ответы на экзаменационные вопросы по гистологии. экзамен по гисте.теория. 1. Методика взятия, фиксирования и уплотнения материала для гистологического исследования
Скачать 0.5 Mb.
|
34. Эритриоциты: особенности строения, функция, эритроцитопоэз Эритроциты - небольшие, безъядерные элементы в форме двояковогнутого диска, что увеличивает их поверхность. У птиц эритроциты имеют палочковидное ядро. Средний диаметр эритроцитов 5-7 мкм. В цитоплазме эритроцитов отсутствуют органеллы и она практически вся заполнена гемоглобином. Гемоглобин обладает способностью присоединять кислород и превращаться в оксигемоглобин, который легко отдает его окружающим тканям. Взамен кислорода эритроцит захватывает углекислый газ в тканях организма и доставляет его в легкие. Газообмен происходит в результате разности парциальных давлений кислорода и углекислого газа в легких и тканях. Плазмолемма эритроцита устроена так, что может захватывать и переносить по сосудистому руслу аминокислоты, антитела, глюкозу, ионы Na, токсины, лекарственные вещества, ферменты и др. С гликокаликсом плазмолеммы эритроцитов связана групповая принадлежность и заряд. В норме эритроциты заряжены отрицательно и отталкиваются друг от друга. Благодаря высокой всасывающей способности, эритроциты участвуют в транспорте воды. Эритропоэз происходит в костном мозге. Прежде чем выйти в кровь, эритроциты последовательно проходят несколько стадий пролиферации и дифференцировки в составе эритрона — красного ростка кроветворения. Стволовая клетка крови (СКК) даёт клетку-предшественницу миелопоэза, которая даёт клетку-родоначальницу миелопоэза, которая уже даёт клетку, чувствительную к эритропоэтину. Бурстобразующая единица эритроцитов даёт начало эритробласту, который через образование пронормобластов уже дает морфологически различимые клетки-потомки нормобласты (последовательно переходящие стадии): базофильные нормобласты (имеют базофильное ядро и цитоплазму, начинает синтезироваться гемоглобин), полихроматофильные нормобласты (ядро становится меньше, участки с гемоглобином приобретают оксифильность), оксифильные нормобласты (их ядро расположено на одном конце уже овальной клетки, не способны к делению, содержат много гемоглобина), ретикулоциты (безъядерные, содержат остатки органелл, главным образом шероховатой эндоплазматической сети). Ретикулоциты далее становятся эритроцитами. 35. Лейкоциты: классификация, строение, функции. Лейкограмма. Лейкоциты в отличие от эритроцитов имеют ядра и органеллы. Они способны к активному перемещению путем образования псевдоподий и к фагоцитозу, защищая организм от микробов, вирусов, чужеродных тел, проникающих в кровь и в ткани. Они участвуют в формировании иммунитета, а также в восстановительных процессах при повреждении тканей. В крови их гораздо меньше, чем эритроцитов. В зависимости от наличия или отсутствия в цитоплазме специфической зернистости, лейкоциты делят на зернистые (гранулоциты) и незернистые (агранулоциты). Гранулоциты характеризуются наличием сегментированных ядер. В гранулах специфической зернистости содержатся различные биологически активные вещества (гистамин, гепарин), вещества, убивающие бактерии и обезвреживающие токсины и др. В соответствии с различиями в окрашивании цитоплазматической зернистости, гранулоциты разделяют на 3 вида клеток: 1. нейтрофильные (зернистость в них окрашивается кислыми и основными красителями); 2. эозинофильные (зернистость окрашивается кислыми красителями); 3. базофильные (зернистость в них окрашивается основными красителями). Нейтрофильные гранулоциты - составляют самую многочисленную группу лейкоцитов (40-60%). Диаметр их составляет 10-12 мкм, ядро имеет от 2 до 4 сегментов, соединенных тонкими перемычками. Они обладают высокой фагоцитарной и двигательной активностью. В состав их гранул входит бактерицидное вещество (лизоцим) и антитоксические факторы. Они способны выделять биологически активные вещества (катепсины), изменяющие проницаемость стенок сосудов, и способны переносить на своей поверхности антитела. Они всюду захватывают все инородные тела и вредные элементы, попавшие в организм. Поэтому их называют микрофагами. Эозинофилы - крупнее нейтрофилов (12-15 мкм). Составляют 4-5% от все лейкоцитов. Отличаются крупной розовой зернистостью, заполняющей всю цитоплазму клетки. Ядра имеют 2-3 сегмента, они больших размеров, чем у нейтрофилов и окрашены менее интенсивно. Эозинофилы участвуют в аллергических реакциях и обладают фагоцитарной и двигательной активностью, но в меньшей степени, чем нейтрофилы. Они способны адсорбировать на своей поверхности различные токсические вещества и инактивизировать их, а также связывают комплексы антиген-антитело и способствуют их выведению из организма. Эозинофилы принимают участие в ограничении воспалительного процесса. Кроме того, эозинофилы являются важнейшими клетками в противопаразитарном иммунитете. Базофилы - самая малочисленная разновидность лейкоцитов (0,5-2%). Диаметр у них меньше, чем у других гранулоцитов (8-10 мкм). Их ядра крупные, неопределенной формы, зернистость цитоплазмы более крупная. Базофилы участвуют в иммунологических реакциях аллергического типа и стимулируют воспалительные процессы. Вещества, выделяемые базофилами, понижают свертываемость крови, повышают проницаемость сосудов, способствуя выходу плазмы и возникновению отеков, а также вызывают сокращение гладких миоцитов в стенках сосудов мелких воздухоносных путей. Агранулоциты включают лимфоциты и моноциты. Лимфоциты округлой формы, с округлым плотным ядром, узким ободком цитоплазмы вокруг его с небольшим количеством органелл. Лимфоциты представляют центральное звено иммунной системы организма. Они выполняют функции иммунного надзора в организме и отвечают за формирование специфического иммунитета, обеспечивают защиту от всего чужеродного и сохраняют генетическое постоянство внутренней среды. Лимфоциты синтезируют антитела, уничтожают чужие клетки, обеспечивают уничтожение собственных мутантных клеток, осуществляют иммунную память, участвуют в отторжении имплантантов. Моноциты составляют 2-5% от общего числа лейкоцитов. Это самые крупные лейкоциты в массе крови (18-20 мкм). Ядра моноцитов крупные, разнообразные по форме: бобовидные, подковообразные, лопастные. Хроматин менее плотен, чем в лимфоцитах. Цитоплазма занимает большую часть клетки и окрашена в серовато-голубой цвет. Моноциты образуются в красном костном мозге и в кровяном русле находятся от 1 до нескольких суток. Они способны к амебовидному движению и, выселяясь из кровяного русла, дифференцируются в специальные макрофаги различных тканей и органов. В процессе дифференцировки в них увеличивается содержание вакуолей, лизосом, гранулярная ЭПС. Они секретируют антибактериальный белок лизоцим и другие биологически активные вещества. В кроветворных органах они очищают кровь и лимфу и стимулируют развитие клеток крови. Моноциты и специальные макрофаги обладают значительной фагоцитарной активностью. Они фагоцитируют бактерии, собственные постаревшие и генетически измененные (опухолевые) клетки, чужеродные белки. Присоединяя с помощью рецепторов антигены, представляют их Т-лимфоцитам и, таким образом, принимают участие в иммунных реакциях. Лейкоцитарная формула (лейкограмма) — процентное соотношение различных видов лейкоцитов, определяемое при подсчёте их в окрашенном мазке крови под микроскопом. Лейкоциты в зависимости от плотности распределяются в мазках неравномерно: нейтрофилы, базофилы, эозинофилы — по периферии, ближе к краям; моноциты, лимфоциты — ближе к середине. При подсчёте лейкоцитов используют методы Шиллинга или Филиппченко. По Шиллингу определяют количество лейкоцитов в четырёх участках мазка (четырёхпольный метод). Всего в мазке подсчитывают 100—200 клеток. Метод Филиппченко состоит в том, что мазок мысленно делят на 3 части: начальную, среднюю и конечную (трёхпольный метод). Подсчёт ведут по прямой линии поперёк мазка от одного его края к другому. В каждой части подсчитывают одинаковое количество клеток. Всего учитывают 100-200 лейкоцитов. Обнаруженные клетки записывают в специальную таблицу дифференциального подсчёта (сетка Егорова). Для более быстрого и удобного определения лейкоцитарной формулы применяют специальный 11-клавишный счётчик. 36. Лимфоциты: морфологическая и иммунологическая классификация, особенности функций в иммунном ответе. Лимфоциты у разных видов животных составляют разное количество: у крупного рогатого скота и овец от 40 до 60% от всех лейкоцитов, у свиней и лошадей от 20 до 40%. По размеру и некоторым структурным особенностям различают лимфоциты: малые (диаметром до 8 мкм), средние (8-11 мкм), большие(более 11 мкм). Основную массу в периферической крови животных составляют малые лимфоциты (до 90%). Они округлой формы, с округлым плотным ядром, узким ободком цитоплазмы вокруг его с небольшим количеством органелл. Средние лимфоциты поступают в периферическую кровь, а большие остаются в пределах кроветворных органов. По функциональным и некоторым морфологическим признакам различают Т и В-лимфоциты. Т-лимфоциты образуются в тимусе, а в селезенке и лимфатических узлах при внедрении антигена они могут дифференцироваться в активные клетки: Т-киллеры, Т-хелперы, Т-супрессоры. Т-киллеры участвуют в клеточном иммунитете, уничтожая генетически чужеродные клетки, в том числе опухолевые. Т-хелперы и Т-супрессоры участвуют в регуляции гуморального иммунитета. Гуморальный иммунитет заключается в том, что при попадании в организм чужеродных веществ (антигенов), в кровь и лимфу поступают специфические белки - антитела. Они синтезируются плазмоцитами, которые образуются в результате дифференцировки В-лимфоцитов (при внедрении антигена - вирусов, бактерий). Таким образом, Т-лимфоциты ответственны за клеточный иммунитет, а В-лимфоциты за гуморальный. В-лимфоциты у млекопитающих образуются в красном костном мозге, а у птиц в Фабрициевой сумке, бурсе. Морфологические различия между Т и В-лимфоцитами видны только при электронной сканирующей микроскопии (Т-клетки имеют гладкую поверхность, а В - ворсинчатую). В крови больше Т-лимфоцитов (до 70%). В-лимфоциты составляют 20-30%. 10-20% лимфоцитов являются нулевыми. Они не проходят дифференцировку в органах иммунной системы и не имеют поверхностных рецепторов, но при необходимости могут превращаться в Т и В-лимфоциты. Лимфоциты в большинстве короткоживущие клетки (1-2 недели). Однако среди них есть и долгоживущие - клетки «памяти». После первичного контакта с антигеном, лимфоцит становится фабрикой специфических антител, и продолжительность его жизни увеличивается в десятки и сотни раз. Основными клетками «памяти» являются Т-лимфоциты. Они исполняют роль иммунного контролера. Практически на любой из антигенов в крови имеется группа Т-лимфоцитов, определяющая программу биосинтеза антител (иммуноглобулины). В-лимфоциты после получения этой программы превращаются в плазмоциты и осуществляют синтез определенных антител против внедрившегося антигена. Таким образом, лимфоциты представляют центральное звено иммунной системы организма. Они выполняют функции иммунного надзора в организме и отвечают за формирование специфического иммунитета, обеспечивают защиту от всего чужеродного и сохраняют генетическое постоянство внутренней среды. Лимфоциты синтезируют антитела, уничтожают чужие клетки, обеспечивают уничтожение собственных мутантных клеток, осуществляют иммунную память, участвуют в отторжении имплантантов. 37. Гранулоциты красного костного мозга, классификация строение и функции. В зависимости от наличия или отсутствия в цитоплазме специфической зернистости, лейкоциты делят на зернистые (гранулоциты) и незернистые (агранулоциты). Гранулоциты характеризуются наличием сегментированных ядер. В гранулах специфической зернистости содержатся различные биологически активные вещества (гистамин, гепарин), вещества, убивающие бактерии и обезвреживающие токсины и др. В соответствии с различиями в окрашивании цитоплазматической зернистости, гранулоциты разделяют на 3 вида клеток: 1. нейтрофильные (зернистость в них окрашивается кислыми и основными красителями); 2. эозинофильные (зернистость окрашивается кислыми красителями); 3. базофильные (зернистость в них окрашивается основными красителями). Нейтрофильные гранулоциты - составляют самую многочисленную группу лейкоцитов (40-60%). Диаметр их составляет 10-12 мкм, ядро имеет от 2 до 4 сегментов, соединенных тонкими перемычками. Они обладают высокой фагоцитарной и двигательной активностью. В состав их гранул входит бактерицидное вещество (лизоцим) и антитоксические факторы. Они способны выделять биологически активные вещества (катепсины), изменяющие проницаемость стенок сосудов, и способны переносить на своей поверхности антитела. Они всюду захватывают все инородные тела и вредные элементы, попавшие в организм. Поэтому их называют микрофагами. Эозинофилы - крупнее нейтрофилов (12-15 мкм). Составляют 4-5% от все лейкоцитов. Отличаются крупной розовой зернистостью, заполняющей всю цитоплазму клетки. Ядра имеют 2-3 сегмента, они больших размеров, чем у нейтрофилов и окрашены менее интенсивно. Эозинофилы участвуют в аллергических реакциях и обладают фагоцитарной и двигательной активностью, но в меньшей степени, чем нейтрофилы. Они способны адсорбировать на своей поверхности различные токсические вещества и инактивизировать их, а также связывают комплексы антиген-антитело и способствуют их выведению из организма. Эозинофилы принимают участие в ограничении воспалительного процесса. Кроме того, эозинофилы являются важнейшими клетками в противопаразитарном иммунитете. Базофилы - самая малочисленная разновидность лейкоцитов (0,5-2%). Диаметр у них меньше, чем у других гранулоцитов (8-10 мкм). Их ядра крупные, неопределенной формы, зернистость цитоплазмы более крупная. Базофилы участвуют в иммунологических реакциях аллергического типа и стимулируют воспалительные процессы. Вещества, выделяемые базофилами, понижают свертываемость крови, повышают проницаемость сосудов, способствуя выходу плазмы и возникновению отеков, а также вызывают сокращение гладких миоцитов в стенках сосудов мелких воздухоносных путей. 38. Кровяные пластинки и тромбоциты: строение и функции. Кровяные пластинки являются безъядерными элементами внутрисосудистой крови млекопитающих. В 1 мл крови их содержится около 300 тыс. Они являются «осколками» гигантских клеток костного мозга - мегакариоцитов и имеют неправильную дисковидную форму, размером 2-4 мкм. Участки цитоплазмы, отрываясь от мегакариоцитов, выходят в кровяное русло и принимают участие в свертывании крови при повреждении стенок кровеносных сосудов, т.е. выполняют защитную функцию. Живут они от 5 до 8 суток. В крови птиц, земноводных и рептилий сходными по функции являются небольшие клетки - тромбоциты, имеющие ядро. В неактивном состоянии в кровяных пластинках видна наружная гомогенная зона - гиалолиз и содержащая гранулы центральная часть - гранулолиз. С помощью актиновых микрофиламентов пластинки могут изменять форму, сокращаться, приобретать отростки, распластываться, что имеет большое значение в остановке кровотечения. На месте повреждения кровеносного сосуда происходит оседание и прикрепление кровяных пластинок к стенкам сосудов. Они становятся отросчатыми, что увеличивает площадь их контакта друг с другом. На поверхности пластин имеются особые рецепторы, способствующие слипанию, в результате чего образуется первичный сгусток крови - тромб, препятствующий выходу крови из поврежденного сосуда. В пластинках содержится тромбопластин, под действием которого из протромбина образуется тромбин. Тромбин в свою очередь способствует переходу растворимого в крови белка фибриногена в нерастворимую форму - фибрин. Нити фибрина формируют сеточку вокруг слипшихся пластинок, где скапливаются эритроциты. Таким образом образуются вторичный тромб, приостанавливающий кровотечение. 39. Строение и функции соединительных тканей со специальными свойствами. К соединительным тканям со специальными свойствами относят ретикулярную, жировую и слизистую. Они характеризуются преобладанием однородных клеток, с которыми обычно связано само название этих разновидностей соединительной ткани. Ретикулярная ткань является разновидностью соединительной ткани, имеет сетевидное строение и состоит из отростчатых ретикулярных клеток и ретикулярных волокон. Большинство ретикулярных клеток связано с ретикулярными волокнами и стыкуются друг с другом отростками, образуя трехмерную сеть. Ретикулярная ткань образует строму кроветворных органов и микроокружение для развивающихся в них клеток крови. Ретикулярные волокна (диаметр 0,5—2 мкм) — продукт синтеза ретикулярных клеток. В группе ретикулярных волокон различают собственно ретикулярные и коллагеновые волокна. Собственно ретикулярные волокна — дефинитивные, окончательные образования, содержащие коллаген III типа. Ретикулярные волокна по сравнению с коллагеновыми содержат в высокой концентрации серу, липиды и углеводы. Под электронным микроскопом фибриллы ретикулярных волокон имеют не всегда четко выраженную исчерченность с периодом 64—67 нм. По растяжимости эти волокна занимают промежуточное положение между коллагеновыми и эластическими. Жировая ткань — это скопления жировых клеток, встречающихся во многих органах. Жировая ткань более или менее отчетливо делится прослойками рыхлой волокнистой соединительной ткани на дольки различных размеров и формы. Жировые клетки внутри долек довольно близко прилегают друг к другу. В узких пространствах между ними располагаются фибробласты, лимфоидные элементы, тканевые базофилы. Между жировыми клетками во всех направлениях ориентированы тонкие коллагеновые волокна. Кровеносные и лимфатические капилляры, располагаясь в прослойках рыхлой волокнистой соединительной ткани между жировыми клетками, тесно охватывают своими петлями группы жировых клеток или дольки жировой ткани. В жировой ткани происходят активные процессы обмена жирных кислот, углеводов и образование жира из углеводов. При распаде жиров высвобождается большое количество воды и выделяется энергия. Поэтому жировая ткань играет не только роль депо субстратов для синтеза макроэргических соединений, но и косвенно — роль депо воды. Во время голодания подкожная и околопочечная жировая ткань, а также жировая ткань сальника и брыжейки быстро теряют запасы жира. Капельки липидов внутри клеток измельчаются, и жировые клетки приобретают звездчатую или веретеновидную форму. Слизистая ткань в норме встречается только у зародыша. Классическим объектом для ее изучения является пупочный канатик плода. Клеточные элементы здесь представлены гетерогенной группой клеток, дифференцирующихся из мезенхимных клеток на протяжении эмбрионального периода. Среди клеток слизистой ткани выделяют: фибробласты, миофибробласты, гладкие мышечные клетки. Слизистая соединительная ткань пупочного канатика синтезирует коллаген IV типа, характерный для базальных мембран. Между клетками этой ткани в первой половине беременности в большом количестве обнаруживается гиалуроновая кислота, что обусловливает желеобразную консистенцию основного вещества. Фибробласты студенистой соединительной ткани слабо синтезируют фибриллярные белки. Лишь на поздних стадиях развития зародыша в студенистом веществе появляются рыхло расположенные коллагеновые фибриллы. 40. Рыхлая соединительная ткань (РСТ): особенности строения и функции. РСТ обнаруживается во всех органах, - она сопровождает кровеносные и лимфатические сосуды и образует строму многих органов. Она состоит из клеток и межклеточного вещества. Основными клетками соединительной ткани являются фибробласты (семейство фибриллообразующих клеток), макрофаги, тучные клетки, адвентициальные клетки, плазматические клетки, перициты, жировые клетки, а также лейкоциты, мигрирующие из крови; иногда встречаются пигментные клетки. Фибробласты — клетки, синтезирующие компоненты межклеточного вещества: белки (например, коллаген, эластин), протеогликаны, гликопротеины. С главной функцией фибробластов связаны образование основного вещества и волокон (что ярко проявляется, например, при заживлении ран, развитии рубцовой ткани, образовании соединительнотканной капсулы вокруг инородного тела). В зрелых фибробластах осуществляется интенсивно биосинтез коллагеновых, эластиновых белков, протеогликанов, которые необходимы для формирования основного вещества и волокон. Макрофаги — это гетерогенная специализированная клеточная популяция защитной системы организма. Макрофаги имеют органеллы, синтезирующие ферменты для внутриклеточного и внеклеточного расщепления чужеродного материала, антибактериальные и другие биологически активные вещества (например: протеазы, кислые гидролазы, пироген, интерферон, лизоцим и др.) Тучные клетки (или тканевые базофилы, или же лаброциты). В их цитоплазме находится специфическая зернистость, напоминающая гранулы базофильных лейкоцитов крови. Тучные клетки являются регуляторами местного гомеостаза соединительной ткани. Они принимают участие в понижении свертываемости крови, повышении проницаемости гематотканевого барьера, в процессах воспаления и иммуногенеза. 41. Особенности структуры и функций клеток РСТ. Фибробласты — клетки, синтезирующие компоненты межклеточного вещества: белки (например, коллаген, эластин), протеогликаны, гликопротеины. С главной функцией фибробластов связаны образование основного вещества и волокон (что ярко проявляется, например, при заживлении ран, развитии рубцовой ткани, образовании соединительнотканной капсулы вокруг инородного тела). В зрелых фибробластах осуществляется интенсивно биосинтез коллагеновых, эластиновых белков, протеогликанов, которые необходимы для формирования основного вещества и волокон. Макрофаги — это гетерогенная специализированная клеточная популяция защитной системы организма. Макрофаги имеют органеллы, синтезирующие ферменты для внутриклеточного и внеклеточного расщепления чужеродного материала, антибактериальные и другие биологически активные вещества (например: протеазы, кислые гидролазы, пироген, интерферон, лизоцим и др.) Тучные клетки (или тканевые базофилы, или же лаброциты). В их цитоплазме находится специфическая зернистость, напоминающая гранулы базофильных лейкоцитов крови. Тучные клетки являются регуляторами местного гомеостаза соединительной ткани. Они принимают участие в понижении свертываемости крови, повышении проницаемости гематотканевого барьера, в процессах воспаления и иммуногенеза. Адипоциты (или жировые клетки). Так называют клетки, которые обладают способностью накапливать в больших количествах резервный жир, принимающий участие в трофике, энергообразовании и метаболизме воды. Адипоциты располагаются группами, реже поодиночке и, как правило, около кровеносных сосудов. Накапливаясь в больших количествах, эти клетки образуют жировую ткань – разновидность соединительной ткани со специальными войствами. Форма одиночно расположенных жировых клеток - шаровидная. Зрелая жировая клетка обычно содержит одну большую каплю нейтрального жира, занимающую всю центральную часть клетки и окруженную тонким цитоплазматическим ободком, в утолщенной части которого лежит ядро. Кроме того, в цитоплазме адипоцитов имеется небольшое количество других липидов: холестерина, фосфолипидов, свободных жирных кислот. Адвентициальные клетки. Это малоспециализированные клетки, сопровождающие кровеносные сосуды. Они имеют уплощенную или веретенообразную форму со слабобазофильной цитоплазмой, овальным ядром и небольшим числом органелл. В процессе дифференцировки эти клетки могут, по-видимому, превращаться, в фибробласты, миофибробласты и адипоциты. 42. Плотные оформленные соединительные ткани: классификация, особенности строения и функции. Плотные волокнистые соединительные ткани характеризуются относительно большим количеством плотно расположенных волокон и незначительным количеством клеточных элементов и основного аморфного вещества между ними. Расположение волокон строго упорядочено и в каждом случае соответствует тем условиям, в каких функционирует данный орган. Оформленная волокнистая соединительная ткань встречается в сухожилиях и связках, в фиброзных мембранах. Сухожилие состоит из толстых, плотно лежащих параллельных пучков коллагеновых волокон. Между этими пучками располагаются фиброциты и небольшое количество фибробластов и основного аморфного вещества. Тонкие пластинчатые отростки фиброцитов входят в промежутки между пучками волокон и тесно соприкасаются с ними. Фиброциты сухожильных пучков называются сухожильными клетками - тендиноцитами. Каждый пучок коллагеновых волокон, отделенный от соседнего слоем фиброцитов, называется пучком первого порядка. Несколько пучков первого порядка, окруженных тонкими прослойками рыхлой волокнистой соединительной ткани, составляют пучки второго порядка. Прослойки рыхлой волокнистой соединительной ткани, разделяющие пучки второго порядка, называются эндотенонием. Из пучков второго порядка слагаются пучки третьего порядка, разделенные более толстыми прослойками рыхлой соединительной ткани — перитенонием. Иногда пучком третьего порядка является само сухожилие. В крупных сухожилиях могут быть и пучки четвертого порядка. К фиброзным мембранам относят фасции, апоневрозы, сухожильные центры диафрагмы, капсулы некоторых органов, твердую мозговую оболочку, склеру, надхрящницу, надкостницу, а также белочную оболочку яичника и яичка и др. Фиброзные мембраны трудно растяжимы вследствие того, что пучки коллагеновых волокон и лежащие между ними фибробласты и фиброциты располагаются в определенном порядке в несколько слоев друг над другом. В каждом слое волнообразно изогнутые пучки коллагеновых волокон идут параллельно друг другу в одном направлении, не совпадающем с направлением в соседних слоях. Отдельные пучки волокон переходят из одного слоя в другой, связывая их между собой. Кроме пучков коллагеновых волокон, в фиброзных мембранах есть эластические волокна. 43. Хрящевые ткани: общая характеристика, классификация, особенности строения и функций. Хрящевая ткань отличается плотным упругим межклеточным веществом, образующим вокруг клеток-хондроцитов и групп их особые оболочки, капсулы. Важнейшее отличие хрящевой ткани от большинства других типов тканей — отсутствие внутри хряща нервов и кровеносных сосудов. Выделяют 3 основных вида хрящевой ткани: гиалиновая, эластическая, волокнистая. Если межклеточное вещество однородно, то хрящ называется стекловидным, или гиалиновым, если пронизано волокнами — волокнистым, если заключает сеть эластических волокон — эластическим. Снаружи хрящ одет особой соединительно-тканной оболочкой — надхрящницей. Хрящ играет роль твёрдой основы, скелета тела животного или образует упругие части костного скелета (одевает концы костей, образуя суставные поверхности, или соединяет кости в виде прослоек — например, такую роль играют межпозвоночные диски). Состоит хрящевая ткань из хрящевых клеток (хондробластов и хондроцитов) и плотного, упругого межклеточного вещества. Хрящевая ткань содержит около 70-80 % воды, 10-15 % органических веществ, 4-7 % солей. Хондробласты - это молодые, способные к митотическому делению округлые клетки. Они продуцируют компоненты межклеточного вещества хряща: протеогликаны, гликопротеины, коллаген, эластин. Цитолемма хондробластов образует множество микроворсинок. Цитоплазма богата РНК, хорошо развитой эндоплазматической сетью (зернистой и незернистой), комплексом Гольджи, митохондриями, лизосомами, гранулами гликогена. Ядро хондробласта, богатое активным хроматином, имеет 1-2 ядрышка. Хондроциты - это зрелые крупные клетки хрящевой ткани. Они округлые, овальные или полигональные, с отростками, развитыми органеллами. Хондроциты располагаются в полостях - лакунах, окружены межклеточным веществом. Если в лакуне одна клетка, то такая лакуна называется первичной. Чаще всего клетки располагаются в виде изогенных групп (2-3 клетки), занимающих полость вторичной лакуны. Стенки лакуны состоят из двух слоев: наружного, образованного коллагеновыми волокнами, и внутреннего, состоящего из агрегатов протеогликанов, которые входят в контакт с гликокаликсом хрящевых клеток. Структурной и функциональной единицей хрящей является хондрон, образованный клеткой или изогенной группой клеток, околоклеточным матриксом и капсулой лакуны. 44. Костная ткань: характеристика, классификация. Особенности строения компактной кости. Костные ткани — это специализированный тип соединительной ткани с высокой минерализацией межклеточного органического вещества, содержащего около 70% неорганических соединений, главным образом фосфатов кальция. Органическое вещество — матрикс костной ткани — представлено в основном белками коллагенового типа и липидами. По сравнению с хрящевой тканью в нем содержится относительно небольшое количество воды, хондроитинсерной кислоты, но много лимонной и других кислот, образующих комплексы с кальцием. Таким образом, твердое межклеточное вещество костной ткани (в сравнении с хрящевой тканью) придает костям более высокую прочность, и в тоже время – хрупкость. Органические и неорганические компоненты в сочетании друг с другом определяют механические свойства костной ткани — способность сопротивляться растяжению и сжатию. Существует два основных типа костной ткани: компактная и губчатая. Эти разновидности костной ткани различаются по структурным и физическим свойствам, которые обусловлены главным образом строением межклеточного вещества. В губчатой ткани коллагеновые волокна образуют толстые пучки, идущие в разных направлениях, а в компактной ткани костное вещество (клетки, волокна, матрикс) образуют системы пластинок. К костной ткани относятся также дентин и цемент зуба, имеющие сходство с костной тканью по высокой степени минерализации межклеточного вещества и опорной, механической функции. Клетки костной ткани: остеобласты, остеоциты и остеокласты. Компактная костная ткань (компактное вещество) — один из двух типов костной ткани, формирующих кость. Обеспечивает поддерживающую, защитную функции кости, служит хранилищем химических элементов. Компактное вещество формирует корковый слой большинства костей. Оно значительно плотнее, тяжелее и прочнее губчатого вещества. Первичной структурно-функциональной единицей компактного вещества является остеон. Остеоны (гаверсовы системы) являются структурными единицами компактного вещества трубчатой кости. Они представляют собой цилиндры, состоящие из костных пластинок, как бы вставленных друг в друга. В костных пластинках и между ними располагаются тела костных клеток и их отростки, замурованные в костном межклеточном веществе. Каждый остеон отграничен от соседних остеонов так называемой спайной линией, образованной основным веществом, цементирующим их. В центральном канале остеона проходят кровеносные сосуды с сопровождающей их соединительной тканью и остеогенными клетками. 45. Особенности остеогистогенеза плоских и трубчатых костей. Прямой остеогистогенез: 1)За счёт интенсивной прлиферации мезенхимных клеток и усиления васкулязации образуется остеогенный островок. 2)клетки островка дифференцируютя в остеобласты(синтезируют органический матрикс межклеточного вещества и коллагеновые волокна.по мере выработки межклеточного в-ва клетки «замуровываются» и превращаются в остеоциты. 3)наблюдается кальцификация межклеточного вещества. Органические соединения аморфного вещества замещаются на неорганические соли кальция и фосфора. образуется грубоволокнистая костная ткань . 4)Вместе с током крови участок остеогенеза приносит промоноциты и собирается в остеокласты. Эти клетки разрушают грубоволокнистую костную ткань,а на её месте образуется губчатая костная ткань. Непрямой остеогистогенез: В начале из гиалиного хряща формируется модель будущей кости. Развиваются трубчатые кости. Процесс окостенения в области диафиза. Здесь в надхрящницу врастает большое количество кровеносных сосудов, что увеличивает получение питательных веществ. в биохимических условиях надхрящница превращается в нвдкостницу (вместо хондрогенных кл-к начинают продуцировать остеогенные кл-ки ,что даёт образоваться остеобластам-перихондральная кость. Хрящ внутри кости гибнет, твёрдое вещество не пропускает питательные вещества.в хряще пустоты, образуются вакуоли .Одновременно происходит разрушение остеокластами, пока не возникает костномозговая полость .которую заполняет мезенхима. Из последней образуется строма костного мозга ,куда вселяются стволовые кровеносные клетки. 46. Гладкие мышцы: ососбенности строения, развития и местонахождения. Гладкая мышечная ткань развивается из клеток мезенхимного происхождения .Морфофункциональная единица –гладкий миоцит-клетка ветереновидной формы с овальным тёмным ядром, богатое хроматином.В цитоплазме большое количество органоидов ,среди которых преобладают митохондрии(у полюсов ядра).специализированные органеллы -актиновые миофиламенты, расположенные вдоль оси миоцита под углом к ней –трёхмерная сеть. Каждый миоцит окружён чётко выраженной базальной мембраной ,в которую вплетены ретикулярные.эластические и коллагеновые фибриллы - трёхмерная сеть. В ткани нет комбиальных или стволовых клеток поэтому она восстанавливается только за счёт самих миоцитов. Гладкомышечную ткань формируют и миоэпителиальные клетки звёзчатой формы, охватывающие своими отростками секреторные клетки концевых отделов и мелкие выводные протоки желёз.в цитоплазму, ядро, органеллы общего назначения, также миофиламенты, которые формируют в отростках актино-миозиновый сократительный аппарат-выведение секрета. Ткань эта присутствует в полых трубчатых органах жкт,кровеносных сосудов,мочеполовой и дыхательных систем. 47. Скелетная поперечно-полосатая мышечная ткань: строение, развитие и функции. Упругая, эластичная ткань, способная сокращаться под влиянием нервных импульсов: один из типов мышечной ткани. Образует скелетную мускулатуру человека и животных, предназначенную для выполнения различных действий. Источником развития скелетной мускулатуры являются клетки миотомов — миобласты. Часть из них дифференцируется в местах образования так называемых аутохтонных мышц. Прочие же мигрируют из миотомов в мезенхиму; при этом они уже детерминированы, хотя внешне не отличаются от других клеток мезенхимы. Их дифференцировка продолжается в местах закладки других мышц тела. В ходе дифференцировки возникает 2 клеточные линии. Клетки первой сливаются, образуя симпласты — мышечные трубки (миотубы). Клетки второй группы остаются самостоятельными и дифференцируются в миосателлиты (миосателлитоциты). В первой группе происходит дифференцировка специфических органелл миофибрилл, постепенно они занимают большую часть просвета миотубы, оттесняя ядра клеток к периферии. Клетки второй группы остаются самостоятельными и располагаются на поверхности мышечных трубок. Структурной единицей мышечной ткани является мышечное волокно. Оно состоит из миосимпласта и миосателлитоцитов (клеток-спутниц), покрытых общей базальной мембраной. Длина мышечного волокна может достигать нескольких сантиметров при толщине в 50-100 микрометров. Миосимпласт представляет собой совокупность слившихся клеток. В нем имеется большое количество ядер, расположенных по периферии мышечного волокна (их число может достигать десятков тысяч). Как и ядра, на периферии симпласта расположены другие органеллы, необходимые для работы мышечной клетки — эндоплазматическая сеть, митохондрии и др. Центральную часть симпласта занимают миофибриллы. Структурная единица миофибриллы — саркомер. Он состоит из молекул актина и миозина, именно их взаимодействие и обеспечивает изменение длины мышечного волокна и как следствие - сокращение мышцы. В состав саркомера входят также многие вспомогательные белки Миосателлиты — одноядерные клетки, прилежащие к поверхности миосимпласта. Эти клетки отличаются низкой дифференцировкой и служат взрослыми стволовыми клетками мышечной ткани. В случае повреждения волокна или длительном увеличении нагрузки клетки начинают делиться, обеспечивая рост миосимпласта. 48. Сердечная поперечнополосатая мышечная ткань: особенности строения типической и атипической мускулатуры. Сердечная поперечнополосатая мышечная ткань. Она развивается из висцеральных листков спланхнотома, миоэпикардиальной пластинки. Основная часть дифференцируется в сердечные миоциты, а остальные- в клетки мезотелия эпикарда. В процессе гистогенеза кардиомиоциты дифференцируются в типичные и атипичные . Сердечная поперечнополосатая мышечная ткань. Она развивается из висцеральных листков спланхнотома, миоэпикардиальной пластинки. Основная часть дифференцируется в сердечные миоциты, а остальные- в клетки мезотелия эпикарда. В процессе гистогенеза кардиомиоциты дифференцируются в типичные и атипичные . Типичные кардиомиоциты имеют сократительный аппарат ,который занимает большую часть саркоплазмы. У кардиомиоцитов в желудочках форма близкая к цилиндрической, а у расположенных в предсердиях - отросчатая. Концы кардиомиоцитов связаны друг с другом интердигитациями и десмосами, формирующими в области контактов вставочные диски. Кардиомиоциты расположены в виде цепочек. Снаружи они покрыты непрерывной базальной мембраной,к которой прикрепляются коллагеновые волокна. Овальной или круглой формы ядро располагается в центре клетки. В саркоплазме находятся органеллы общего назначения, но основной объем - миофибриллы, они построены из упорядоченно расположенных нитей сократительных белков - актина и миозина. Для их прикрепления служат телофрагмы и мезофрагмы, идущие поперёк клетки и образованные из вспомогательных белков. Концы телофрагм прикрепляются к плазмолемме и на продольном разрезе кардиомиоцита. Участок миофибрилл между 2-мя телофрагмами - саркомер. Атипичные кардиомиоциты. Эти кардиомиоциты крупнее.в их светлой саркоплазме находится слаборазвитый сократительный аппарат и бедное хроматином ядро. Миофибрилы малочисленны и лежат неупорядоченно у самой поверхности. Клетки соединяются не только концами ,но и боковыми участками. Вставочные диски устроены проще и не содержат интердигитаций, десмосов. нексусов. Их функция заключается в передаче импульсов от пейсмекеров на сократительные кардиомициты. 49. Нервные ткани: классификация, характеристика и развитие основных компонентов, функции. Нервная ткань — это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздражений, возбуждения, выработки импульса и его передачи. Она является основой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей средой. В нервной ткани выделяют два типа клеток – нервные и глиальные. Нервные клетки(нейроны, или нейроциты) — основные структурные компоненты нервной ткани, выполняющие специфическую функцию. Нейроглия обеспечивает существование и функционирование нервных клеток, осуществляя опорную, трофическую, разграничительную, секреторную и защитную функции. |