Главная страница
Навигация по странице:

  • 168.Эндокринная функция плаценты. Плацента

  • Хорионический гонадотропин

  • 169. Рецепторный отдел анализаторов. Классификация, функциональные свойства и особенности рецепторов. Сенсорной системой

  • Классификация и механизмы возбуждения рецепторов

  • Свойства периферического (рецепторного) отдела анализаторов

  • физио билеты. 1 Мембранный потенциал и механизмы его происхождения


    Скачать 5.02 Mb.
    Название1 Мембранный потенциал и механизмы его происхождения
    Дата03.02.2022
    Размер5.02 Mb.
    Формат файлаdocx
    Имя файлафизио билеты.docx
    ТипДокументы
    #350220
    страница27 из 36
    1   ...   23   24   25   26   27   28   29   30   ...   36

    Женские половые гормоны образуются в яичниках. Синтез эстрогенов осуществляется оболочкой фолликула, прогестерона – желтым телом яичника, которое развивается на месте лопнувшего фолликула.

    Эстрогены стимулируют рост матки, влагалища, труб, вызывают разрастание эндометрия, способствуют развитию вторичных женских половых признаков, проявлению половых рефлексов, усиливают сократительную способность матки, повышают ее чувствительность к окситоцину, стимулируют рост и развитие молочных желез.

    Прогестерон обеспечивает процесс нормального протекания беременности, способствует разрастанию слизистой эндометрия, имплантации оплодотворенной яйцеклетки в эндометрий, тормозит сократительную способность матки, уменьшает ее чувствительность к окситоцину, тормозит созревание и овуляцию фолликула за счет угнетения образования лютропина гипофиза.

    Образование половых гормонов находится под влиянием гонадотропных гормонов гипофиза и пролактина. У мужчин гонадотропный гормон способствует созреванию сперматозоидов, у женщин – росту и развитию фолликула. Лютропин определяет выработку женских и мужских половых гормонов, овуляцию и образование желтого тела. Пролактин стимулирует выработку прогестерона.

    Мелатонин тормозит деятельность половых желез.

    Нервная система принимает участие в регуляции активности половых желез за счет образования в гипофизе гонадотропных гормонов. ЦНС регулирует протекание полового акта. При изменении функционального состояния ЦНС могут произойти нарушение полового цикла и даже его прекращение.

    Прогестерон и андестерон-вырабатываются в интерстенальных клеток семенников они необходимы для созревания мужских половых клеток(сперматозоидов)для проявления полового инстинкта.

    При их отсутствии не образуются подвижные,зрелые сперматозоиды.Эти гормоны повышают основной обмен веществ,уменьшают содержание жира в организме в размножении тканях особенно в мышцах.

    Прогестерон-обеспечивает норм.течение беременности возрастание имплантации оплодотворенной яйцеклетки,так же прекратит сокращение беременности матки уменьшает её чувствительность к окситацину тормозит созревание новых фолликул за счёт угнетения образования ЛГ(литинизирующий гормон)

    Половые гормоны особенно в период созревания стимулируют рост тела формируют увеличение основной обмен,ускоряет эритропоез,стимулируется андрогенами а появляется эстрогенами.Уровень половых гормонов определяется ГИПОТАЛАМУСОМ.

    В детстве чувствительность к половым гормонам очень высока, поэтому даже при низком уровне угнетается,затем чувствительность падает и он начинает вырабатывать больше половых гормонов.

    Андроген-у мальчиков. Эстроген-у девочек. Выработка у детей интенсивные нагрузки,чрезмерные нагрузки угнетают выработку половых гормонов(позднее полов созревание)

    ЛГ(литинирующий гормон)-стимулирует образование эндрогенов и эстрогенов и прогестеронов

    Пролактин-усиливает синтез прогестерона в жёлтом теле.

    При гипофункции эпифиза ранее полов созревание.

    При гиперфункции ожирение (гипогенитализм)

    Нарушение гормонов является одно из причин остеопороза.

    В условиях низкой температуры секретируютя мужские полов органы

    А при высокой женские.
    168.Эндокринная функция плаценты.
    Плацента – уникальное образование, которое связывает материнский организм с плодом. Она выполняет многочисленные функции, в том числе метаболическую и гормональную. Она синтезирует гормоны двух групп:

    1. белковые – хорионический гонадотропин (ХГ), плацентарный лактогенный гормон (ПЛГ), релаксин;

    2. стероидные – прогестерон, эстрогены.

    ХГ образуется в больших количествах через 7—12 недель беременности, в дальнейшем образование гормона снижается в несколько раз, его секреция не контролируется гипофизом и гипоталамусом, его транспорт к плоду ограничен. Функции ХГ – увеличение роста фолликулов, образование желтого тела, стимулирование выработки прогестерона. Защитная функция заключается в способности предотвращать отторжение зародыша организмом матери. ХГ обладает антиаллергическим действием.

    ПЛГ начинает секретироваться с шестой недели беременности и прогрессивно увеличивается. Он влияет на молочные железы подобно пролактину гипофиза, на белковый обмен (повышает синтез белка в организме матери). Одновременно возрастает содержание свободных жирных кислот, повышается устойчивость к действию инсулина.

    Релаксин секретируется на поздних стадиях развития беременности, расслабляет связки лонного сочленения, снижает тонус матки и ее сократимость.

    Прогестерон синтезируется желтым телом до 4-6-ой недели беременности, в дальнейшем в этот процесс включается плацента, процесс секреции прогрессивно нарастает. Прогестерон вызывает расслабление матки, снижение ее сократимости и чувствительность к эстрогенам и окситоцину, накопление воды и электролитов, особенно внутриклеточного натрия. Эстрогены и прогестерон способствуют росту, растяжению матки, развитию молочных желез и лактации.

    Плацента- уникальное образование, которое связывает материнский организм с плодом. Она выполняет многочисленные функции, в том числе метаболическую и гормональную. По мере формирования плаценты она берет на себя гормональное обеспечение развития зародыша. Если на первых этапах беременности гипофизэктомия приводит к прерыванию беременности, то сформированная плацента уже становится независимым источником образования высоких концентраций прогестерона и эстрогенов, хорионического гонадотропина, а также определенного количества андрогенов. Установлено, что эстрогены в комбинации с прогестероном подавляют иммунные реакции между плодом и плацентой, подавляют трансплантационный иммунитет и способствуют развитию трофобласта и превращению его в плаценту.

    Плацента синтезирует множество гормонов и других биологически активных веществ, имеющих важное значение для нормального течения беременности (обеспечивают повышение резистентности организма женщины в период беременности) и нормальное развития плода, включающее реализацию генетически детерминированных программ эмбриогенеза, соматического и функционального развития.

    С биохимической точки зрения эти гормоны можно разделить на 2 группы:

    а) Стероидные гормоны

    • Прогестерон

    • Эстрон

    • Эстрадиол

    • Эстриол

    Их действие было рассмотрено выше.

    б) Пептидные гормоны:

    • Хорионический гонадотропин

    • Плацентарный аналог гормона роста

    • Плацентарные лактогены (хорионические гонадотропины)

    • Тиротропин (ТТГ), Тиролиберин (ТТГ–РГ),

    • Кортиколиберин (АКТГ–РГ),

    • Гонадолиберин,

    • Соматолиберин

    • Соматостатин

    • Аналог кортиколиберина

    • Ингибины

    Характерно, что в крови плода содержание прогестерона примерно в 5 раз выше такового в крови матери.

    Весьма вероятно, что именно прогестерон, защищая зародыш от чрезмерного действия эстрогенов, способствует дифференцировке половой системы. В крови плода присутствует только малоактивный эстриол, в то время как активные гормоны — эстрадиол и эстрон — не определяются у зародышей. Следовательно, зародыш обладает такими энзимными системами, которые способны защитить от действия чрезмерных колебаний половых гормонов

    Андрогены выполняют роль своеобразного противовеса эстрогенов. Прогестерон, эстрогены и андрогены сбалансированы в таких пропорциях, когда андрогены препятствуют феминизирующему действию эстрогенов на генитальный тракт зародыша мужского пола, а эстрогены в свою очередь блокируют маскулинизирующее действие андрогенов на репродуктивную систему эмбрионов женского пола.

    Хорионический гонадотропин(ХГТ). Он запускает продукцию гормонов собственно в организме плода и регулирует оптимальное функционирование эндокринных органов в материнском организме. По механизму действия ХГТ близок лютеотропину гипофиза.

    Плацентарный лактоген появляется в крови плода уже на 6 неделе. Он синтезируется во все возрастающих количествах — общее количество за сутки возрастает от 0,5 до 5 граммов. Гормон из плаценты поступает как в кровь плода, так и в кровь матери. По механизму действия плацентарный лактоген соответствует соматотропину и маммотропину гипофиза. Поэтому в организме плода этот гормон стимулирует метаболические процессы, вызывая общий рост. При его недостаточности развивается гипотрофия плода и перинатальная смерть. Плацентарный лактоген имеет маммотропное влияние на молочную железу, как матери, так и ребенка. Избыток этого гормона приводит к выделению грудного молока новорожденным — т.н. молоко «ведьмы».

    Желтое тело и плацента секретируют и другие гормоны, среди них — релаксин (лат. relaxo — расширяю, расслабляю), вызывающий расширение симфиза и лобковых костей таза матери, что способствует акту родов.

    К моменту рождения концентрация всех гомонов плаценты и плода резко увеличивается, подготавливая организм плода к критическому переходу из внутриутробного существования к жизни во внешней среде. После рождения происходит снижение продукции гормонов у ребенка, но в норме этот дефицит компенсируется женским грудным молоком, содержащим все необходимые гормоны.
    169. Рецепторный отдел анализаторов. Классификация, функциональные свойства и особенности рецепторов.
    Сенсорной системой (анализатором, по И. П. Павлову) называют часть НС, состоящую из воспринимающих элементов — сенсорных рецепторов, получающих стимулы из внешней или внутренней среды, нервных путей, передающих информацию от рецепторов в мозг, и тех частей мозга, которые перерабатывают эту информацию. Таким образом, сенсорная система вводит информацию в мозг и анализирует ее. Работа любой сенсорной системы начинается с восприятия рецепторами внешней для мозга физической или химической энергии, трансформации ее в нервные сигналы и передачи их в мозг через цепи нейронов. Процесс передачи сенсорных сигналов сопровождается многократным их преобразованием и перекодированием и завершается высшим анализом и синтезом (опознанием образа), после чего формируется ответная реакция организма.

    Информация, поступающая в мозг, необходима для простых и сложных рефлекторных актов вплоть до психической деятельности человека. И. М. Сеченов писал, что «психический акт не может явиться в сознании без внешнего чувственного возбуждения». Переработка сенсорной информации может сопровождаться, но может и не сопровождаться осознанием стимула. Если осознание происходит, говорят об ощущении. Понимание ощущения приводит к восприятию.

    И. П. Павлов считал анализатором совокупность рецепторов {периферический отдел анализатора), путей проведения возбуждения (проводниковый отдел), а также нейронов, анализирующих раздражитель в коре мозга (центральный отдел анализатора).

    Классификация и механизмы возбуждения рецепторов

    Рецепторами называются специальные образования, предназначенные для:

    1. восприятия раздражителей внешней и внутренней среды организма;

    2. преобразования энергии раздражителей в электрическую энергию (рецепторный потенциал);

    3. кодирования информации о раздражителе.

    Все рецепторы по характеру воспринимаемой среды делятся на:

    • экстерорецепторы, воспринимающие раздражения из внешней среды, (рецепторы органов слуха, зрения, обоняния, вкуса, осязания);

    • интерорецепторы, реагирующие на раздражения из внутренних органов;

    • проприорецепторы, воспринимающие раздражения из двигательного аппарата (мышц, сухожилий, суставных сумок).

    По виду воспринимаемых раздражений различают:

    • хеморецепторы (рецепторы вкусовой и обонятельной сенсорных систем, хеморецепторы сосудов и внутренних органов);

    • механорецепторы (проприорецепторы двигательной сенсорной системы, барорецепторы сосудов, рецепторы слуховой, вестибулярной, тактильной и болевой сенсорных систем);

    • фоторецепторы (рецепторы зрительной сенсорной системы);

    • терморецепторы (рецепторы температурной сенсорной системы кожи и внутренних органов).

    По характеру связи с раздражителем различают:

    • дистантные рецепторы, реагирующие на сигналы от удаленных источников и обусловливающие предупредительные реакции организма (зрительные и слуховые);

    • контактные, принимающие непосредственные воздействия (тактильные и др.).

    По структурным особенностям различают первичные и вторичные рецепторы. Первичные рецепторы — это окончания чувствительных биполярных клеток, тело которых находится вне ЦНС, один отросток подходит к воспринимающей раздражение поверхности, а другой направляется в ЦНС (например, проприорецепторы, терморецепторы, обонятельные клетки). Вторичные рецепторы представлены специализированными рецепторными клетками, которые расположены между чувствительным нейроном и точкой приложения раздражителя (например, фоторецепторы глаза). В первичных рецепторах энергия внешнего раздражителя непосредственно преобразуется в нервный импульс в одной и той же клетке. В периферическом окончании чувствительных клеток при действии раздражителя возникает повышение проницаемости мембраны и ее деполяризация, возникает местное возбуждение — рецепторный потенциал, который, достигнув пороговой величины, обусловливает появление ПД, распространяемого по нервному волокну к нервным центрам.

    Во вторичных рецепторах раздражитель вызывает появление рецепторного потенциала в клетке-рецепторе. Ее возбуждение приводит к выделению медиатора в пресинаптической части контакта клетки-рецептора с волокном чувствительного нейрона. Местное возбуждение этого волокна отражается появлением возбуждающего постсинаптического потенциала или так называемого генераторного потенциала. При достижении порога возбудимости в волокне чувствительного нейрона возникает потенциал действия, несущий информацию в ЦНС. Таким образом, во вторичных рецепторах одна клетка преобразует энергию внешнего раздражителя в рецепторный потенциал, а другая — в генераторный потенциал и потенциал действия.

    Свойства периферического (рецепторного) отдела анализаторов. В деятельности каждого анализатора и его отделов независимо от характеристики раздражителей различают ряд общих свойств. Для отдела анализаторов характерны следующие свойства.

    1. Специфичность — способность воспринимать определенный, т. е. адекватный данному рецептору, раздражитель. Эта способность рецепторов сформировалась в процессе эволюции.

    2. Высокая чувствительность — способность реагировать на очень малые по интенсивности параметры адекватного раздражителя. Например, для возбуждения фоторецепторов сетчатки глаза достаточно нескольких, а иногда и одного, квантов света. Обонятельные рецепторы информируют организм о появлении в атмосфере единичных молекул пахучих веществ.

    3. Способность к ритмической генерации импульсов возбуждения в ответ на однократное действие раздражителя.

    4. Способность к адаптации — т. е. способность приспосабливаться (“ привыкать”) к постоянно действующему стимулу. Адаптация может выражаться в снижении активности рецептора и частоты генерации импульсов возбуждения, вплоть до полного его прекращения. В зависимости от скорости адаптации различают 3 вида рецепторов:

    • быстроадаптирующиеся ( тактильные);

    • медленноадаптирующиеся ( терморецепторы);

    • неадаптирующиеся ( вестибулярные и проприорецепторы).

    Выделяют несколько видов адаптации:

    • изменение возбудимости рецептора в сторону снижения — десенсибилизация;

    • изменение возбудимости в сторону повышения — сенсибилизация.

    Адаптация проявляется в снижении абсолютной чувствительности рецептора и в повышении дифференциальной чувствительности к стимулам, близким по силе к адаптируемым. Сенсибилизация проявляется в стойком повышении возбудимости, которое вызывается многократными действиями пороговых раздражителей, наносимых один за другим.

    Процессы адаптации в рецепторах могут определяться внешними и внутренними факторами. В качестве внешнего фактора в механизме адаптации могут выступать свойства вспомогательных структур. Так, например, причиной быстрой адаптации телец Пачини являются свойства вспомогательных структур — капсулы рецептора, которые не пропускают к нервному окончанию статической составляющей механического раздражения, в то время как динамическая составляющая раздражителя проходит через оболочки капсулы, хотя и уменьшается по амплитуде. Это предположение подтверждается тем, что после удаления капсулы рецептор начинает генерировать рецепторный потенциал в течение длительного действия раздражителя.

    Внутренние факторы механизма адаптации связаны с изменениями физико-химических процессов в самом рецепторе. Например, выявлено различие в наборе натриевых и калиевых каналов в быстро- и медленноадаптирующихся рецепторах. Важную роль в явлениях адаптации играют эфферентные влияния от нервных центров. При наличии тормозной эфферентной регуляции процессы адаптации в рецепторах ускоряются.

    5. Функциональная мобильность. Анализаторные системы способны изменять свою деятельность путем изменения количества функционирующих рецепторов в зависимости от условий окружающей среды и функционального состояния организма. Например, количество функционирующих вкусовых рецепторов больше в состоянии голода, а после приема пищи их количество уменьшается. При снижении температуры окружающей среды количество холодовых рецепторов кожных покровов увеличивается.

    6. Низкая способность к аккомодации.

    7. Специализация рецепторов к определенным параметрам адекватного раздражителя. Рецепторы, входящие в состав периферического отдела анализатора, неоднородны по отношению к различным моментам действия раздражителя. Имеются рецепторы, которые возбуждаются только в момент включения раздражителя, другие— только в момент выключения раздражителя, а третьи реагируют в течение всего времени действия раздражителя. Кроме того, имеются рецепторы, реагирующие на изменение интенсивности раздражителя или на его перемещение и т. д.

    8. Способность к элементарному первичному анализу. Благодаря связи между отдельными рецепторами периферического отдела, отражающими отдельные параметры раздражителя, осуществляется элементарный первичный анализ последнего. Деятельность рецепторов осуществляется не изолированно, а во взаимодействии, в связи с чем уже на рецепторном уровне осуществляется анализ раздражителя по разным его характеристикам ( параметрам).

    9. Кодирование информации. Информация о действии химических, механических раздражителей, имеющих разнообразную природу, преобразуется рецепторами в универсальные для мозга сигналы — нервные импульсы. Таким образом рецепторы кодируют информацию о среде, т. е. преобразуя сигналы, непонятные мозгу, в сигналы, понятные ему.
    1   ...   23   24   25   26   27   28   29   30   ...   36


    написать администратору сайта