Главная страница
Навигация по странице:

  • 175. Тактильный анализатор. Классификация тактильных рецепторов ,особенности их строения и функций .

  • 176. Роль температурного анализатора в восприятии температуры внешней и внутренней среды организма.

  • Центральный отдел

  • 177.Физиологическая характеристика обонятельного анализатора. Классификация запахов, механизм их восприятия.

  • Классификация запахов Система К. Линнея

  • Система Х. Цваардемакера

  • Призма запахов Хеннинга

  • Стереохимическая модель Эймура

  • 178. Физиологическая характеристика вкусового анализатора.

  • 179.Биологическое значение боли. Современное представление о ноцицепции и центральные механизмы боли. Боль

  • По характеру

  • Безусловные рефлексы саморазвития

  • физио билеты. 1 Мембранный потенциал и механизмы его происхождения


    Скачать 5.02 Mb.
    Название1 Мембранный потенциал и механизмы его происхождения
    Дата03.02.2022
    Размер5.02 Mb.
    Формат файлаdocx
    Имя файлафизио билеты.docx
    ТипДокументы
    #350220
    страница29 из 36
    1   ...   25   26   27   28   29   30   31   32   ...   36

    Влияние раздражений вестибулярной системы на другие функции организма

    Вестибулярная сенсорная система связана со многими центрами спинного и головного мозга и вызывает ряд вестибуло-соматических и вестибуло-вегетативных рефлексов.

    Вестибулярные раздражения вызывают установочные рефлексы изменения тонуса мышц, лифтные рефлексы, а также особые движения глаз, направленные насохранение изображения на сетчатке. — нистагм (движения глазных яблок со скоростью вращения, нов противоположном направлении, затем быстрое возвращение к исходеной позиции и новое противоположное вращение).

    Помимо основной анализаторной функции, важной для управления позой и движениями человека, вестибулярная сенсорная система оказывает разнообразные побочные влияния на многие функции организма, которые возникают в результате иррадиации возбуждения на другие нервные центры при низкой устойчивости Вестибулярного аппарата. Его раздражение приводит к снижению возбудимости зрительной и кожной сенсорных систем, ухудшению точности движений. Вестибулярные раздражения приводят к нарушениям координации движений и походки, изменениям частоты сердцебиения и артериального давления, увеличению времени двигательной реакции и снижению частоты движений, ухудшению чувства времени, изменению психических функций — внимания, оперативного мышления, кратковременной памяти, эмоциональных проявлений, В тяжелых случаях возникают головокружения, тошнота, рвота. Повышение устойчивости вестибулярной системы достигается в большей мере активными вращениями человека, чем пассивными.

    В условиях невесомости (когда у человека выключены вестибулярные влияния) возникает утрата представления о направлении гравитационной вертикали и пространственном положении тела. Теряются навыки ходьбы, бега. Ухудшается состояние нервной системы, возникает повышенная раздражительность, нестабильность настроения
    175. Тактильный анализатор. Классификация тактильных рецепторов ,особенности их строения и функций .
    Тактильный анализатор служит для анализа всех механических влияний, действующих на тело человека (давление, прикосновение, вибрация). Рецепторы, предназначенные для этого, содержатся в коже, в частности, в эпидермисе, дерме и частично в подкожной клетчатке. Концентрация тактильных рецепторов на различных участках тела неодинакова, поэтому чувствительность одних участков выше, например, кожи кончиков пальцев рук, других — ниже.

    Выделяют 3 основных вида рецепторов:

    Рецепторы давления, которые воспринимают силу механического воздействия (рецепторы силы).

    Рецепторы прикосновения, или датчики скорости - это тельца Мейсснера.

    Рецепторы вибрации - это датчики ускорения или датчики синусоидального изменения силы. Они реагируют лишь на вторую производную изменения силы - ускорение. Морфологически они представлены тельцами Паччини. Расположены в глубоких слоях дермы.
    176. Роль температурного анализатора в восприятии температуры внешней и внутренней среды организма.
    Система температуры внешней среды вместе с системой температуры внутренней среды обеспечивает поддержание температурного гомеостазиса с помощью изменения интенсивности теплопродукции, теплоотдачи и поведенческих приспособительных реакций, в том числе и двигательных. Температурный кожный анализатор, как и тактильный, он относится к соматосенсорному анализатору.

    Периферический отдел представлен двумя видами рецепторов: одни реагируют на холодовые стимулы, другие – на тепловые. Тепловые рецепторы – это тельца Руффини, а холодовые - колбы Краузе. Рецепторы холода расположены в эпидермисе и непосредственно под ним, а рецепторы тепла – преимущественно в нижнем и верхнем слоях собственно кожи и слизистой оболочки.

    Проводниковый отдел. От рецепторов холода отходят миелинизированные волокна типа А, а от рецепторов тепла – немиелинизированные волокна типа С, поэтому информация от холодовых рецепторов распространяется с большей скоростью, чем от тепловых. Первый нейрон локализуется в спинальных ганглиях. Клетки задних рогов спинного мозга представляют второй нейрон. В зрительном бугре находится третий нейрон. Отсюда возбуждение поступает в кору полушарий большого мозга.

    Центральный отдел температурного анализатора локализуется в области задней центральной извилины коры большого мозга.

    Восприятие температурных раздражителей. Существует зона температуры кожи, в пределах которой в результате адаптации к температуре внешней среды происходит полное исчезновение температурных ощущений. Эта зона получила название зоны комфорта, или нейтральной зоны. Изменения температуры кожи и отклонения от зоны комфорта происходят под влиянием факторов внешней и внутренней сред организма и сопровождаются возникновением ощущения тепла или холода. Интенсивность этих ощущений зависит от величины отклонения от диапазона зоны комфорта. Если температура кожи не меняется и какое-то время остается постоянной, то реакция терморецепторов в этих случаях обозначается как статическая.  При длительном воздействии температурных факторов внешней среды и малых отклонениях температуры кожи возможно развитие медленной частичной адаптации с сохранением низкого уровня статической реакции терморецепторов. При значительном изменении температуры внешней среды и больших отклонениях от зоны комфорта, когда развитие адаптации уменьшается, проявляется высокий уровень статической реакции терморецепторов.
    177.Физиологическая характеристика обонятельного анализатора. Классификация запахов, механизм их восприятия.
    Рецепторы обонятельного анализатора заложены в слизистой носа в области верхней носовой раковины. Они представляют собой чувствительные волосковые клетки, располагающиеся среди опорных клеток, включенных в эпителий. Нервные волокна, отходящие от чувствительных клеток, составляют обонятельные нервы, заканчивающиеся обонятельными луковицами. Аксоны этих клеток направляются в подкорковые центры, нейроны которых дают аксоны, поступающие в корковые центры - в области ункус гиппокампа. При взаимодействии молекулы с рецептором в нервном окончании генерируется потенциал, передающийся по волокнам в центры.

    Классификация запахов

    1. Система К. Линнея: 1) ароматические (красная гвоздика); 2) бальзамические (лилия); 3) амброзиальные (мускус); 4) луковые (чеснок); 5) псиные (валериана); 6) отталкивающие (некоторые насекомые); 7) тошнотворные (падаль).

    2. Система Х. Цваардемакера: 1) эфирные (напр., фруктовые и винные запахи); 2) ароматические (пряности, камфара); 3) бальзамические (цветочные запахи; ваниль); 4) амбромускусные (мускус, сандаловое дерево); 5) чесночные (чеснок, хлор); 6) пригорелые (жареный кофе, креозот); 7) псиные или каприловые (сыр, протухший жир); 8) отталкивающие (клопы, белладонна); 9) тошнотворные (фекалии, трупный запах).

    3. Призма запахов Хеннинга: 1) ароматные; 2) эфирные; 3) пряные; 4) смолистые; 5) жженые; 6) гнилостные.

    4. Система Крокера-Хендерсона: 1) ароматный; 2) кислый; 3) горелый; 4) каприловый (или козлиный).

    5. Стереохимическая модель Эймура: 1) камфарный, 2) эфирный, 3) цветочный, 4) мускусный, 5) перечной мяты, 6) едкий, 7) гнилостный.

    Нужно отметить, что ни одна классификация запахов не получила всеобщего признания.

    Существует 2 механизма восприятия запахов:

    1. ассоциативный - основан на запоминании взаимосвязи запахов с привычными представлениями и влияет в основном на психоэмоциональную сферу человека.

    2. рефлекторный – основан на влиянии пахучих веществ на обонятельные рецепторные клетки в биологически активных точках средней части верхней носовой раковины и носовой перегородки, связанных с обонятельным анализатором, гипоталамусом и лимбической системой.


    178. Физиологическая характеристика вкусового анализатора.
    Вкусовые рецепторы несут информацию о характере и концентрации веществ, поступающих в рот. Их возбуждение запускает сложную цепь реакций разных отделов мозга, приводящих к различной работе органов пищеварения или удалению вредных для организма веществ, попавших в рот с пищей.

    Хеморецепторы вкуса представляют собой вкусовые луковицы, расположенные в эпителии языка, задней стенке глотки и мягкого неба. У детей их количество больше, а с возрастом — убывает. Больше всего их на кончике языка, его краях и задней части. Вкусовая почка имеет колбовидную форму, длина и ширина ее у человека около 7-10-5 м (70 мкм), она не достигает поверхности слизистой оболочки языка и соединена с полостью рта через вкусовую пору. Микроворсинки рецепторных клеток выступают из луковицы на поверхность языка и реагируют на растворенные в воде вещества. Их сигналы поступают через волокна лицевого и языко-глоточного нервов (продолговатый мозг) в таламус и далее в соматосенсорную область коры. Рецепторы разных частей языка воспринимают четыре основных вкуса: горького (задняя часть языка), кислого (края языка), сладкого (передняя часть языка) и соленого (передняя часть и края языка). Между вкусовыми ощущениями и химическим строением вещества отсутствует строгое соответствие, так как вкусовые ощущения могут изменяться при заболевании, беременности, условно-рефлекторных воздействиях, изменениях аппетита. Информация вкусовой сенсорной системы используется для организации пищевого поведения, связанного с добыванием, выбором, предпочтением или отверганием пиши, формированием чувства голода, сытости.
    179.Биологическое значение боли. Современное представление о ноцицепции и центральные механизмы боли.
    Боль — тягостное ощущение, отражающее психофизиологическое состояние человека, которое возникает под влиянием сверхсильных или разрушительных раздражителей. Биологическое и физиологическое значение боли состоит в том, что она сигнализирует о наличии повреждающего фактора, о необходимости его устранения или снижения его действия.

    Классификация боли.

    Выделяют физиологическую и патологическую боль. Физиологическая (нормальная) боль возникает как адекватная реакция НС на опасные для организма ситуации, и в этих случаях она выступает как фактор предупреждения о процессах, потенциально опасных для организма. Обычно физиологической болью называют ту, которая возникает при целостной НС в ответ на повреждающие стимулы. Главным биологическим критерием, отличающим патологическую боль, является ее патогенное значение для организма. Патологическая боль осуществляется измененной системой болевой чувствительности.

    По характеру выделяют  острую  и  хроническую  (постоянную) боль. По локализации - кожные, головные, лицевые, сердечные, печеночные, желудочные, почечные, суставные, поясничные и др. В соответствии с классификацией рецепторов выделяют поверхностную (экстероцептивную), глубокую (проприоцептивную) и висцеральную (интероцептивную) боль.

    Различают боли соматические (при патологических процессах в коже, мышцах, костях), невралгические (обычно локализованные) и вегетативные (обычно диффузные). Возможны так называемые иррадиирующие боли. Например, в левую руку и лопатку при стенокардии, опоясывающие при панкреатите, в мошонку и бедро при почечной колике. По характеру течению, качеству и субъективным ощущениям различают приступообразные, постоянные, молниеносные, разлитые, тупые, иррадиирующие, режущие, колющие, жгучие, давящие, сжимающие боли.

    Ноцицептивная система – это система восприятия и передачи болевого сигнала.

    Боль, являясь рефлекторным процессом, включает и все основные звенья рефлекторной дуги: рецепторы (ноцицепторы), болевые проводники, образования спинного и головного мозга, а также медиаторы, осуществляющие передачу болевых импульсов.

    Согласно современным данным, ноцицепторы в большом количестве содержатся в различных тканях и органах и имеют множество концевых разветвлений с мелкими аксо-плазматическими отростками, которые и являются структурами, активируемыми болевым воздействием. Считается, что по сути своей они являются свободными немиелизированными нервными окончаниями. Более того, в коже, и, особенно, в дентине зубов были обнаружены своеобразные комплексы свободных нервных окончаний с клетками иннервируемой ткани, которые рассматриваются как сложные рецепторы болевой чувствительности. Особенностью как поврежденных нервов, так и свободных немиелинизированных нервных окончаний является их высокая хемочувствительность.

    Установлено, что любое воздействие, приводящее к повреждению тканей и являющееся адекватным для ноцицептора, сопровождается высвобождением алгогенных (вызывающих боль) химических агентов. Выделяют три типа таких веществ.

    а) тканевые (серотонин, гистамин, ацетилхолин, простагландины, ионы К и Н);

    б) плазменные (брадикинин, каллидин);

    в) выделяющиеся из нервных окончаний (субстанция P).

    Предложено немало гипотез о ноцицептивных механизмах алгогенных субстанций. Считается, что субстанции, содержащиеся в тканях, непосредственно активируют концевые разветвления немиелинизированных волокон и вызывают импульсную активность в афферентах. Другие (простагландины) сами не вызывают боли, но усиливают эффект ноцицептивного воздействия иной модальности. Третьи (субстанция P) выделяются непосредственно из терминалей и взаимодействуют с рецепторами, локализованными на их мембране, и, деполяризуя ее, вызывают генерацию импульсного ноцицептивного потока. Предполагается также, что субстанция P, содержащаяся в сенсорных нейронах спинномозговых ганглиев, действует и как синаптический передатчик в нейронах заднего рога СМ..

    По мнению Гольдшайдера, боль возникает не в результате раздражения специальных ноцицепторов, а вследствие избыточной активации всех типов рецепторов различных сенсорных модальностей, которые в норме реагируют только на не болевые, "не ноцицептивные" стимулы. В формировании боли в этом случае главенствующее значение имеет интенсивность воздействия, а также пространственно-временное соотношение афферентной информации, конвергенция и суммация афферентных потоков в ЦНС. В последние годы получены весьма убедительные данные о наличии "неспецифических" ноцицепторов в сердце, кишечнике, легких.

    Основными проводниками кожной и висцеральной болевой чувствительности являются тонкие миелиновые А- дельта и безмиелиновые С волокна, различающиеся по ряду физиологических свойств.

    Сейчас общепринято следующее разделение боли на:

    1. первичную - светлую, коротко латентную, хорошо локализованную и качественно детерминированную боль;

    2. вторичную - темную, длинно латентную, плохо локализованную, тягостную, тупую боль.

    Показано, что "первичная" боль связана с афферентной импульсацией в А-дельта волокнах, а "вторичная" - с C-волокнами.

    Помимо ноцицептивной системы в организме существует антиноцицептивная система, образованная структурами центрального серого околоводопроводного вещества, гипоталамуса, ядра шва, ретикулярной формации среднего мозга, таламуса, претектального ядра, черной субстанции, некоторых участков соматосенсорной коры и др. Электростимуляция этих структур вызывает состояние аналгезии, при которой болевая нервная импульсация пре- или постсинаптически блокируется нейрохимическим путем — в результате выделения серотонина, катехоламинов, эндогенных опиоидных (эндорфины, энкефалины, динорфины) или неопиоидных (нейротензин. холецистокинин, кальцитонин, ангиотензин и др.) пептидов. Одновременно эти вещества тормозят выделение нейромедиаторов болевой импульсации. Взаимодействие ноцицептивной и антиноцицептивной систем формирует выработанный эволюцией, генетически заданный, биологически целесообразный и функционально-подвижный порог боли, который в здоровом организме адекватен действию лишь непосредственно вредоносных раздражителей. Искусственная стимуляция антиноцицептивной системы (путем акупунктуры, введения наркотиков и др.) или снижение активности ноцицептивной системы (путем новокаинизации, разрушения ноцицептивных путей и др.) вызывает исчезновение болей при сохранении патологического процесса или очага.
    180. Врожденные формы поведения (безусловные рефлексы и инстинкты), их значение для приспособительной деятельности.
    Безусловные рефлексы – это врождённые ответные реакции организма на раздражение. Свойства безусловных рефлексов:

    1. Они являются врождёнными, т.е. наследуются.

    2. Наследуются всеми представителями данного вида животных.

    3. Для возникновения безусловнорефлекторной реакции необходимо действие специфического раздражителя (механическое раздражение губ сосательный рефлекс у новорождённого).

    4. У них имеется постоянное рецептивное поле (зона восприятия специфического раздражителя).

    5. Они имеют постоянную рефлекторную дугу.

    Классификация безусловных рефлексов

    И.П. Павлов все безусловные рефлексы разделял на простые (сосательный), сложные (потоотделения) и сложнейшие (пищевой, оборонительный, половой и т.д.). В настоящее время все безусловные рефлексы, в зависимости от их значения, делят на 3 группы:

    1. Витальные (жизненно важные). Они обеспечивают сохранение индивида. К ним относят пищевые,оборонительные, ориентировочные и др.

    2. Ролевые. Обеспечивают соответствующее положение в среде себе подобных. Эти безусловные рефлексы лежат в основе полового, группового или родительского поведения. (социальные потребности человека).

    3. Безусловные рефлексы саморазвития. Они не нужны для индивида в данный момент, они обеспечивают его будущие потребности (у человека идеальные потребности).

    Все эти виды безусловных рефлексов имеются у человека и являются движущей силой различных форм человеческого поведения

    Одной из сложных форм врождённого поведения являются инстинкты. Это комплекс безусловнорефлекторных реакций, обеспечивающих такую последовательность действий, которая характерна всем представителям данного вида в конкретной ситуации. Пример – инстинкт самосохранения. Большинство безусловных рефлексов осуществляется без участия коры, однако они находятся под контролем коры и входят в состав приобретаемых условных рефлексов. Сложнейшие безусловные рефлексы и инстинкты осуществляются врождёнными рефлекторными связями и в подкорке и коре.
    1   ...   25   26   27   28   29   30   31   32   ...   36


    написать администратору сайта