Главная страница
Навигация по странице:

  • 13. Лабильность парабиоз и его фазы н.е введенский Лабильность

  • 15. ЭКГ, ее особенности у детей. Электрокардиография

  • Электрокардиограмма

  • физио билеты. 1 Мембранный потенциал и механизмы его происхождения


    Скачать 5.02 Mb.
    Название1 Мембранный потенциал и механизмы его происхождения
    Дата03.02.2022
    Размер5.02 Mb.
    Формат файлаdocx
    Имя файлафизио билеты.docx
    ТипДокументы
    #350220
    страница2 из 36
    1   2   3   4   5   6   7   8   9   ...   36

    Виды мышечного сокращения


    Выделяют три виды мышечного сокращения:

    1. Одиночное мышечное сокращение;

    2. Тетаническое мышечное сокращение (тетанус);

    3. Тоническое мышечное сокращение.

    Кроме того, тетаническое мышечное сокращение делят на зубчатый и гладкий тетанус.

    1. Одиночное мышечное сокращение возникает в условиях действия на мышцу пороговых или надпороговых электрических стимулов, межимпульсный интервал которых равен или больше длительности одиночного мышечного сокращения. В одиночном мышечном сокращении выделяют три временных отрезка: латентный период, фазу укорочения и фазу расслабления (см. рис. 3).

    Рис. 3 Одиночное мышечное сокращение и его характеристики.

    ЛП – латентный период, ФУ – фаза укорочения, ФР – фаза расслабле-ния

    1. Тетаническое мышечное сокращение (тетанус) возникает в условиях действия на скелетную мышцу порогового или надпорогового электрического раздражителя, межимпульсный интервал которого мень- ше длительности одиночного мышечного сокращения. В зависимости от длительности межстимульных интервалов электрического раздражителя при его воздействии может возникнуть либо зубчатый, либо гладкий тетанус. Если межимпульсный интервал электрического раздражителя меньше длительности одиночного мышечного сокращения, но больше или равен сумме латентного периода и фазы укорочения, возникает зубчатый тетанус. Указанное условие выполняется при повышении частоты импульсного электрического раздражителя в определенном диапазоне.

    Если же длительность межимпульсного интервала электрического раздражителя меньше суммы латентного периода и фазы укорочения возникает гладкий тетанус. При этом амплитуда гладкого тетануса больше амплитуды и одиночного мышечного сокращения и зубчатого тетанического сокращения. При дальнейшем уменьшении межимпульсного интервала электрического раздражителя, а следовательно при увеличении частоты, амплитуда тетанических сокращений возрастает (см. рис. 4).

    Ри с. 4 Зависимость формы и амплитуды тетанических сокращений от частоты раздражителя. – начало действия раздражителя, - оконча-ние действия разражителя.

    +Однако, указанная закономерность не носит абсолютного характера: при определенном значении частоты вместо ожидаемого повышения амплитуды гладкого тетатнуса отмечается феномен ее снижения (см. рис. 5). Указанный феномен был впервые обнаружен Российским ученым Н.Е.Введенским и был назван пессимумом. В основе пессимальных явлений по мнению Н.Е.Введенского лежит механизм торможения.

    11.Систолический и минутный объемы крови

    Количество крови, выбрасываемое желудочком сердца в артерии в минуту является важным показателем функционального состояния сердечно-сосудистой системы (ССС) и называется минутным объемом крови (МОК). Он одинаков для обоих желудочков и в покое равен 4,5—5 л. Если разделить МОК на ЧСС в минуту получим систолический объем (СО) кровотока. При сокращении сердца равном 75 ударов в мин он составляет 65—70 мл, при работе увеличивается до 125 мл. У спортсменов в покое он составляет 100 мл, при работе возрастает до 180 мл. Определение МОК и СО широко применяется в клинике, что можно произвести путем расчета по косвенным показателям (по формуле Старра см. Практикум по нормальной физиологии).

    Объем крови полости желудочка, который она занимает перед его систолой составляет конечно-диастолический объем (120—130 мл).

    Объем крови, остающийся в камерах после систолы при покое составляет резервный и остаточный объемы. Резервный объем реализуется при увеличении СО при нагрузках. В норме он составляет 15—20% от конечно—диастолического.

    Объем крови в полостях сердца, остающийся при полной реализации резервного объема, при максимальной систоле составляет остаточный объем. В норме он составляет 40—50% от конечно-диастолического. СО и МОК величины непостоянные. При мышечной деятельности МОК возрастает до 30—38 л за счет учащения сокращений сердца и увеличения СОК.

    Величина МОК, деленная на площадь поверхности тела в м2 определяется как сердечный индекс (л/мин/м2). Он является показателем насосной функции сердца. В норме сердечный индекс составляет 3—4 л/мин/м2. Если известен МОК и АД в аорте (или легочной артерии) можно определить внешнюю работу сердца

    Р = МО х АД

    Р — работа сердца в мин в килограмометрах (кг/м).

    МО — минутный объем (л).

    АД — давление в метрах водного столба.

    При физическом покое внешняя работа сердца составляет 70—110 Дж, при работе увеличивается до 800 Дж, для каждого желудочка в отдельности. Весь комплекс проявлений деятельности сердца регистрируется с помощью различных физиологических методик — кардиографий: ЭКГ, электрокимография, баллистокардиография, динамокардиография, верхушечная кардиография, ультразвуковая кардиография и др.

    Диагностическим методом для клиники является электрическая регистрация движения контура сердечной тени на экране рентгеновского аппарата. К экрану у краев контура сердца прикладывают фотоэлемент, соединенный с осциллографом. При движениях сердца изменяется освещенность фотоэлемента. Это регистрируется осциллографом в виде кривой сокращения и расслабления сердца. Такая методика называется электрокимографией.

    Верхушечная кардиограмма регистрируется любой системой, улавливающей малые локальные перемещения. Датчик укрепляется в 5 межреберье над местом сердечного толчка. Характеризует все фазы сердечного цикла. Но зарегистрировать все фазы удается не всегда: сердечный толчок по разному проецируется, часть силы прикладывается к ребрам. Запись у разных лиц и у одного лица может отличаться, влияет степень развития жирового слоя и др.

    Используются в клинике также методы исследования, основанные на использовании ультразвука — ультразвуковая кардиография.

    Ультразвуковые колебания при частоте 500 кГц и выше глубоко проникают через ткани будучи образованными излучателями ультразвука, приложенными к поверхности грудной клетки. Ультразвук отражается от тканей различной плотности — от наружной и внутренней поверхности сердца, от сосудов, от клапанов. Определяется время достижения отраженного ультразвука до улавливающего прибора.

    Если отражающая поверхность перемещается, то время возвращения ультразвуковых колебаний изменяется. Этот метод можно использовать для регистрации изменений конфигурации структур сердца при его деятельности в виде кривых, записанных с экрана электроннолучевой трубки. Эти методики называются неинвазивными.

    К инвазивным методикам относятся:

    Катетеризация полостей сердца. В центральный конец вскрытой плечевой вены вводят эластичный зонд—катетер и проталкивают к сердцу (в его правую половину). В аорту или левый желудочек вводят зонд через плечевую артерию.

    Ультразвуковое сканирование — источник ультразвука вводится в сердце с помощью катетера.

    Ангиография представляет собой исследование движений сердца в поле рентгеновских лучей и др.

    Таким образом, работа сердца определяется 2-мя факторами:

    1. Количеством притекающей к нему крови.

    2. Сопротивлением сосудов при изгнании крови в артерии (аорту и легочную артерию). Когда сердце не может при данном сопротивлении сосудов перекачать всю кровь в артерии, возникает сердечная недостаточность.

    Различают 3 варианта сердечной недостаточности:

    Недостаточность от перегрузки, когда к сердцу с нормальной сократительной способностью предъявляются чрезмерные требования при пороках, гипертензии.

    Недостаточность сердца при повреждении миокарда: инфекции, интоксикации, авитаминозы, нарушение коронарного кровообращения. При этом снижается сократительная функция сердца.

    +Смешанная форма недостаточности — при ревматизме, дистрофических изменениях в миокарде и др.

    12. Возрастные особенности экг у детей

    В связи с преобладанием массы правого желудочка над левым и влиянием на работу сердца главным образом симпатической нервной системы ЭКГ здоровых детей имеет свои особенности в каждом возрастном периоде.

    I. Для новорожденных характерна так называемая "правограмма". Правый тип ЭКГ определяет соотношение зубцов S и R: высокий зубец R в третьем отведении и глубокий зубец S в первом отведении. Правограмма новорожденных обусловлена относительно большей величиной правого желудочка.

    А) Особенности зубцов ЭКГ (таблица 4).

    1. Зубец Р высокий, часто заострен. Отношение величины зубца Р к зубцу R во втором отведении составляет 1:3, у взрослых это отношение равно 1:8. Это связано с относительно большими размерами предсердий, особенно правого.

    2. Высота зубца R определяется массой желудочков, поэтому у новорожденных она меньше.

    3.Зубец Т постоянен, может быть низким, уплощенным и даже отрицательным, встречается двухфазная форма зубца.

    Б) Особенности, интервалов и комплексов ЭКГ.

    1. Интервал РQ укорочен, что свидетельствует о более высокой скорости проведения возбуждения по проводящей системе сердца.

    2. По той же причине укорочен комплекс QRS

    II. У детей дошкольного возраста тип ЭКГ меняется. В этот период в одинаковом числе случаев наблюдается нормальный и правый тип ЭКГ, иногда встречается и левограмма. Зубец Р относительно зубца R становится меньше в связи с увеличением массы желудочков, отношение зубцов Р/R равно 1:6. Увеличивается масса и сила сокращений желудочков, что приводит к увеличению зубца R, скорость проведения возбуждения по проводящей системе сердца снижается, в связи c этим увеличивается интервал РQ и длительность комплекса QRS.

    III. У школьников в большинстве случаев встречается нормальный тип ЭКГ. Чаще чем в предыдущем возрастном периоде, встречается левограмма, правограмма наблюдается редко. Зубцы приобретают форму и величину, свойственную взрослым.

    Таблица 4.

    Особенности ЭКГ у детей.

    Возраст

    отношение

    зубца Р к R

    длительность в секундах

    интервала РQ комплекса QRSТ.

    новорожденные

    1/3

    0,10

    0, 04

    дети дошкольного возраста

    1/6

    0,13

    0, 05

    дети школьного возраста




    0,14

    0, 06

    взрослые

    1/8

    0.15

    0, 08

    Особенности регуляции деятельности сердца у детей разного возраста.

    1. У плода и новорожденных детей регуляция сердечной деятельности осуществляется главным образом симпатической нервной системой. Тонус симпатических нервов поддерживается во внутриутробном периоде за счет некоторой гипоксии плода, а у новорожденных - за счет афферентной импульсации с рецепторов кожи, внутренних органов, а главное, с рецепторов мышц (проприорецепторов). Блуждающий нерв в отличие от взрослых людей, не оказывает регулирующего влияния на работу сердца. Об этом свидетельствуют результаты перерезки нервов у животных, где после перерезки ритм сердечных сокращений остается неизменным. Это связано с отсутствием тонуса их ядер. Тонус ядер блуждающих нервов появляется при возникновении первой антигравитационной реакции новорожденных (умение держать головку) в 3-4-месячном возрасте. Заметное урежение сердечного ритма возникает в связи с реализацией позы стояния в возрасте 1 года. К трём годам тонус блуждающего нерва приближается к уровню взрослых людей.

    2. Изменение типа регуляции сопровождается следующими изменениями работы сердца;

    а) замедляется сердечный ритм

    б) удлинняется диастола, а в связи с этим увеличивается сила сердечных сокращений (закон Франка-Старлинга). Это, в свою очередь, приводит к увеличению адаптационных возможностей сердца.

    3. В связи с изменением типа регуляции и установлением функциональных реципрокных взаимоотношений между ядрами блуждающего нерва и дыхательным центром, у детей и подростков появляется дыхательная аритмия. Во время выдоха тонус блуждающего нерва повышается, что приводит к замедлению сердечного ритма, а во время вдоха, напротив, частота сердцебиения возрастает.

    +4. В период полового созревания, когда вновь происходит нейрогуморальная перестройка организма, у подростков может возникнуть функциональная экстрасистолия.

    13. Лабильность парабиоз и его фазы н.е введенский

    Лабильность— функциональная подвижность, скорость протекания элементарных циклов возбуждения в нервной и мышечной тканях. Понятие "Л." введено русским физиологом Н. Е. Введенским (1886), который считал мерой Л. наибольшую частоту раздражения ткани, воспроизводимую ею без преобразования ритма. Л. отражает время, в течение которого ткань восстанавливает работоспособность после очередного цикла возбуждения. Наибольшей Л. отличаются отростки нервных клеток — аксоны, способные воспроизводить до 500—1000 импульсов в 1 сек; менее лабильны центральные и периферические места контакта — синапсы (например, двигательное нервное окончание может передать на скелетную мышцу не более 100—150 возбуждений в 1 сек). Угнетение жизнедеятельности тканей и клеток (например, холодом, наркотиками) уменьшает Л., т. к. при этом замедляются процессы восстановления и удлиняется рефрактерный период.

    Парабиоз— состояние, пограничное между жизнью и смертью клетки.

    При развитии парабиоза выявлялись четыре его фазы.

    1. Фаза кратковременного повышения возбудимости. Редко улавливается и заключается в том, что под действием подпорогового раздражителя мышца сокращается.

    2. Фаза уравнительная (трансформации). Проявляется в том, что на частые и редкие стимулы мышца отвечает одинаковым по величине сокращением. Выравнивание силы мышечных эффектов происходит, по данным Введенского, за счет парабиотического участка, в котором снижается лабильность под влиянием KСl. Так, если лабильность в парабиотическом участке снизилась до 50 им/с, то такую частоту он пропускает, в то время, как более частые сигналы задерживаются в парабиотическом участке, т. к. часть из них попадает в период рефрактерности, который создается предыдущим импульсом и в связи с этим не проявляет своего действия.

    3. Парадоксальная фаза. Характеризуется тем, что при действии частых стимулов наблюдается слабый сократительный эффект мышцы или вообще его не наблюдается. В то же самое время, на действия редких импульсов имеет место несколько большее по величине сокращение мышцы, чем на более частые. Парадоксальная реакция мышцы связана с еще большим уменьшением лабильности в парабиотическом участке, который практически теряет свойство проводить частые импульсы.

    4. Тормозная фаза. В этот период состояния ткани через парабиотический участок не проходят ни частые, ни редкие импульсы, в результате чего мышца н сокращается. Может быть в парабиотическом участке ткань погибла? Если прекратить действовать KСl, то нервно-мышечный препарат постепенно восстанавливает свою функцию, проходя стадии парабиоза в обратном порядке, или действовать на него одиночными электрическими стимулами, на которые мышца слегка сокращается

    14. Определение времени свертывания крови

    Метод Ли-Уайта (время свертывания венозной крови)

    Подготавливают водяную баню с температурой 37 град. Цельсия, секундомер. Из вены забирают 1 мл крови, помещают в пробирку, которую устанавливают на водяную баню и включают секундомер. Через 2 минуты, а затем через каждые 30 секунд пробирку наклоняют под углом 45 градусов и наблюдают образование плотного сгустка (кровь не выливается при переворачивании пробирки). Время свертывания регистрируют от момента ее взятия до образования плотного сгустка. В норме 5-10 минут.

    Метод Бюркера (свертывание капиллярной крови)

    На стекле смешиваются равные по объему капли крови и дистиллированной воды. Включается секундомер и путем помешивания образовавшейся смеси регистрируется образование нитей фибрина.

    Определение времени кровотечения по Duke

    Определить время и интенсивность кровотечения по Дюку. Обработать палец спиртом или эфиром. Сделать прокол мякоти пальца на глубину 3-3,5мм. Включить секундомер и снимать капли фильтровальной бумагой каждые 30 сек. Секундомер выключается в тот момент, когда на бумаге не останется следа крови. В норме время кровотечения равно 2-4 мин.

    Для определения интенсивности кровотечения число капель крови на фильтровальной бумаге делят на время кровотечения. В норме она равна 2-3.

    +Увеличение времени кровотечения и интенсивности свидетельствует о нарушении сосудисто-тромбоцитарного гемостаза.

    15. ЭКГ, ее особенности у детей.

    Электрокардиография – регистрация с определенных участков тела суммарного электрического поля, генерируемого клетками сердца в процессе их возбуждения.

    Электрокардиограмма – кривая, отражающая процесс возникновения, распространения и исчезновения возбуждения в различных отделах сердца. ЭКГ отражает только изменения электрических потенциалов, но не сокращения миокарда.
    1   2   3   4   5   6   7   8   9   ...   36


    написать администратору сайта