность сердечно-сосудистой системы. Нервные окончания барорецепторов каротидного синуса – терминали волокон, проходящих в составе синусного нерва – ветви языкоглоточного нерва.

Каротидное тельце

. Каротидное тельце реагирует на изменения химического состава крови. Тельце расположено в стенке внутренней сонной артерии и состоит из клеточных скоплений, погруженных в густую сеть широких капилляров синусоидоподобного типа. Каждый клубочек каротидного тельца (гломус) содержит 2 – 3 гломусные клетки (или клетки типа I), а на периферии клубочка расположены 1 – 3 клетки типа II. Афферентные волокна для каротидного тельца содержат вещество Р и относящиеся к кальцитониновому гену пептиды.

Клетки типа I образуют синаптические контакты с терминалями афферентных волокон. Для клеток типа I характерно обилие митохондрий, светлых, и электроноплотных синаптических пузырьков. Клетки типа I синтезируют ацетилхолин, содержат фермент синтеза этого нейромедиатора (холинацетилтрансфераза), а также эффективно работающую систему захвата холина. Физиологическая роль ацетилхолина остается неясной. Клетки типа I имеют Н– и М-холинорецепторы. Активация любого из этих типов холинорецепторов вызывает или облегчает освобождение из клеток типа I другого нейромедиатора – дофамина. При снижении рО

2

секреция дофамина из клеток типа I возрастает. Клетки типа I могут формировать между собой контакты, похожие на синапсы.

Эфферентная иннервация
На гломусных клетках заканчиваются волокна, проходящие в составе синусного нерва (Херинга), и постганглионарные волокна из верхнего шейного симпатического ганглия. Терминали этих волокон содержат светлые (ацетилхолин) или гранулярные (катехоламины) синаптические пузырьки.
Функция

Каротидное тельце регистрирует изменения рСО

2

и рО

2

, а также сдвиги рН крови. Возбуждение передается через синапсы на афферентные нервные волокна, по которым импульсы поступают в центры, регулирующие деятельность сердца и сосудов. Афферентные волокна от каротидного тельца проходят в составе блуждающего и синусного нервов (Херинга).

Главные клеточные типы сосудистой стенки

Гладкомышечная клетка

. Просвет кровеносных сосудов уменьшается при сокращении гладкомышечных клеток средней оболочки или увеличивается при их расслаблении, что изменяет кровоснабжение органов и величину артериального давления.
Гладкомышечные клетки сосудов имеют отростки, образующие с соседними ГМК многочисленные щелевые контакты. Такие клетки электрически сопряжены, через контакты возбуждение (ионный ток) передается от клетки к клетке, Это обстоятельство важно, так как в контакте с двигательными терминалями находятся только ГМК, расположенные в наружных слоях t. media. ГМК стенки сосудов (в особенности артериол) имеют рецепторы к разным гуморальным факторам.
Вазоконстрикторы и вазодилататоры

. Эффект вазоконстрикции реализуется при взаимодействии агонистов с α-адренорецепторами, рецепторами серотонина, ангиотензина II, вазопрессина, тромбоксана. Стимуляция α-адренорецепторов приводит к сокращению гладкомышечных клеток сосудов. Норадреналин – по преимуществу антагонист α-адренорецепторов. Адреналин – антагонист α– и β-адренорецепторов. Если сосуд имеет гладкомышечные клетки с преобладанием α-адренорецепторов, то адреналин вызывает сужение просвета таких сосудов.
Вазодилататоры. Если в ГМК преобладают α-адренорецепторы, то адреналин вызывает расширение просвета сосуда. Антагонисты, вызывающие в большинстве случаев расслабление ГМК: атриопептин, брадикинин, VIP, гистамин, относящиеся к кальцитониновому гену пептиды, простагландины, оксид азота NО.
Двигательная вегетативная иннервация

. Вегетативная нервная система регулирует величину просвета сосудов.
Адренергическая иннервация расценивается как преимущественно сосудосуживающая. Сосудосуживающие симпатические волокна обильно иннервируют мелкие артерии и артериолы кожи, скелетных мышц, почек и чревной области. Плотность иннервации одноименных вен значительно меньше. Сосудосуживающий эффект реализуется при помощи норадреналина – антагониста α-адренорецепторов.

Холинергическая иннервация. Парасимпатические холинергические волокна иннервируют сосуды наружных половых органов. При половом возбуждении вследствие активации парасимпатической холинергической иннервации происходит выраженное расширение сосудов половых органов и увеличение в них кровотока. Холинергический сосудорасширяющий эффект прослежен также в отношении мелких артерий мягкой мозговой оболочки.
Пролиферация
Численность популяции ГМК сосудистой стенки контролируют факторы роста и цитокины. Так, цитокины макрофагов и В-лимфоцитов (трансформирующий фактор роста ИЛ-1,) сдерживают пролиферацию ГМК. Эта проблема имеет важное значение при атеросклерозе, когда пролиферация ГМК усиливается под действием факторов роста, вырабатываемых в сосудистой стенке (тромбоцитарного фактора роста [PDGF], щелочного фактора роста фибробластов, инсулиноподобного фактора роста 1 [IGF-1] и фактора некроза опухоли).
Фенотипы ГМК
Различают два варианта ГМК сосудистой стенки: сократительный и синтетический.

Сократительный фенотип. ГМК имеют многочисленные миофиламенты и отвечают на воздействие вазоконстрикторов и вазодилататоров. Гранулярная эндоплазматическая сеть в них выражена умеренно. Подобные ГМК не способны к миграции и не вступают в митозы, так как нечувствительны к эффектам факторов роста.

Синтетический фенотип. ГМК имеют хорошо развитые гранулярную эндоплазматическую сеть и комплекс Гольджи, клетки синтезируют компоненты межклеточного вещества (коллаген, эластин, протеогликан), цитокины и факторы. ГМК в области атеросклеротического поражения сосудистой стенки перепрограммируются с сократительного на синтетический фенотип. При атеросклерозе ГМК вырабатывают факторы роста (например, тромбоцитарный фактор PDGF], щелочной фактор роста фибробластов [bFGF], усиливающие пролиферацию соседних ГМК.
Регуляция фенотипа ГМК

. Эндотелий вырабатывает и секретирует гепариноподобные вещества, поддерживающие сократительный фенотип ГМК. Факторы паракринной регуляции, продуцируемые эндотелиальными клетками, контролируют тонус сосудов. Среди них – производные арахидоновой кислоты (простагландины, лейкотриены и тромбоксаны), эндотелин-1, оксид азота NО и др. Одни из них вызывают вазодилатацию (например, простациклин, оксид азота NО), другие – вазоконстрикцию (например, эндотелин-1, ангиотензин-II). Недостаточность NО вызывает повышение АД, образование атеросклеротических бляшек избыток NО может привести к коллапсу.

Эндотелиальная клетка
Стенка кровеносного сосуда очень тонко реагирует на изменения гемодинамики и химического состава крови. Своеобразным чувствительным элементом, улавливающим эти изменения, является эндотелиальная клетка, которая с одной стороны омывается кровью, а другой обращена к структурам сосудистой стенки.

Восстановление кровотока при тромбозе.

Воздействие лигандов (АДФ и серотонина, тромбинтромбина) на эндотелиальную клетку стимулирует секрецию NO. Его мишени – расположенные поблизости ГМК. В результате расслабления гладкомышечной клетки просвет сосуда в области тромба увеличивается, и кровоток может восстановиться. К аналогичному эффекту приводит активация других рецепторов эндотелиальной клетки: гистамина, М-холинорецепторов, α2-адренорецепторов.
Свертывание крови

. Эндотелиальная клетка – важный компонент процесса гемокоагуляции. На поверхности эндотелиальных клеток может происходить активация протромбина факторами свертывания. С другой стороны, эндотелиальная клетка проявляет антикоагуляционные свойства. Прямое участие эндотелия в свертывании крови состоит в секреции эндотелиальными клетками некоторых плазменных факторов свертывания (например, фактора Виллебранда). В нормальных условиях эндотелий слабо взаимодействует с форменными элементами крови, как и с факторами свертывания крови. Эндотелиальная клетка вырабатывает простациклин PGI2, тормозящий адгезию тромбоцитов.

Факторы роста и цитокины

. Эндотелиальные клетки синтезируют и секретируют факторы роста и цитокины, влияющие на поведение других клеток сосудистой стенки. Этот аспект имеет важное значение в механизме развития атеросклероза, когда в ответ на патологическое воздействие со стороны тромбоцитов, макрофагов и ГМК эндотелиальные клетки вырабатывают тромбоцитарный фактор роста (PDGF), щелочной фактор роста фибробластов (bFGF), инсулиноподобный фактор роста-1 (IGF-1), ИЛ-1, трансформирующий фактор роста. С другой стороны, эндотелиальные клетки являются мишенями факторов роста и цитокинов. Например, митозы эндотелиальных клеток индуцируются щелочным фактором роста фибробластов (bFGF), а пролиферацию только эндотелиальных клеток стимулирует фактор роста эндотелиальных клеток, вырабатываемый тромбоцитами. Цитокины из макрофагов и В-лимфоцитов – трансформирующий фактор роста (TGFp), ИЛ-1 и α-ИФН – угнетают пролиферацию эндотелиальных клеток.

Процессинг гормонов

. Эндотелий участвует в модификации циркулирующих в крови гормонов и других биологически активных веществ. Так, в эндотелии сосудов легких происходит конверсия ангиотензина-I в ангиотензин-II.

Инактивация биологически активных веществ

. Эндотелиальные клетки метаболируют норадреналин, серотонин, брадикинин, простагландины.

Расщепление липопротеинов

. В эндотелиальных клетках происходит расщепление липопротеинов с образованием триглицеридов и холестерина.

Хоминг лимфоцитов

. Венулы в паракортикальной зоне лимфатических узлов, миндалин, пейеровой бляшки подвздошной кишки, содержащие скопление лимфоцитов, имеют высокий эндотелий, экспрессирующий на своей поверхности сосудистый адрессин, узнаваемый молекулой CD44 циркулирующих в крови лимфоцитов. В этих областях лимфоциты прикрепляются к эндотелию и выводятся из кровотока (хоминг).

Барьерная функция

. Эндотелий контролирует проницаемость сосудистой стенки. Наиболее наглядно эта функция проявляется в гематоэнцефалическом и гематотимическом барьерах.

Сердце

Развитие
Сердце закладывается на 3-й неделе внутриутробного развития. В мезенхиме между энтодермой и висцеральным листком спланхиотомы образуются две эндокардиальные трубки, выстланные эндотелием. Эти трубки – зачаток эндокарда. Трубки растут и окружаются висцеральной спланхиотомой. Эти участки спланхиотомы утолщаются и дают начало миоэпикардиальным пластинкам. По мере смыкания кишечной трубки обе закладки сближаются и срастаются. Теперь общая закладка сердца (сердечная трубка) имеет вид двухслойной трубки. Из эндокардиальной ее части развивается эндокард, а из миоэпикардиальной пластинки – миокард и эпикард. Мигрирующие из нервного гребня клетки участвуют в формировании выносящих сосудов и клапанов сердца (дефекты нервного гребня – причина 10% врожденных пороков сердца, например транспозиции аорты и легочного ствола).

В течение 24 – 26 суток первичная сердечная трубка быстро удлиняется и приобретает s-образную форму. Это оказывается возможным благодаря локальным изменениям формы клеток сердечной трубки. На этом этапе выделяются следующие отделы сердца: венозный синус – камера на каудальном конце сердца, в нее впадают крупные вены. Краниальнее венозного синуса располагается расширенная часть сердечной трубки, образующая область предсердия. Из средней изогнутой части сердечной трубки развивается желудочек сердца. Желудочковая петля изгибается в каудальном направлении, что перемещает будущий желудочек, находившийся краниальнее предсердия, в дефинитивное положение. Область сужения желудочка и его перехода в артериальный ствол – конус. Между предсердием и желудочком просматривается отверстие – атриовентрикулярный канал.
Разделение на правое и левое сердце

. Сразу же после образования предсердия и желудочка появляются признаки разделения сердца на правую и левую половины, которое протекает на 5 и 6-й неделе. На этом этапе формируются межжелудочковая перегородка, межпредсердная перегородка и эндокардиальные подушки. Межжелудочковая перегородка растет из стенки первичного желудочка в направлении от верхушки к предсердию. Одновременно с формированием межжелудочковой перегородки в суженной части сердечной трубки между предсердием и желудочком образуются две большие массы рыхло организованной ткани – эндокардиальные подушечки. Эндокардиальные подушки, состоящие из плотной соединительной ткани, участвуют в образовании правого и левого атриовентрикулярных каналов.
'В конце 4-й недели внутриутробного развития на краниальной стенке предсердия появляется срединная перегородка в форме полукруглой складки – первичная межпредсердная перегородка.

Одна дуга складки проходит по вентральной стенке предсердий, а другая – по дорсальной. Дуги сливаются вблизи атриовентрикулярного канала, но между ними остается первичное межпредсердное отверстие. Одновременно с этими изменениями венозный синус перемещается вправо и открывается в предсердие справа от межперсердной перегородки. В этом месте формируются венозные клапаны.
Полное разделение сердца

. Полное разделение сердца происходит после развития легких и их сосудистой сети. Когда первичная перегородка сливается с эндокардиальными подушками атриовентрикулярного клапана, первичное предсердное отверстие закрывается. Массовая гибель клеток в краниальной части первичной перегородки приводит к образованию множества мелких отверстий, образующих вторичное межпредсердное отверстие. Оно контролирует равномерное поступление крови в обе половины сердца. Вскоре в правом предсердии между венозными клапанами и первичной межпредсердной перегородкой формируется вторичная межпредсердная перегородка. Вогнутый ее край направлен вверх к месту впадения синуса, а в дальнейшем – нижней полой вены. Формируется вторичное отверстие овальное окно. Остатки первичной межпредсердной перегородки, закрывающие овальное отверстие во вторичной межпредсердной перегородке, формируют клапан, распределяющий кровь между предсердиями.

Направление движения крови
Так как выходное отверстие нижней полой вены лежит вблизи овального отверстия, то кровь из нижней полой вены попадает в левое предсердие. При сокращении левого предсердия кровь прижимает створку первичной перегородки к овальному отверстию. В результате кровь не поступает из правого предсердия в левое, а перемещается из левого предсердия в левый желудочек.
1   ...   9   10   11   12   13   14   15   16   ...   30


написать администратору сайта