биохимия экзамен. 1. Нейрогуморальная регуляция обмена веществ. Роль гормонов в регуляции обмена веществ
Скачать 1.07 Mb.
|
Паратиреоидный гормонСтроениеПредставляет собой пептид из 84 аминокислот с молекулярной массой 9,5 кДа. СинтезИдет в паращитовидных железах. Реакции синтеза гормона высоко активны.
Регуляция синтеза и секрецииАктивирует образование гормона гипокальциемия. Уменьшают высокие концентрации кальция через активацию кальций-чувствительной протеазы, гидролизующей один из предшественников гормона. Механизм действияАденилатциклазный. Мишени и эффектыЭффект паратиреоидного гормона заключается в увеличении концентрации кальция и снижении концентрации фосфатов в крови. Это достигается тремя способами: Костная тканьпри высоком уровне гормона активируются остеокласты и происходит деструкция костной ткани, при низких концентрациях активируется перестройка кости и остеогенез. Почкиувеличивается реабсорбция кальция и магния, уменьшается реабсорбция фосфатов, аминокислот, карбонатов, натрия, хлоридов, сульфатов. также гормон стимулирует образование кальцитриола (гидроксилирование по С1). Кишечникпри участии кальцитриола усиливается всасывание кальция и фосфатов. ГипофункцияВозникает при случайном удалении железы при операциях на щитовидной железе или при аутоиммунной деструкции ткани желез. Возникающая гипокальциемия и гиперфосфатемия проявляется в виде высокой нервно-мышечной возбудимости, судорог, тетании. При резком снижении кальция возникает дыхательный паралич, ларингоспазм. ГиперфункцияПервичный гиперпаратиреоз возникает при аденоме желез. Нарастающая гиперкальциемия вызывает повреждение почек, мочекаменную болезнь. Вторичный гиперпаратиреоз является результатом почечной недостаточности, при которой происходит нарушение образования кальцитриола, снижение концентрации кальция в крови и компенсаторное возрастание синтеза паратиреоидного гормона. 13. Фосфорно-кальциевый обмен. Роль кальцитонина механизм его действия. КальцитонинСтроениеПредставляет собой пептид, включающий 32 аминокислоты с молекулярной массой 3,6 кДа. Кальцитонин — гормон пептидной природы, который секретируется щитовидной железой и приводит к снижению концентрации кальция в плазме, в основном обнаруживая влияния, противоположные влияниям ПТГ, однако количественный вклад кальцитонина в регуляцию концентрации ионов кальция намного меньше, чем ПТГ. Синтез и секреция кальцитонина осуществляется парафолликулярными клетками, или С-клетками, лежащими в интерстициальной жидкости между фолликулами в щитовидной железе. Синтез Осуществляется в парафолликулярных клетках щитовидной железы. Регуляция синтеза и секрецииАктивируют: ионы кальция, глюкагон. Механизм действияАденилатциклазный Мишени и эффектыЭффект кальцитонина заключается в уменьшении концентрации кальция и фосфатов в крови: в костной ткани подавляет активность остеокластов, что улучшает вход кальция и фосфатов в кость, в почках подавляет реабсорбцию ионов Ca2+, фосфатов, Na+, K+, Mg2+ 14. Фосфорно-кальциевый обмен. Роль витамина D3 в регуляции фосфорно-кальциевого обмена. Гипо- и гиперкальциемии, рахит. Физиологическая потребность для маленьких детей – 10 мкг, для старших детей и взрослых – 10-20 мкг, для лиц старше 60 лет – 15 мкг (1 мкг витамина D приблизительно соответствует 40 МЕ). Верхний допустимый уровень потребления — 50 мкг/сутки. Воздействие УФ-излучения индуцирующего покраснение кожи в минимальной эритемной дозе в течение 15-20 мин способно, в зависимости от типа кожи, индуцировать выработку до 250 мкг витамина D (10000 МЕ). Однако превращение провитамина D3 в неактивные метаболиты люмистерол и тахистерол уравновешивает кожный биосинтез витамина D3 по механизму обратной связи. Этот механизм эффективно предотвращает “передозировку” витамина D3 при УФ-облучении. Показано, что витамин D2, вырабатываемый растениями и грибами, и поступающий с зерновыми и молочными продуктами, гораздо менее эффективен по сравнению с витамином D3. Dietary Guidelines for Americans (США, 2015–2020гг) рекомендованы суточные нормы потребления витамина D: детям и взрослым лицам обоего пола с 0 до 70 лет включительно – 15 мг, пожилым людям, начиная с 71-го года – 20 мг СтроениеВитамин представлен двумя формами – эргокальциферол и холекальциферол. Химически эргокальциферол отличается от холекальциферола наличием в молекуле двойной связи между С22 и С23 и метильной группой при С24. Строение двух форм витамина DПосле всасывания в кишечнике или после синтеза в коже витамин D3 специфичным белком транспортируется в печень. Здесь он гидроксилируется по С25 и транспортным белком переносится к почкам, где еще раз гидроксилируется, уже по С1. Образуется активная форма витамина – 1,25-дигидроксихолекальциферол или, по другому, кальцитриол. Строение кальцитриолаРеакция гидроксилирования в почках стимулируется паратгормоном, пролактином, соматотропным гормоном и подавляется высокими концентрациями фосфатов и кальция. Биохимические функцииНаиболее изученными и известными являются следующие функции витамина: 1. Увеличение концентрации кальция и фосфатов в плазме крови. Для этого кальцитриол в мишеневых клетках индуцирует синтез кальций-связывающего белка и компонентов Са2+-АТФазы и в результате: увеличивает всасывание ионов Ca2+ в тонком кишечнике, стимулирует реабсорбцию ионов Ca2+ и фосфат-ионов в проксимальных почечных канальцах. 2. Подавляет секрецию паратиреоидного гормона через повышение концентрации кальция в крови, но усиливает его эффект на реабсорбцию кальция в почках. 3. В костной ткани роль витамина D двояка: стимулирует мобилизацию ионов Ca2+из костной ткани, так как способствует дифференцировке моноцитов и макрофагов в остеокласты, разрушению костного матрикса, снижению синтеза коллагена I типа остеобластами, повышает минерализацию костного матрикса, так как увеличивает производство лимонной кислоты, образующей здесь нерастворимые соли с кальцием. 4. Кроме этого, как показано в последнее десятилетие, витамин D, влияя на работу около 200 генов, участвует в пролиферации и дифференцировке клеток всех органов и тканей, в том числе клеток крови и иммунокомпетентных клеток. Витамин D регулирует иммуногенез и реакции иммунитета, стимулирует выработку эндогенных антимикробных пептидов в эпителии и фагоцитах, лимитирует воспалительные процессы путем регуляции выработки цитокинов. Обобщенная схема эффектов кальцитриолаГиповитаминоз DВ настоящее время с недостаточностью витамина D связывают повышенный риск развития остеопороза, вирусных инфекций (!), обычно в условиях РФ это - грипп, артериальной гипертонии, атеросклероза, аутоиммуных заболеваний, сахарного диабета, рассеяного склероза, шизофрении, опухолей молочной и предстательной желез, рака 12-перстной и толстой кишки. Приобретенный гиповитаминозЧасто встречается при пищевой недостаточности (вегетарианство), при недостаточной инсоляции у людей, не выходящих на улицу, при национальных особенностях одежды. Также причиной гиповитаминоза может быть снижение гидроксилированиякальциферола (заболевания печени и почек) и нарушение всасывания и переваривания липидов (целиакия, холестаз). Недостаточность витамина D отмечается у 50% населения Земли. В странах северной Европы распространенность дефицита достигает 85%. Показано, что зимой в Российской Федерации недостаточность витамина D обнаруживается у более, чем 90% населения. Клиническая картинаНаиболее известным, "классическим" проявлением дефицита витамина D является рахит, развивающийся у детей от 2 до 24 месяцев. При рахите, несмотря на поступление с пищей, кальций не усваивается в кишечнике, а в почках теряется. Это ведет к снижению концентрации кальция в плазме крови, нарушению минерализации костной ткани и, как следствие, к остеомаляции (размягчение кости). Остеомаляция проявляется деформацией костей черепа (бугристость головы), грудной клетки (куриная грудь), искривление голени, рахитические четки на ребрах, увеличение живота из-за гипотонии мышц, замедляется прорезывание зубов и зарастание родничков. У взрослых тоже наблюдается остеомаляция, т.е. остеоид продолжает синтезироваться, но не минерализуется. Кроме нарушения костной ткани, отмечается общая гипотония мышечной системы, поражение костного мозга, желудочно-кишечного тракта, лимфоидной системы, атопические состояния. Вирус гриппа определяется в организме человека круглый год, но эпидемии заболевания в северных широтах встречаются только в зимнее время, когда содержание витамина D в крови достигает минимальных значений. Поэтому низкое сезонное обеспечение витамином D, а не увеличение вирусной активности, рассматривается некоторыми исследователями как причина эпидемий гриппа в холодные месяцы года. Наследственный гиповитаминозВитамин D-зависимый наследственный рахит I типа, при котором имеется рецессивный дефект почечной α1-гидроксилазы. Проявляется задержкой развития, рахитическими особенностями скелета и т.д. Лечение – препараты кальцитриола или большие дозы витамина D. Витамин D-зависимый наследственный рахит II типа, при котором наблюдается дефект тканевых рецепторов кальцитриола. Клинически заболевание схоже с I типом, но дополнительно отмечаются аллопеция, milia, эпидермальные кисты, мышечная слабость. Лечение варьирует в зависимости от тяжести заболевания, помогают большие дозы кальциферола. ГипервитаминозПричинаИзбыточное потребление с препаратами (не менее 1,5 млн МЕ в сутки). Клиническая картинаРанними признаками передозировки витамина D являются тошнота, головная боль, потеря аппетита и веса тела, полиурия, жажда и полидипсия. Могут быть запоры, гипертензия, мышечная ригидность. Хронический избыток витамина D приводит к гипервитаминозу, при котором отмечается: деминерализация костей, приводящая к их хрупкости и переломам. увеличение концентрации ионов кальция и фосфора в крови, приводящее к кальцификации сосудов, ткани легких и почек. Лекарственные формыВитамин D – рыбий жир, эргокальциферол, холекальциферол, аквадетрим, детримакс, кальцийD3-никомед. Эргокальциферол (витамин D2), составляющий основу некоторых препаратов, не способен длительно удерживать в крови уровень активной формы витамина D, и плохо подходит пациентам со средним и тяжелым дефицитом. Активные формы витамина D (1α-оксикальциферол, кальцитриол) – альфакальцидол, остеотриол, оксидевит, рокальтрол, форкал. 15. Роль печени в обмене углеводов. Основная роль печени в углеводном обмене заключается в поддержании нормального содержания глюкозы в крови – т. е. в регуляции нормогликемии. Это достигается за счет нескольких механизмов. 1. Наличие в печени фермента глюкокиназы. Глюкокиназа, подобно гексокиназе, фосфорилирует глюкозу до глюкозо-6-фосфата. Следует отметить, что глюкокиназа в отличие от гексокиназы, содержится, только в печени и ?-клетках островков Лангерганса. Активность глюкокиназы в печени в 10 раз превышает активность гексокиназы. Кроме того, глюкокиназа в противоположность гексокиназе имеет более высокое значение Кm для глюкозы (т. е. меньшее сродство к глюкозе). После приема пищи содержание глюкозы в воротной вене резко возрастает и достигает 10 ммоль/л и более. Повышение концентрации глюкозы в печени вызывает существенное увеличение активности глюкокиназы и увеличивает поглощение глюкозы печенью. Благодаря синхронной работе гексокиназы и глюкокиназы печень быстро и эффективно фосфорилирует глюкозу до глюкозо-6-фосфата, обеспечивая нормогликемию в системе общего кровотока. Далее глюкозо-6-фосфат может метаболизироваться по нескольким направлениям (рис. 28.1). 2. Синтез и распад гликогена. Гликоген печени выполняет роль депо глюкозы в организме. После приема пищи избыток углеводов откладывается в печени в виде гликогена, уровень которого составляет примерно 6 % от массы печени (100–150 г). В промежутках между приемами пищи, а также в период «ночного голодания» пополнения пула глюкозы в крови за счет всасывания из кишечника не происходит. В этих условиях активируется распад гликогена до глюкозы, что поддерживает уровень гликемии. Запасы гликогена истощаются к концу 1-х суток голодания. 3. В печени активно протекает глюконеогенез – синтез глюкозы из неуглеводных предшественников (лактат, пируват, глицерол, гликогенные аминокислоты). Благодаря глюконеогенезу в организме взрослого человека образуется примерно 70 г глюкозы в сутки. Активность глюконеогенеза резко возрастает при голодании на 2-е сутки, когда запасы гликогена в печени исчерпаны. Благодаря глюконеогенезу печень участвует в цикле Кори – процессе превращения молочной кислоты, образующейся в мышцах, в глюкозу. 4. В печени осуществляется превращение фруктозы и галактозы в глюкозу. 5. В печени происходит синтез глюкуроновой кислоты. 16. Роль печени в обмене липидов В гепатоцитах содержатся практически все ферменты, участвующие в метаболизме липидов. Поэтому паренхиматозные клетки печени в значительной степени контролируют соотношение между потреблением и синтезом липидов в организме. Катаболизм липидов в клетках печени протекает главным образом в митохондриях и лизосомах, биосинтез - в цитозоле и эндоплазматическом ретикулуме. Метаболизм жирных кислот в печени. Пищевые жиры в виде хиломикронов поступают в печень через систему печёночной артерии. Под действием липопротеинлипазы, находящейся в эндотелии капилляров, они расщепляются до жирных кислот и глицерола. Жирные кислоты, проникающие в гепатоциты, могут подвергаться окислению, модификации (укорочению или удлинению углеродной цепи, образованию двойных связей) и использоваться для синтеза эндогенных триацилглицеролов и фосфолипидов. Синтез кетоновых тел. При β-окислении жирных кислот в митохондриях печени образуется ацетил-КоА, подвергающийся дальнейшему окислению в цикле Кребса. Если в клетках печени имеется дефицит оксалоацетата (например, при голодании, сахарном диабете), то происходит конденсация ацетильных групп с образованием кетоновых тел (ацетоацетат,β-гидроксибутират, ацетон). Эти вещества могут служить энергетическими субстратами в других тканях организма (скелетные мышцы, миокард, почки, при длительном голодании - головной мозг). Печень не утилизирует кетоновые тела. При избытке кетоновых тел в крови развивается метаболический ацидоз. Образование и пути использования фосфатидной кислоты. Общим предшественником триацилглицеролов и фосфолипидов в печени является фосфатидная кислота. Она синтезируется из глицерол-3-фосфата и двух ацил-КоА - активных форм жирных кислот (рисунок 7). Глицерол-3-фосфат может образоваться либо из диоксиацетонфосфата (метаболит гликолиза), либо из свободного глицерола (продукт липолиза). Для синтеза фосфолипидов (фосфатидилхолина) из фосфатидной кислоты необходимо поступление с пищей достаточного количества липотропных факторов (веществ, препятствующих развитию жировой дистрофии печени). К этим факторам относятся холин, метионин, витамин В12, фолиевая кислота и некоторые другие вещества. Фосфолипиды включаются в состав липопротеиновых комплексов и принимают участие в транспорте липидов, синтезированных в гепатоцитах, в другие ткани и органы. Недостаток липотропных факторов (при злоупотреблении жирной пищей, хроническом алкоголизме, сахарном диабете) способствует тому, что фосфатидная кислота используется для синтеза триацилглицеролов (нерастворимых в воде). Нарушение образования липопротеинов приводит к тому, что избыток ТАГ накапливается в клетках печени (жировая дистрофия) и функция этого органа нарушается. Образование холестерола. Печень является основным местом синтеза эндогенного холестерола. Это соединение необходимо для построения клеточных мембран, является предшественником желчных кислот, стероидных гормонов, витамина Д3. Первые две реакции синтеза холестерола напоминают синтез кетоновых тел, но протекают в цитоплазме гепатоцита. Ключевой фермент синтеза холестерола - β-гидрокси-β-метилглутарил-КоА-редуктаза (ГМГ-КоА-редуктаза)ингибируется избытком холестерола и желчными кислотами по принципу отрицательной обратной связи (рисунок 9). Образование липопротеинов. Липопротеины - белково-липидные комплексы, в состав которых входят фосфолипиды, триацилглицеролы, холестерол и его эфиры, а также белки (апопротеины). Липопротеины транспортируют нерастворимые в воде липиды к тканям. В гепатоцитах образуются два класса липопротеинов - липопротеины высокой плотности (ЛПВП) и липопротеины очень низкой плотности (ЛПОНП). Печень участвует во всех этапах липидного обмена, начиная с переваривания липидов и заканчивая специфическими метаболическими превращениями отдельных липидных фракций: 1. синтез желчных кислот и образование желчи; 2. окисление жирных кислот; 3. биосинтез жирных кислот; 4. образование кетоновых тел; 5. распад и синтез фосфолипидов; 6. синтез холестерола и образование его эфиров; соотношение эфиры холестерина/свободный холестерин в норме составляет примерно 0,5 – 0,7 %; снижение этого коэффициента до 0,3 – 0,4 % наблюдается при поражениях печени и является неблагоприятным признаком; 7. основное место синтеза липопротеинов очень низкой плотности и липопротеинов высокой плотности; 8. гидроксилирование витамина D по 25-му положению. 17. Роль печени в обмене белков Роль печени в обмене белков. Печень является органом, регулирующим поступление азотистых веществ в организм и их выведение. В периферических тканях постоянно протекают реакции биосинтеза с использованием свободных аминокислот, либо выделение их в кровь при распаде тканевых белков. Несмотря на это, уровень белков и свободных аминокислот в плазме крови остаётся постоянным. Это происходит благодаря тому, что в клетках печени имеется уникальный набор ферментов, катализирующих специфические реакции обмена белков. Пути использования аминокислот в печени. После приёма белковой пищи в клетки печени по воротной вене поступает большое количество аминокислот. Эти соединения могут претерпевать в печени ряд превращений, прежде чем поступить в общий кровоток. К этим реакциям относятся (рисунок 10): а) использование аминокислот для синтеза белков; б) трансаминирование - путь синтеза заменимых аминокислот; осуществляет также взаимосвязь обмена аминокислот с глюконеогенезом и общим путём катаболизма; в) дезаминирование - образование α-кетокислот и аммиака; г) синтез мочевины - путь обезвреживания аммиака (схему см. в разделе "Обмен белков"); д) синтез небелковых азотсодержащих веществ (холина, креатина, никотинамида, нуклеотидов и т.д.). Она выполняет следующие функции: 1. синтез специфических белков плазмы: - в печени синтезируется: 100 % альбуминов, 75 – 90 % ?-глобулинов, 50 % ?-глобулинов 2. единственный орган, где синтезируются белки свертывающей системы крови – протромбин, фибриноген, проконвертин, проакцелерин; 3. активно протекают реакции трансаминирования и дезаминирования аминокислот; 4. биосинтез мочевины происходит исключительно в печени; 5. образование мочевой кислоты происходит в основном в печени, так как здесь много фермента ксантиноксидазы, при участии которого продукты распада пуриновых оснований (гипоксантин и ксантин) превращаются в мочевую кислоту; 6. синтез креатина и холина. В печени происходит детоксикация различных веществ. 18. Реакция обезвреживания веществ в печени: реакции микросомального окисления. Микросомальное окисление – это последовательность реакций с участием оксигеназ и НАДФН, приводящих к внедрению атома кислорода в состав неполярной молекулы и появлению у нее гидрофильности и повышает ее реакционную способность.. Реакции микросомального окисления осуществляются несколькими ферментами, расположенными на мембранах эндоплазматического ретикулума (в случае in vitro они называются микросомальные мембраны). Ферменты организуют короткие цепи, которые заканчиваются цитохромом P450. Реакции микросомального окисления относятся к реакциям фазы 1 и предназначены для придания гидрофобной молекуле полярных свойств и/или для повышения ее гидрофильности, усиления реакционной способности молекул для участия в реакциях 2 фазы. В реакциях окисления происходит образование или высвобождение гидроксильных, карбоксильных, тиоловых и аминогрупп, которые и являются гидрофильными. Ферменты микросомального окисления располагаются в гладком эндоплазматическом ретикулуме и являются оксидазами со смешанной функцией (монооксигеназами). Цитохром P450Основным белком микросомального окисления является гемопротеин – цитохром Р450. В природе существует до 150 изоформ этого белка, окисляющих около 3000 различных субстратов. Соотношение разных изоформ цитохрома Р450 различается в силу генетических особенностей. Считается, что одни изоформы участвуют в биотрансформации ксенобиотиков, другие – метаболизируют эндогенные соединения (стероидные гормоны, простагландины, жирные кислоты и др.). Цитохром Р450 взаимодействует с молекулярным кислородом и включает один атом кислорода в молекулу субстрата, способствуя появлению (усилению) у нее гидрофильности, а другой – в молекулу воды. Основными его реакциями являются: окислительное деалкилирование, сопровождающееся окислением алкильной группы (при атомах N, O или S) до альдегидной и ее отщеплением, окисление (гидроксилирование) неполярных соединений с алифатическими или ароматическими кольцами, окисление спиртов до соответствующих альдегидов. Работа цитохрома Р450 обеспечивается двумя ферментами: НАДН‑цитохром b5‑оксидоредуктаза, содержит ФАД, НАДФН‑цитохром Р450‑оксидоредуктаза, содержит ФМН и ФАД. Обе оксидоредуктазы получают электроны от соответствующих восстановленных эквивалентов и передают их на цитохром Р450. Этот белок, предварительно присоединив молекулу восстановленного субстрата, связывается с молекулой кислорода. Получив еще один электрон, цитохром P450 осуществляет включение в состав гидрофобного субстрата первого атома кислорода (окисление субстрата). Одновременно происходит восстановление второго атома кислорода до воды. Существенной особенностью микросомального окисления является способность к индукции или ингибированию, т.е. к изменению мощности процесса. Индукторами являются вещества, активирующие синтез цитохрома Р450 и транскрипцию соответствующих мРНК. Они бывают 1. Широкого спектра действия, которые обладают способностью стимулировать синтез цитохрома Р450, НАДФН-цитохром Р450-оксидоредуктазы и глюкуронилтрансферазы. Классическим представителем являются производные барбитуровой кислоты – барбитураты, также в эту группу входят диазепам, карбамазепин, рифампицин и др. 2. Узкого спектра действия, т.е. стимулируют одну из форм цитохрома Р450 – ароматические полициклические углеводороды (метилхолантрен, спиронолактон), этанол. Например, этанол стимулирует синтез изоформы Р4502Е1 (алкогольоксидаза) которая участвует в метаболизме, этанола, нитрозаминов, парацетамола и др. Глюкокортикоиды индуцируют изоформу Р4503А. Ингибиторы микросомального окисления связываются с белковой частью цитохрома или с железом гема. Они делятся на: 1. Обратимые прямого действия – угарный газ (СО), антиоксиданты, непрямого действия, т.е. влияют через промежуточные продукты своего метаболизма, которые образуют комплексы с цитохромом Р450 – эритромицин. 2. Необратимые ингибиторы – аллопуринол, аминазин, прогестерон, оральные контрацептивы, тетурам, фторурацил, |